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Abstract. For human pose recovery, the presence of occlusions due to objects or
other persons in the scene remains a difficult problem to cope with. However, recent
advances in the area of human detection allow for simultaneous segmentation of hu-
mans and the prediction of occluded regions. In this chapter, we present an example-
based pose recovery approach where this information is used. We effectively used
the grid-based nature of histograms of oriented gradients descriptors to ignore part
of the image observation space. This allowed us to recover poses directly, even in the
presence of significant occlusions. We evaluated our approach on the HumanEva-I
dataset, where we simulated different occlusion conditions. Without occlusion, we
obtained relative 3D errors of approximately 69 mm. Our results showed approxi-
mately 10% increase in error when 20% of the observation is occluded. When 33%
of the observation is occluded, the error is on average 15% higher compared to the
observations without occlusions. These results showed that poses can be recovered
from partially occluded observations, with a moderate increase in error. To the best
of our knowledge, our approach is the first to investigate the effect of partial occlu-
sions in a direct matching approach. Future work is aimed at combining our work
with human detection.

1 Introduction

Human body pose recovery, or pose estimation, is the process of estimating the con-
figuration of body parts from sensor input. When poses are estimated over time, the
term human motion analysis is used. Traditionally, motion capture systems require
that markers are attached to the body. These systems have some major drawbacks as
they are obtrusive, expensive, and impractical in applications in which the observed
humans are not necessarily cooperative. As such, many applications, especially in
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surveillance and human–computer interaction (HCI), would benefit from a solution
that is markerless. Vision-based motion capture systems attempt to provide such
a solution using cameras as sensors. In this chapter, we focus on applications that
require real-time, robust pose estimates.

In general, there are two main approaches in vision-based human motion analy-
sis: model-based (or generative) and model-free (or discriminative) [57]. The former
approach uses a parameterized human body model which, for a given model instan-
tiation, is matched to the visual observation. Guided by the projection error, the
pose estimate is refined until a (local) optimum is found. This method is flexible
as many parameters such as limb lengths, viewpoint, and appearance can be mod-
eled. The drawbacks are the computational costly steps of model projection and
projection-to-observation matching. As the pose space is generally large (20–60 di-
mensions), global optimization is not very practical. Therefore, local optimization is
often used, which presents the risk of getting stuck at a local optimum. When multi-
ple observations in time are available, this issue can be solved by taking a sampling-
based approach (e.g., Condensation [30]), where many particles are used to esti-
mate the cost surface. Due to the high dimensionality, a sufficiently large number
of particles are needed to obtain a good estimate. Each particle brings an additional
computational cost of model projection and projection-to-observation matching. In
practice, model-based approach are therefore not suitable for real-time applications.
Moreover, initialization remains a difficult problem with these methods.

Discriminative approaches do not use a human body model, but approximate the
mapping from image to pose directly. They can be applied in real time and auto-
matically provide initialization, but are less flexible in terms of encoding of param-
eters compared to generative approaches. Variations such as visual appearance and
viewpoint should be encoded either explicitly in the parameter space or implicitly in
the image representation. In this research, we take a discriminative approach where
we explicitly encode viewpoint, as changes in viewpoint have a large impact on
the image representation. We require our image representation to implicitly encode
lighting variations and variations in body dimensions and clothing.

The focus of this chapter is on robust invariant image representations. We use
a variant of histograms of oriented gradients (HOG, [11]), a holistic image rep-
resentation. Discriminative pose recovery approaches are either example-based or
regression-based. Regression-based approaches allow for faster evaluation but their
precise implementation and parameter setting (number of experts, regression func-
tion, learning of the regression, and gating functions) influences the performance.
This is undesirable, because it is less intuitive to attribute the performance to im-
age representation or regression approach. Therefore, we use an example-based
approach instead. The n visually most similar examples (nearest neighbors) are
selected and the final pose is estimated to be the weighted interpolation of the n
corresponding poses. We discuss regression-based and example-based approaches
in Section 2.3.

In realistic scenarios, partial occlusion of the human figure in the image due to
other persons or objects in the environment is common. We present an approach
to handle these partial occlusions, if these can be predicted from a foreground
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segmentation process. We assume that the location and scale of a human figure can
be detected from an image or video. When occlusions occur, we also require that
these areas are labeled. Due to the importance of this preliminary step, we discuss
the process of human detection in slightly more detail in Section 2.1.

The remainder of this chapter is structured as follows. Section 2 discusses
literature in the field of human motion analysis, with an emphasis on dis-
criminative work. In Section 3, we introduce our adaptation of HOG and the
occlusion-sensitive example-based pose recovery approach. Results on the publicly
available HumanEva benchmark dataset are presented in Section 4, and we conclude
in Section 5.

2 Related Work on Human Motion Analysis

Human motion analysis from images or video comprises many topics. Here, we
focus on human pose recovery in Section 2.2. We discuss discriminative approaches
in Section 2.3 as these can be applied in real time. Since our approach assumes that
a human subject is segmented in an image, we briefly discuss the state-of-the-art in
human detection first in Section 2.1.

2.1 Human Detection

Human detection and pose recovery can be seen as complementary tasks. In the de-
tection task, the aim is to generalize over different poses, whereas in the recovery
task, one wants to discriminate between them. We advocate a separation of these
tasks. This eliminates the need to perform human detection and pose recovery si-
multaneously, as this would require large amounts of pose-annotated training pairs,
which are costly to obtain.

The detection of human subjects from images is an important first step in the
analysis of human pose or action. Recently, there has been an increased interest in
this topic (see [33] for an overview). In general, human detection methods are either
holistic or part-based. A holistic approach considers the human body as a whole
[11, 21]. In many cases, a retinoscopic representation is used, where the human is
assumed to be centered within a defined region of interest (ROI). Human detection
is performed by sliding the window over the image and performing binary classi-
fication at each location. Dalal and Triggs [11] train a support vector machine on
positive and negative examples, encoded as HOGs. All training examples are re-
tained in [21], where Chamfer matching between a large set of pedestrian examples
is performed hierarchically. Dong et al. [12] explicitly take into account inter-human
occlusion. They extract foreground blobs of a single person, or a group of people.
An example-based approach, assuming that for each blob the corresponding num-
ber of persons with their exact locations are annotated, is used to segment each
person individually. Earlier work by Elgammal and Davis [14] used known color
distributions of each person to segment persons under occlusion. The advantage of
holistic approaches is that they generate relatively few false positives since much
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information about the human body can be incorporated. The main drawback of a
holistic approach is that occlusions cannot be dealt with without closer inspection
of the scene.

In contrast, part-based approaches divide the human body into several parts, each
of which can be modeled individually. Human detection is performed by looking
at assemblies of these individual parts (e.g. [43, 44, 80]). Mohan et al. [44] find
the head, legs, and the separate arms in a window by applying component-based
classifiers. Then, an SVM over the individual part detectors is used to classify the
entire window as human or non-human. The work of Mikolajczyk et al. [43] is
similar in nature, but the focus is on the face and shoulders, which are encoded for
frontal and side views separately. Felzenszwalb et al. [17] describe a person with
a deformable part model, where each part is discriminatively learned from HOG
descriptors. Niebles et al. [47] use a similar approach, but reduce the search space
by applying a holistic detector first and relying on temporal continuity. Recent work
by Wu and Nevatia [80] takes into account occlusions between persons in the scene.
Such an approach is not only able to detect persons but can also determine which
part of the observation is occluded. In recent work [81], they extend their approach
to output pixel-level segmentations. Lin et al. [37] address the problem of finding
suitable assemblies by introducing a tree of parts. Using re-evaluation, their method
is also able to segment occluded persons from an image. They extend their approach
in [36] to better handle variation in pose.

In general, part-based approaches generate many false positives for individual
body segments. This can be explained since a body segment alone is often less dis-
criminative compared to a full body. However, part-based approaches have a num-
ber of advantages over holistic methods. First, geometric constraints can be encoded
efficiently. Second, by learning the detectors for parts individually, the combinato-
rial problem is effectively decomposed. Therefore, fewer training data of body-part
templates is needed. Third, given a sensible assembly algorithm, humans can still
be detected and segmented from the image even if parts are missing. This allows
part-based methods to cope with partial occlusions from the environment or other
persons.

Summarized, recent work has greatly advanced the quality of human detection.
Especially the successful combination of detection and segmentation leaves us to
believe that it is realistic to assume that a separation into foreground, background,
and occluded area can be made. In the remainder of this chapter, we assume that
such a segmentation is available.

2.2 Human Pose Recovery

The aim of human pose recovery is to find a numerical solution for a parameter es-
timation problem. The parameters that need to be recovered include not only those
that describe the human body configuration but also viewpoint, body dimensions,
body appearance, and clothing description can be part of the parameter space. Usu-
ally, we are only interested in the body configuration, and want to generalize over
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body dimensions, appearance, and clothing and environmental factors such as illu-
mination. Still, these have an effect on the observation. Dealing with those variations
is one of the challenges of human pose recovery. Usually, an image representation
is used that is partly invariant to illumination and clothing, for example, by consid-
ering silhouettes. Another challenge is to deal with the high dimensionality of the
pose (or rather parameter) space, especially when real-time performance in needed.
A global search for the best parameter combination is computationally infeasible.

As mentioned before, human pose recovery approaches are either generative
(model-based) or discriminative (model-free). We argue that the high computational
cost of the projection-to-observation matching of generative approaches makes them
unsuitable for real-time applications. In this chapter, we therefore take a discrimi-
native approach. In the next section, we describe literature that reports on discrimi-
native work.

2.3 Discriminative Approaches to Pose Recovery

If no explicit human body model is available, a direct relation between image obser-
vation and pose must be established. In practice, this means that the image represen-
tation must generalize over variations in body dimensions, appearance, and clothing.
In general, a far-off view is assumed, where perspective effects are negligible. When
multiple cameras are employed, calibration is assumed. Discriminative algorithms
automatically perform (re)initialization and can be used to initialize model-based
approaches (e.g. [25, 65, 68]). Several works first use a discriminative approach to
find certain key poses in time, and use a model-based algorithm to recover the poses
in the intermediary frames (e.g. [18, 61]).

The training data must account for those parameters that we wish to recover,
usually the pose representation and the viewpoint. Not all kinematically possible
poses are also likely, and the training data implicitly forms a manifold in pose space.
Due to the high nonlinearity of this manifold, the pose space should be covered
densely to obtain faithful mappings. Dimensionality reduction can be used in pose
or image space to facilitate the learning of the mapping as in [13, 15].

Two main classes of pose estimation approach can be identified: example-based
(Section 2.3.1) and learning-based (Section 2.3.2). Example-based approaches re-
tain all image–pose training examples. For a given input image, a similarity search
is performed, and candidate poses are interpolated to obtain the pose estimate.
Learning-based approaches avoid having to store a large amount of examples and
approximate the mapping from image to pose space functionally by training on
image–pose pairs.

2.3.1 Example-Based

Example-based approaches use a database of examples that describe poses in both
image space and pose space. While no mapping from image to pose space has to
be learned, the drawback of example-based approaches is the large amount of space
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that is needed to store the database. Moreover, matching can be computationally
costly, depending on the search scheme that is used.

In its simplest form, example-based approaches encode both the image part of the
database and the observation into image representations and perform a linear search
to obtain the closest matches, the nearest neighbors. The associated poses of these
matches can be interpolated to allow for a more continuous range of pose estimates.
Poppe [56] uses HOG representations, which encode edges while allowing for small
variations in spatial arrangement. Results are presented from monocular and multi-
view settings. In the multi-view case, the camera arrangement in training and test
conditions is required to be the same. Silhouettes described using turning angle and
Chamfer distance are considered by Howe [26]. In later work [27], optical flow
information is used in addition. Fathi and Mori [16] only use motion information,
which is invariant to illumination and texture.

When multiple synchronized cameras are available, a visual hull can be con-
structed. Van den Bergh et al. [3] approximate this hull using 3D haarlets, an ex-
tension to 3D of the haarlets proposed in [79]. They focus on pose recognition and
learn a discriminative set of haarlets to maximize recognition performance.

Instead of using a direct distance measure, Sullivan and Carlsson [72] use defor-
mation cost between examples and an input image. To improve the robustness of
the point transferral, the spatial relationship of the body points and color informa-
tion is exploited. Mori and Malik [45] employ shape contexts to encode edges. In
an estimation step, the stored example are deformed to match the image observa-
tion. In this deformation, the location of the hand-labeled 2D locations of joints also
changes. The most likely 2D joint estimate is found by enforcing 2D image distance
consistency between body parts.

Temporal information can be used to overcome ambiguities from the image to
some extent. Toyama and Blake [76] incorporate examples in a probabilistic tempo-
ral framework. By employing an HMM, they approximate a low-dimensional man-
ifold by linear segments. Similar in concept is the work by Ong et al. [52], who
cluster the examples and determine flow vectors for each cluster. A particle filter
framework is used where the particles are guided by the flow vectors. Particle like-
lihoods are based on the matching distance to the closest example in the cluster.

The computational complexity of a naive nearest neighbor search is linear in
the number of examples. For recovering more unconstrained movements or high
number of DOF, the number of required examples grows substantially. Therefore,
Shakhnarovich et al. [67] introduce parameter sensitive hashing (PSH) to rapidly
estimate the pose given a new image. Because of the ambiguity in the use of sil-
houettes alone, they use edge direction histograms within a contour. An alternative
approach to reduce the computational complexity of the matching is by storing the
examples in a tree (e.g. [21]). Given an input image, a top-down matching procedure
is used. Starting from the highest level node, a matching is performed for each of
the child nodes. Only those subtrees that satisfy a certain criterium (e.g., threshold
or best match) are further evaluated. This significantly reduces the computation time
needed to select similar examples. This approach has also been taken by Yang and
Lee [83], who construct the pose estimate as a linear combination of the selected
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examples from the bottom level of the tree. Rogez et al. [63] use a collection of
trees. The nodes in each tree are trained to be discriminative and take into account a
single dimension from a HOG representation. By using a collection of trees, many
features can be used, and the resulting algorithm is more robust to noise.

2.3.2 Learning-Based

Learning-based approaches approximate the mapping from image to pose space
functionally. The advantage of these regression methods is that inference can be
performed efficiently and training data can be discarded after training. The draw-
back is learning the mapping. Especially for large amounts of training examples,
computation requirements might be prohibitively large.

Xu and Hogg [82] present one of the earliest uses of regression in human pose
recovery. A neural network is employed to map silhouette representations to pose
representations. Agarwal and Triggs [2] use nonlinear relevance vector machine
(RVM) regression over both linear and kernel bases to model the relation between
histograms of shape contexts and 3D poses. Ambiguities are resolved using dy-
namics. Agarwal and Triggs [1] use direct regression to recover upper-body poses.
Non-negative matrix factorization (NMF) on grid-based edge histograms is used to
obtain a set of basis vectors that correspond to local features on the human body
and ignore the presence of clutter. This enables them to recover poses without rely-
ing on background segmentation. The work by Onishi et al. [53] is similar in spirit,
and extends the work of Poppe [56] with a noise-reduction step. Instead of applying
NMF, they perform PCA in each block of cells in the grid to reduce the influence of
backgrounds.

Instead of using a single view, information from multiple synchronized views
can be combined into a voxel model. Ambiguities caused by using a single view are
thus avoided. Also, a 3D voxel representation is independent of the camera setup.
The approach is most suitable for controlled settings, where clean silhouettes can be
obtained. Sun et al. [73] use an adaptations of the RVM to recover the pose from 3D
shape context descriptors. When rotation normalization can be performed, such an
approach can be used to learn view-independent regressors. Gond et al. [22] fit the
voxel model in a 3D circular grid. This descriptor is rotation-normalized after recov-
ering the orientation of the torso. The normalized feature representation is then used
as an input for a sparse regressor. The approach has the advantage that significantly
less training data is required, at the cost of an additional normalization step.

The space of common human poses is much smaller than the space of kinemat-
ically possible poses and these poses usually occupy a well-defined area in this
high-dimensional space. This has led to the introduction of dimensionality reduction
techniques. These techniques are also well suited for learning-based approaches as
they can simplify the regression functions. For example, Grauman et al. [23] de-
scribe a distribution over both multi-view silhouettes and 3D joint locations with a
mixture of probabilistic PCA. A pose estimate is obtained from the Bayesian recon-
struction given the image representation. Similar in concept is the work of Bowden
et al. [8], who fit a nonlinear point distribution model (PDM) to 2D position of head
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and hands, the 2D body contour, and the 3D pose representation. The feature space
is projected on a lower dimensional space and allows for reconstruction of the pose
given an input image. Ong and Gong [51] include views from multiple cameras in
the PDM and recover a pose from multi-view images. Rogez et al. [62] use single
view and learn separate models. Temporal and spatial constraints are further used
to solve pose ambiguities. This concept is similar to Brand’s [9], who models a
manifold of pose and velocity configurations with an HMM. Temporal ambiguities
are resolved by recovering poses over an entire sequence by applying the Viterbi
algorithm.

Due to depth ambiguities in image space, the mapping from image to pose space
is multi-valued and cannot be determined with a single regressor. Therefore, mix-
tures of regressors have been introduced. These divide the image space into clusters,
where a regressor is learned for each cluster. Rosales and Sclaroff [64] cluster the
2D pose space and learn specialized functions for each cluster from image descrip-
tors to pose space. A neural network is used as mapping function. In [66], the work
is extended to allow input from multiple cameras. The pose is estimated for each
camera individually and in a subsequent step, the hypotheses are combined into a
set of self-consistent 3D pose hypotheses. Thayananthan et al. [74] use a mixture of
regressors but validate the pose estimate for each by matching it against the input
image to select the most likely pose. A similar approach is used by Sminchisescu
et al. [70], who jointly learn mappings between image and pose space. The pro-
cesses are guaranteed to converge to equilibrium. During inference, the results of
the mapping from image to pose is validated using the mapping back.

Sminchisescu et al. [71] take a probabilistic approach and model the multi-valued
nature of the mapping with Bayesian mixture of experts (BME). Each expert has an
associated gating function, which gives the conditional probability that the regres-
sor should be used given an input image. Guo and Qian [24] adapt the initialization
using k-means and use stereo observations to reduce the multi-modality of the map-
ping. Ning et al. [48] initialize the experts on a partitioned subset of the image
space. In the BME framework, experts and gating functions are learned simultane-
ously. This requires a double-loop optimization approach, which is computationally
costly. Therefore, Bo et al. [6] train both models sequentially, which results in a
decrease of both memory and computation requirements. Their algorithm thus can
handle much larger numbers of examples.

Usually, not the whole image representation is useful for learning the regres-
sion. Redundancy and noise in the training data can thus affect the learning and
performance of the regressors. This can be avoided by selecting only the relevant
features. Additionally, this lowers the dimensionality of the image space and thus
the complexity of the regressor. Ning et al. [49] jointly learn the BME regressors
and the selection of visual words in a supervised manner. A similar approach is
taken by Kanaujia et al. [31], who focus on hierarchical image representations and
semi-supervised learning. Okada and Soatto [50] discriminatively select those ori-
entations within HOG cells that are meaningful for predefined class of poses. An
input image is first classified to a pose class, before recovering the pose. Bissacco
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et al. [4] use boosting to select a limited set of discriminative binary edge features
and to learn the mapping directly.

Instead of learning the regression function offline, Urtasun and Darrell [78] learn
it online, given an input image. With an example-based approach, the closest ex-
amples are selected. A local regression is then learned from these matches. Their
approach can handle large numbers of examples, but is computationally more costly
due to the selection of the nearest neighbors.

Learning these mappings depends largely on the availability of pose–observation
pairs, which are difficult to obtain, especially in more unconstrained scenarios.
Several authors have used synthetic observations generated by character modeling
software (e.g. [2, 70]). Instead, Navaratnam et al. [46] use unlabeled examples to
improve the regression functions. These examples can be easily obtained by using
images of humans and by considering motion capture data.

3 Pose Recovery Using HOG

To describe an image, we can either use a holistic descriptor or a local (or
patch-based) descriptor. The former encodes the image observation as a whole. Lo-
cal deformations in the image will affect the entire descriptor. In contrast, local
descriptors describe the image observation as a collection of local regions. Usually,
these regions are extracted at interest points (local features), which are expected to
be invariant to changes in viewpoint and illumination [41, 77]. Currently, a popular
local descriptor is the scale invariant feature transform (SIFT [39]) and extensions
(SIFT-PCA [32] and GLOH [42]). Local descriptors have the advantage that they
can cope with variations in illumination, pose, and viewpoint to some extent. How-
ever, they strongly rely on robust extraction of interest points, which might be diffi-
cult due to differences in subject and background appearance. Moreover, extraction
of local descriptors is more time-consuming due to the localization of interest points
and the calculation of the local descriptor. Also, matching of bags of local descrip-
tors is less straightforward. Therefore, we use a holistic descriptor in our work.

In this section, we present an example-based approach to human pose recov-
ery. We use HOG as image representation. This holistic representation has been
introduced by Dalal and Triggs [11]. Their HOG descriptor is inspired by work on
orientation histograms [19], but uses dense sampling instead. The key idea is to
calculate HOG (edges) within each cell of a regular spatial grid. This grid has a
fixed number of cells which cover an area that is determined by a rectangular ROI.
The HOG descriptor is a concatenation of all cell histograms. Several alternatives
to HOGs have been proposed in literature. Levi and Weiss [35] use edge orientation
histograms that contain ratios between orientation responses, dominant orientation,
and symmetry features, calculated exhaustively over all rectangular subwindows of
an image. Adaboost is used to select the relevant features. In contrast, HOGs use a
fixed spatial structure, which allows for direct matching. The pyramid of histograms
of oriented gradients (PHOG) proposed by Bosch et al. [7] is a generalization of
the HOG where the notion of a block of cells is extended to multiple levels. At the
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lowest level, the ROI is described as a single edge orientation histogram. For each
higher pyramid level, a division into 2× 2 cells is made. The PHOG approach is
suitable when there is variation in the localization of the ROI but restricts the num-
ber of rows and columns in the grid to be equal and to be powers of 2. As the height
of a human figure in the image is larger than its width, we use the original HOG
concept.

HOGs have been used for several human motion analysis tasks. Dalal and Triggs
initially used HOGs for pedestrian detection, a binary classification task. Variations
in clothing, lighting, and body dimensions, but also viewpoint and pose, were im-
plicitly encoded. Such an approach is reasonable since there are clear cues such
as head and shoulder lines, which remain present also when seen from different
viewpoints. Gandhi and Trivedi [20] use HOG descriptors to classify the orientation
of pedestrians, thus explicitly encoding the (relative) viewpoint. Thurau [75] used
HOGs to model human shape for human action recognition. Both Liu et al. [38] and
Chakraborty et al. [10] use body part classifiers based on HOG descriptors. Such an
approach is suitable for 2D location of limbs. However, without strong pose priors,
lifting these to 3D will lead to ambiguities as there is no verification step where the
observation is used in a holistic manner.

While HOGs have been shown to be robust descriptors for the aforementioned
tasks, we believe that HOG descriptors are even sufficiently rich for recovery of
human poses, including the viewpoint. This task is, however, more demanding as
we do not have to distinguish between a small number of classes, but instead aim at
regression of 60-dimensional poses. Moreover, the HOG descriptors still have to be
invariant to lighting, clothing, and body dimensions.

Since we need to recover more information from the HOG descriptors, we also
require more precise HOG extraction. The above-mentioned works extract the HOG
descriptors directly from the image, which has two drawbacks. First, the ROI needs
to be determined, which is computationally expensive. The ROI can vary in po-
sition and scale (we do not regard rotation, upright recordings are assumed), and
many possible ROI candidates within an image have to be validated. Zhu et al. [84]
introduce an efficient approach based on the integral image [60], but real-time per-
formance still cannot achieved. Moreover, there will be false positives in the neigh-
borhood of the actual ROI, which makes determination of the actual location and
scale difficult.

Second, there is the problem of background clutter. Edges within the ROI that
do not belong to the person, but to the background, will affect the HOG descrip-
tor. Therefore, a number of works have explored ways to focus on edges that be-
long to the foreground. Poppe [56] uses background subtraction and only uses those
edge responses that fall within the foreground region. Agarwal and Triggs [1] use
NMF to suppress background edges. They demonstrate their work on recovery of
frontal poses. Both Sminchisescu et al. [70] and Okada and Soatto [50] implicitly
determine a set of discriminative features by learning regression functions from the
HOG space to the pose space. Due to the use of multiple regressors, this selection is
pose-dependent. Rogez et al. [63] use randomized trees, each of which is trained
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discriminatively. However, none of these works has explicitly addressed partial
occlusions.

Given the common presence of partial occlusions due to other persons or the
environment, there has been surprisingly little work that explicitly addresses this
issue. Poppe and Poel [59] detect humans and recover their poses in single images.
They use body-part templates and, for a match, vote over all joints in the human
body. Such an approach can deal with severe occlusions, but is restricted to a limited
class of motions (e.g., walking). Peursum et al. [55] use factored-state hierarchical
HMM to model the motion of one given action. Occlusion of the feet can be detected
using [54], and the likelihood function is adapted by ignoring the occluded area. The
learned dynamical model will ensure stable tracking but also poses restrictions on
the movement that can be recovered.

For example-based approaches, occlusions are variations that are not explicitly
modeled in the example set. To be able to handle these variations, there must be a
way to take into account the missing (or ambiguous) information in the matching.
To the best of our knowledge, only one paper takes into account occlusion in an
example-based approach. Howe [28] uses boundary fragment matching to match
partial shapes. Boundary fragments are small parameterized outlines of an extracted
silhouette. Background and occlusion areas need to be labeled, so the matching
algorithm knows which boundary fragments belong to the actual shape.

In many cases, silhouettes can be obtained relatively reliably using background
substraction. Similar to [56], we assume that such a segmentation into foreground
and background can be made. Employing this segmentation has two main advan-
tages. First, determination of the ROI is straightforward. This relieves the burden on
the detection task, as only a single detection window has to be processed. This will
significantly aid in achieving real-time performance. Second, by considering only
foreground edges, we effectively ignore background clutter. The resulting HOG de-
scriptor is therefore not dependent on the background, which increases generaliza-
tion. In addition, we assume that it is known which parts of the human subject in the
image are occluded, similar to [28]. We effectively use the grid-based nature of the
HOG descriptor to use only those dimensions in the matching procedure that cor-
respond to non-occluded cells. Our work is an adaptation of [56] where descriptor
normalization and matching procedure are adapted. In this section, we explain the
steps of our approach and show that poses can be recovered accurately, even when
foreground segmentation is noisy. We further demonstrate that our approach can re-
cover poses under partial occlusion. To the best of our knowledge, our approach is
the first to address partial occlusions in a direct matching approach. We believe that
this is a key characteristic of any human pose recovery approach that is to perform
in real time in more realistic environments.

In our contribution, we neither regard the temporal aspect nor do we apply any
measures to reduce the computational complexity. This allows us to focus on the
performance of the HOG descriptors. In Section 3.1, we discuss our HOG variant,
and how we obtain the descriptor from an image. The nearest neighbor pose re-
covery approach is explained in Section 3.2. Our experiments on the HumanEva
datasets are presented in Section 4.
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3.1 Histogram of Oriented Gradients

Our descriptor differs from the HOG descriptor as described by Dalal and Triggs
[11]. First, we only take into account the edges within a foreground mask. This re-
quires background segmentation, but allows us to focus only on those edges that are
meaningful. Second, we do not use the notion of (overlapping) blocks, which results
in a significantly reduced descriptor size. Third, we do not apply color normaliza-
tion, which further reduces the computational costs of calculating the descriptor.
Fourth, we use a different grid size. In our experiments (Section 4), we divide the
ROI into a grid with 6 rows and 5 columns. This is an arbitrary choice, but the height
of each cell roughly corresponds with the height of the head in a standing position.
Similarly, in a relaxed standing pose, the body covers approximately 3 columns
horizontally.

Within each cell in the grid, we calculate the orientation and magnitude of each
pixel that appears in the foreground mask. We apply a [−1 0 1] gradient filter to
each pixel in horizontal and vertical direction independently. The orientation of the
edge is given by the angle between these two derivatives. The magnitude is given
by the square root of the sum of the two squared derivatives. We divide the absolute
orientations over 9 equally sized bins in the 0°–180° range. Each pixel contributes
the magnitude of its orientation to the according histogram bin, which results in a
9-bin histogram per cell. Note that this binning is slightly different than proposed
in [11], where votes are interpolated bi-linearly between the neighboring cells and
orientation bins. The total length of the descriptor is 270. Poppe [56] normalized the
entire descriptor to unit length to overcome differences in scale. To further reduce
the size of the HOG descriptor and suppress background noise, PCA is applied by
Lu and Little [40] and Onishi et al. [53] in the context of human motion analy-
sis. However, both a global normalization and the use of PCA make the descriptor
holistic, as local variations affect the entire descriptor. However, partial occlusions
cause some of the observation to be uninformative, or even misleading. Normaliza-
tion of the entire descriptor depends on all individual cells. In case of occlusion,
some of the cells will have different edge responses. By normalizing descriptor d to
unit length, these cells will affect all others. Therefore, we normalize each cell hi, j

(i and j are a row and column index, respectively) individually to be of unit length.
This has the advantage that we can still deal with variations in scale, as each cell is
approximately equal in size. On the other hand, we discard the global character, and
each cell contributes equally to the final descriptor. Specifically, individual cells that
have a relatively low edge response have a similar summed weight as cells that have
a high response. Alternatively, we could have normalized each cell by its area size.
This would make the descriptor invariant to scale, but would not take into account
variations due to different lighting settings and clothing.

3.1.1 Determination of ROI and Foreground Mask

We calculate HOGs within an image’s ROI, in our case, the bounding box around
the subject. While HOGs can be used to determine this region, as in [11, 75, 84], we
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(a) (b) (c) (d) (e)

Fig. 1 Different steps in the calculation of a HOG descriptor. (a) the input image, with simu-
lated occlusion, (b) the foreground mask. For clarity, the occlusion is not shown. (c) the edge
magnitudes and (d) the HOG descriptor. The cells that are (partly) occluded are shown black.
(e) Locations of the 20 joints.

rely on background subtraction. As discussed previously, this significantly speeds
up the process, and we suppress background edges at the same time. We describe
the process here in detail to allow for replication. First, we apply the background
subtraction with the suggested risk values, as included in the HumanEva source
code [69]. The background is modeled as a mixture model with 3 Gaussians per
color channel. The minimum enclosing box of all foreground areas larger than 600
pixels is obtained. After conversion to HSV color space, we apply shadow removal
in the lower 20% of the ROI. Pixels that have a saturation that is between 0 and 25
higher than the saturation of any of the means in the background mixture model are
removed from the foreground mask. We again obtain the minimum enclosing box,
which is our final ROI. Figure 1 shows an example of background subtraction and
displays the HOG descriptor.

It may seem that our approach is highly sensitive to good background subtrac-
tion, but the shadow removal is only needed to ensure that the ROI fits the subject
reasonably. For certain cases, we slightly adjusted the parameters. For camera 1 in
HumanEva-I, only for subject 2, we multiplied the risk with factor 1012 to remove
artifacts from the foreground. For cameras 2 and 3 in HumanEva-I, we lowered the
shadow threshold to 10. We did not use the additional four grayscale cameras in
HumanEva-I. For HumanEva-II, we reduced the background risk with factor 1050,
only for camera 3. Still, errors in the background segmentation frequently result
in incorrect determination of the ROI and inaccurate foreground masks (see also
Figure 2).
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(a) (b) (c) (d)

Fig. 2 Background subtraction errors that result in inaccurate foreground masks and incorrect
placement of the ROI

3.2 Pose Recovery Using Nearest Neighbor Interpolation

In an example-based approach, each image observation is encoded and matched
against an example set of encoded observations. We use the previously described
HOGs as encodings. To match a HOG with those in the example set, we need to
define a distance measure between the two descriptors. To deal with partial occlu-
sions, we match descriptors at the cell level. We introduce weights φi, j for each cell.
These weights scale the feature space and therefore affect the distance functions
that we define. While these weights can take any value (e.g., in the [0,1] range),
we use here binary values. That is, φi, j = 0 in the case of occlusion within the cell,
and φi, j = 1, otherwise. This weighting effectively determines a lower-dimensional
subspace, in which we can perform matching. The distance between descriptor d
with cell-normalized histograms ĥi, j and descriptor d′ with cell-normalized his-
tograms ĥ′i, j is calculated as

D(d,d′) =
∑nr

i=1∑
nc
j=1 φi, jδ (ĥi, j,ĥ′i, j)

∑nr
i=1∑

nc
j=1 φi, j

(1)

Here, nr and nc are the number of rows and columns, respectively. In our experi-
ments, nr = 5 and nc = 6. δ is the distance measure between two histograms, for
which we use Manhattan distance. Note that, since we predict which cells are partly
occluded, we could ignore these cells and normalize the descriptor to unit length.
This approach would maintain the advantages of a global normalization but has the
drawback that normalization of all n examples in the database needs to be performed
at run time. This will severely affect the computational performance.

Matching a HOG with the entire example set results in a distance value for each
of the m examples. We could choose the example with the lowest distance, as this
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is the example that best matches the image observation. However, in practice, tak-
ing the n best matches (nearest neighbors) results in more accurate pose recovery.
It should be noted that n is the only parameter in our approach. Of course, n will
depend on the number of examples in the example set that are close to the presented
frame. Here, we use n = 25, in accordance with [58]. To determine the final pose
estimate, we use the poses that correspond to the n best examples. We determine
the final pose estimate ppp, the normalized weighted interpolation of these poses, as
ppp =∑i=1..n wi pppiii/(∑ j=1..n wj +δ ) and wi = 1

di+δ (1≤ i≤ n). Here, δ is a small num-
ber to avoid division by zero in the rare case which, retrieved examples, exactly that
match. pppiii, di, and wi correspond to the pose vector, HOG distance value, and weight
of the ith best matching example, respectively. This implies that close HOG matches
contribute more to the final estimate than HOG matches at a larger distance. One
word of caution is in its place here. Since we interpolate poses, the final joint esti-
mates are likely to lie closer to the mean distance for this joint, so closer to the body.
This effect is especially visible for examples that have similar image observations
but are distant in pose space.

Since we do not determine the correspondences between our localized subject in
the image and the estimated pose, we are not able to estimate the global position
of each joint. Instead, we report the distances of each joint relative to the pelvis
(torsoDistal) joint, as suggested in [69] (see Figure 1(e)).

4 Experiment Results

In our experiments, we use the HumanEva-I dataset [69], which we describe in Sec-
tion 4.1. We introduce the example set in Section 4.2. To the best of our knowledge,
there is no dataset that contains both ground truth motion capture data and video
data with occlusions. Therefore, we use the HumanEva dataset and simulate differ-
ent types of occlusion. The test sets are presented in Section 4.3. Results on both
non-occluded and occluded observations are presented in Section 4.4 and discussed
in Section 4.5.

4.1 HumanEva Dataset

The HumanEva-I dataset [69] contains several sequences, divided into training, val-
idation, and test sets.

The training and validation sequences in HumanEva-I contain synchronized
video and motion capture (mocap) data. There are 4 subjects that perform 5 actions
(Walking, Jog, Box, Gesture, and Throw/Catch). In addition, there is one sequence
for each subject–action pair that contains only mocap data. In the test set of
HumanEva-I, all these subject–action pairs also appear. Also, for each subject, there
is an additional Combo sequence that contains walking, jogging movements, and
some additional balancing movements that do not appear in any training or valida-
tion trial. Example frames are shown in Figure 3.
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(a) Frame 100 (b) Frame 200 (c) Frame 300 (d) Frame 400

(e) Frame 100 (f) Frame 200 (g) Frame 300 (h) Frame 400

Fig. 3 Single best estimate (top row) and original frame (bottom row) for the HumanEva-I Jog
sequence performed by subject 2 (a–d) and HumanEva-I Throw/Catch sequence performed
by subject 3 (e–h), both evaluated using a single camera (C1)

The walking and jogging actions are performed by moving in a circle,
counter-clockwise. Boxing, gesturing, and throwing and catching a ball are per-
formed while facing camera C1. There is some variation in these sequences, though.
Especially, the body orientation while catching the ball is heavily dependent on were
the ball appears.

In HumanEva-I, each sequence has been recorded with 3 color cameras and 4
grayscale cameras. These have all been synchronized and calibrated. The frame rate
of the video sequences is 60 frames per second. The dataset comes with source
code to temporally align different video streams with the motion capture data. Also,
background subtraction is included, which describes the background with a Gaus-
sian mixture model. We have used these provided algorithms where possible. In our
experiments, we use only the color cameras. For the monocular case, we only re-
gard camera 1. Sequences of subject 4 were not evaluated due to difficulties with
the background subtraction.

For the test sets, ground truth pose information is held back. An online vali-
dation system, as described in [69], is used to validate the pose recovery results.
This system ensures that results of different parties can be compared, and frustrates
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Table 1 Number of valid examples per action and subject in HumanEva-I training and vali-
dation sequences

Action Subject 1 Subject 2 Subject 3 Total
Walking 1176 876 895 2947
Jog 439 795 831 2065
Throw/Catch 217 806 0 1023
Gestures 801 681 214 1696
Box 502 464 933 1899
Combo 0 0 0 0
Total 3135 3622 2873 9630

parameter tuning. Specifically, ground truth information in our case are the 3D po-
sitions of 20 key joints, relative to the pelvis (torsoDistal) joint (see Figure 1(e)).
This is the full set of joints, and we report the root mean squared error (RMSE) in
mm, averaged over all joints, as described in [69].

4.2 Example Sets

We describe our example set for monocular pose recovery. We associate the HOGs
for an individual view with their corresponding poses. Only the examples that con-
tain valid mocap data are included in the example set.

When given a new image observation, together with the knowledge from which
camera the observation is obtained, we can estimate the relative pose. We observe
that the elevation (rotation in vertical direction) and roll (rotation around line of
sight) of all cameras are approximately the same. In other words, the orientation
of all cameras is almost equal except for the orientation around a vertical axis. If
we would rotate the subject in the scene around a vertical axis, we would theo-
retically be able to generate very similar observations for all cameras. In practice,
view-specific parameters such as backgrounds and lighting conditions are likely to
result in observations that are somewhat different. However, we want our approach
to be robust against these image deformations and therefore we perform this ro-
tation virtually. This has the additional advantage that the number of examples is
effectively tripled, resulting in a total of 28,890. Table 1 summarizes the origins of
the examples.

We transform the mocap data in such a way that we obtain the joint positions as
if we were looking through another camera. With an observation from camera i, and
the projection onto camera j, our pose vector pppiii = (xi,yi,zi,1)T is transformed into
pppjjj as follows: pj = MjM

−1
i pppiii, where Mi and Mj are the rotation matrices of cameras

i and j, respectively.

4.3 Test Sets

We use the HumanEva-I test sequences of subjects 1–3 for testing. Evaluation
of the Combo and Throw/Catch test sequences of subject 1 failed repeatedly.
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Fig. 4 Occlusion settings (left to right) v_left, v_center, v_right, h_top, h_center, and
h_bottom

Consequently, we cannot report our results on these trials. Note that part of the
Combo sequences contains movements that are not in the example set, which our
algorithm cannot handle.

The original frames are used to evaluate the pose recovery accuracy without oc-
clusion. In addition, we simulate different occlusion settings. We define six different
occlusion settings. Each of these settings is a fixed combination of weights φi, j . Ef-
fectively, we simulate occlusion on a fixed set of cells, not regarding the location of
the subject in the image. As such, we can test the influence of occlusion on a large
number of poses. The six settings that we define are v_left, v_center, v_right, h_top,
h_center, and h_bottom, see also Figure 4. In the vertical and horizontal conditions,
20% and 33% of the image observation is occluded, respectively.

In addition to the fixed occlusion settings, we also created a pole sequence. This
is the walking sequence of subject 1, but with a fixed occluded area in the image,
not relative to the ROI. The area is a vertical pole with a width of 40 pixels. For
comparison, the subject in the image is on average approximately 115 pixels in
width. Due to the scale and pose, this can vary between 70 and 170 pixels. The pole
sequence is a more realistic scenario and can show how the estimation error changes
as the subject moves through an occlusion.

4.4 Results

Table 2 summarizes the average 3D errors over all joints, relative to the pelvis. The
last column shows the results without occlusion. The average 3D relative error per
joint is approximately 69 mm over all actions. For walking and jogging, the error is
significantly lower at 45.05 mm and 45.98 mm, respectively. The larger number of
available examples and lower variation in movement are the most important causes
for the lower errors.
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Table 2 Mean relative 3D error in mm per joint for HumanEva-I test sequences, evaluated
with camera C1. For each fixed occlusion setting, the increase over the non-occluded obser-
vations and the amount of occlusion are given.

Subject Action Vertical Horizontal
None

Left Center Right Top Center Bottom
S1 Walking 39.80 43.28 42.10 47.52 43.83 45.83 39.03
S1 Jog 58.24 57.16 54.09 59.34 52.27 63.42 48.75
S1 Throw/Catch N/A N/A N/A N/A N/A N/A N/A
S1 Gestures 30.72 28.93 30.75 30.58 30.44 31.79 30.11
S1 Box 84.40 93.13 84.80 97.81 90.30 79.41 81.38
S1 Combo N/A N/A N/A N/A N/A N/A N/A
S2 Walking 37.60 40.18 39.22 42.23 39.53 41.24 37.27
S2 Jog 43.11 41.66 43.34 49.00 45.16 50.79 41.37
S2 Throw/Catch 73.53 72.13 71.34 76.81 74.06 76.33 72.18
S2 Gestures 95.30 95.65 86.14 84.90 85.25 93.16 82.81
S2 Box 109.17 120.03 107.43 107.14 112.11 115.45 105.08
S2 Combo 71.20 72.72 72.67 78.30 74.14 76.05 68.73
S3 Walking 58.38 64.73 64.23 61.31 61.22 65.79 58.86
S3 Jog 52.57 54.55 50.77 53.26 52.55 53.63 47.83
S3 Throw/Catch 120.06 112.22 94.38 110.81 103.15 122.22 101.40
S3 Gestures 80.09 76.85 97.63 72.49 91.20 114.00 82.63
S3 Box 105.64 110.48 98.69 110.15 105.65 106.99 98.44
S3 Combo 117.75 116.97 111.11 119.18 112.84 116.02 106.85

Average 73.60 75.04 71.79 74.43 73.36 78.26 68.92
Increase (%) 6.79 8.88 4.16 7.99 6.44 13.56 0.00
Occluded (%) 20.00 20.00 20.00 33.33 33.33 33.33 0.00

For each occlusion condition, the table shows the increase in error over all eval-
uated actions and subjects. For the vertical conditions, each of which occludes 20%
of the image, the average error is approximately 7% higher. The horizontal settings
result in a 9% increase, while occlusion covers one third of the observation. There
are, however, large differences in performance for different trials. We will discuss
these in the next section.

For the pole sequence, we obtained a 3D error of 43.54 mm averaged over all
joints and relative to the pelvis joint. We also discuss these results in the next
section.

4.5 Discussion

Several sequences show slightly lower errors when occlusion is added. This is most
likely caused by bad foreground segmentation. In the occluded conditions, these
distracting regions are ignored.

In general, we observe differences in accuracy between occlusion settings. The
horizontal settings have a slightly higher error (9%) compared to the vertical oc-
clusion settings (7%). This effect can be partly explained by the higher percentage
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(a) (b) (c) (d)

Fig. 5 Recovered poses of frames 250, 500, 750, and 1000. In frames 500 and 1000, the pole
is shown, but a larger region is not taken into account (60 and 40%, respectively). The 3D
pelvis location was set manually, as we only estimate relative joint locations.

of occlusion (33%, compared to 20%). However, there are differences between set-
tings. Most of these differences are caused by several individual trials. We will dis-
cuss these sequences that largely contribute to the increased error.

A significant part of the increase in recovery error is due to the boxing action.
Especially for subject 3, almost all occlusion settings result in significantly higher
errors. Analysis of these results reveal that many examples from the gesture ac-
tion are selected. For the gesture action, a similar trend is visible, especially in the
h_bottom condition. We expect that this is mainly due to the fact that subject 3 wears
dark clothes, which results in relatively few edge responses between arms and body.
Therefore, examples from beckoning gestures and box punches are selected inter-
changeably. The same effect is visible for subject 2, but to a much lesser extent.

For the jog action, recovery accuracy is significantly lower in the h_bottom oc-
clusion setting. As the hands do not move a lot while jogging, the legs are most
informative in this case as well.

The throwing and catching trials of subject 2 have a relatively low increase in er-
ror, whereas the h_bottom condition for subject 3 shows much higher errors. Similar
to earlier observations, the relatively low number of edge responses for subject 3 is
probably the reason that the missing edges for the feet result in decreased accuracy.
Also, the v_left occlusion setting shows higher error values, which can be explained
since the subjects both throws and catches the ball right to him. In the image, this
corresponds to the left side of the observation.
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Fig. 6 Mean relative 3D error (in mm) plots for HumanEva-I Walking, performed by subject
1 and viewed with a single camera (C1), (a) without occlusion, (b) for pole condition, and (c)
percentage of occlusion for pole condition. Instances that have a zero error contain invalid
mocap.

The error plots for the pole sequence are shown in Figure 6. The amount of occlu-
sion for each frame is in the range of 0–80%. On average, 19.06% of the observation
is occluded. The graphs clearly show that the error increases under occlusion. The
average increase in error is 11.56%. It should be noted that this is mainly due to
those frames where more than half of the observation is occluded. Here, the av-
erage error is 57.00 mm, compared to 39.17 mm for the non-occluded sequence.
When occlusion is in the range of 20–40%, the mean error is 43.63 mm compared
to 37.49 mm for the original. Differences between the upper two graphs for those
frames where no occlusion is present are due to differences in normalization. The
pose estimates for several frames are shown in Figure 5.

4.5.1 Comparison with Related Discriminative Work

The HumanEva dataset has been used by others to evaluate their work. In Table 3,
we compare previous reports on the HumanEva-I dataset, obtained using discrimi-
native approaches. Only non-occluded observations are used. The errors in Table 3
are indicative, as there are various differences between methods. First, Elgammal
and Lee [15, 34] normalize the errors for rotation. Second, some works evaluate
their approach on the validation sets, which allows for parameter tuning since the
online evaluation system is not required. Also, the observations might be closer to
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Table 3 Comparison of results of discriminative approaches, reported on HumanEva-I. Dy-
namics (dyn.) indicates whether a dynamical model (possibly activity-specific) is employed.
All errors are relative to the torsoDistal joint. Errors in 3D are in mm, for 2D in pixels. Direct
comparison is hindered due to differences between evaluations (different subjects, validation
set instead of test set, only part of the sequence). [15, 34] use a rotation-normalized error
measure.

Image representation Dyn. Walking Box 2D/3D
Bo et al. [6] Histogram of SC N 25.66 30.40 3D
Bo and Sminchisescu [5] HOG descriptor N 37.07 89.47 3D
Elgammal and Lee [15] Silhouette Y 31.36 3D
Lee and Elgammal [34] Silhouette N 76.56 3D
Okada and Soatto [50] HOG descriptor N 37.98 3D
Poppe (this work) HOG descriptor N 45.05 94.97 3D
Poppe [56] HOG descriptor N 45.36 94.48 3D
Urtasun et al. [78] Hierarchical features N 32.70 38.50 3D
Howe [29] Silhouette Y 15.00 2D
Urtasun et al. [78] Hierarchical features N 5.18 6.68 2D

the training set as training and validation sets are obtained from the same move-
ment sequence. Third, different sets are used for training. Several authors have used
person-specific training sets (e.g. [78]). Such an approach does not give any infor-
mation about the ability to generalize over subjects.

Howe [29] presents an example-based approach and uses a batch approach to re-
cover the most likely poses over a sequence of observations. This allows to avoid
forward–backward ambiguities, which are common when using silhouettes. Our
approach is closely related to Poppe’s [56], who uses a global normalization and
matching distance. Differences in accuracy between a global and cell-level normal-
ization are small. Moreover, our approach can deal with partial occlusions.

Regression-based approaches (e.g. [6, 50, 78]) in general show lower errors.
However, this comes at the cost of a computationally costly training phase, which
has proved difficult to generalize to larger numbers of training samples. Also, it
remains to be investigated how these approaches can cope with partial occlusions.

5 Conclusion

We presented an approach to recover human poses directly from image observa-
tions, even under significant occlusions. Our method requires segmentation of the
human subject in the image and prediction of the occluded areas. Recent work in
the domain of human detection can produce this information. We take an example-
based approach, where we encode the image observation using HOG. For each grid
cell, we assign a weight that indicates whether the cell is occluded. As such, we can
use the same example database, regardless of the type of occlusion. Experiments
were performed on the HumanEva-I dataset, which was also used to construct a
database of image–pose pairs. Since the dataset does not contain occlusions, we
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additionally simulated occlusion for six different conditions. Poses are estimated by
interpolating the poses corresponding to the 25 closest matches from a database. In
this matching, we treat the occluded cells as missing observations. This allows us to
recover poses even if a significant percentage of the image observation is occluded.

For non-occluded observations, we report 3D errors of approximately 69 mm,
relative to the pelvis and averaged over a set of 20 joint locations. For walking
and jogging, this error is approximately 45 mm. Our results show approximately
10% increase in error when 20% of the observation is occluded. When 33% of the
observation is occluded, the error is on average 15% higher compared to the ob-
servations without occlusions. We plan to combine our work with human detection.
One avenue of future research is to analyze how stereo information can aid in the
human detection and occlusion prediction tasks. Also, we are looking at ways to
reduce the linear complexity in the number of examples, either using hashing or a
regression-based approach.

Acknowledgment. We wish to thank the authors of [69] for making their database
available.
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68. Sigal, L., Bălan, A.O., Black, M.J.: Combined discriminative and generative articulated
pose and non-rigid shape estimation. In: Advances in Neural Information Processing
Systems (NIPS), Vancouver, Canada, December 2008, vol. 20, pp. 1337–1344 (2008)

69. Sigal, L., Black, M.J.: HumanEva: Synchronized video and motion capture dataset for
evaluation of articulated human motion. Technical Report CS-06-08, Brown University,
Department of Computer Science, Providence, RI (September 2006)

70. Sminchisescu, C., Kanaujia, A., Metaxas, D.: Learning joint top-down and bottom-up
processes for 3D visual inference. In: Proceedings of the Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2006), New York, NY, June 2006, vol. 2, pp. 1743–
1752 (2006)

71. Sminchisescu, C., Kanaujia, A., Metaxas, D.N.: BM3E: Discriminative density propaga-
tion for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 29(11), 2030–2044 (2007)

72. Sullivan, J., Carlsson, S.: Recognizing and tracking human action. In: Heyden, A.,
Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 629–644.
Springer, Heidelberg (2002)



354 R. Poppe

73. Sun, Y., Bray, M., Thayananthan, A., Yuan, B., Torr, P.H.S.: Regression-based human
motion capture from voxel data. In: Proceedings of the British Machine Vision Confer-
ence (BMVC 2006), Edinburgh, United Kingdom, September 2006, vol. 1, pp. 277–286
(2006)

74. Thayananthan, A., Navaratnam, R., Stenger, B., Torr, P.H.S., Cipolla, R.: Pose estima-
tion and tracking using multivariate regression. Pattern Recognition Letters 29(9), 1302–
1310 (2003)

75. Thurau, C.: Behavior histograms for action recognition and human detection. In: El-
gammal, A., Rosenhahn, B., Klette, R. (eds.) Human Motion 2007. LNCS, vol. 4814,
pp. 271–284. Springer, Heidelberg (2007)

76. Toyama, K., Blake, A.: Probabilistic tracking with exemplars in a metric space. Interna-
tional Journal of Computer Vision 48(1), 9–19 (2002)

77. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations
and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)

78. Urtasun, R., Darrell, T.: Sparse probabilistic regression for activity-independent human
pose inference. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR 2008), Anchorage, AK, June 2008, pp. 1–8 (2008)

79. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple fea-
tures. In: Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR 2001), Kauai, HI, December 2001, vol. 1, pp. 511–518 (2001)

80. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by
Bayesian combination of edgelet based part detectors. International Journal of Computer
Vision (IJCV) 75(2), 247–266 (2007)

81. Wu, B., Nevatia, R.: Detection and segmentation of multiple, partially occluded objects
by grouping, merging, assigning part detection responses. International Journal of Com-
puter Vision (IJCV) 82(2), 185–204 (2009)

82. Xu, L.-Q., Hogg, D.C.: Neural networks in human motion tracking - an experimental
study. Image and Vision Computing 15(8), 607–615 (1997)

83. Yang, H.-D., Lee, S.-W.: Reconstruction of 3D human body pose from stereo image
sequences based on top-down learning. Pattern Recognition 40(11), 3120–3131 (2007)

84. Zhu, Q., Avidan, S., Yeh, M.-C., Cheng, K.-T.: Fast human detection using a cascade of
histograms of oriented gradients. In: Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR 2006), New York, NY, June 2006, vol. 2, pp. 1491–1498
(2006)



Part IV
Architectures for Distributed Agent-Actor

Communities


