Skip to main content

Cognitive Systems Introduction

  • Chapter
Cognitive Systems

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 8))

Introduction

The CoSy project was setup under the assumption that the visionary FP6 objective

“To construct physically instantiated ... systems that can perceive, understand ... and interact with their environment, and evolve in order to achieve human-like performance in activities requiring context-(situation and task) specific knowledge”

is far beyond the state of the art and will remain so for many years. From this vision several intermediate targets were defined. Achieving these targets would provide a launch pad for further work on the long term vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of the 12th National Conference of the American Association for Artificial Intelligence (AAAI 1994), Seattle, WA, July 1994. The MIT Press, Cambridge (1994)

    Google Scholar 

  2. Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–130. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Agre, P., Chapman, D.: Pengi: An implementation of a theory of situated action (1987)

    Google Scholar 

  4. Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., Stent, A.: An architecture for a generic dialogue shell. Journal of Natural Language Engineering 6(3), 1–16 (2000)

    Article  Google Scholar 

  5. Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., Stent, A.: Towards conversational human-computer interaction. AI Magazine 22(4), 27–37 (2001)

    Google Scholar 

  6. Allen, J., Ferguson, G.: Human-machine collaborative planning. In: Proceedings of the Third International NASA Workshop on Planning and Scheduling for Space, Houston TX (2002)

    Google Scholar 

  7. Allen, J., Ferguson, G., Stent, A.: An architecture for more realistic conversational systems. In: Proceedings of Intelligent User Interfaces 2001 (IUI 2001), pp. 1–8 (2001)

    Google Scholar 

  8. Ambros-Ingerson, J.A., Steel, S.: Integrating planning, execution and monitoring. In: Proceedings of the 7th National Conference of the American Association for Artificial Intelligence (AAAI 1988), Saint Paul, MI, August 1988, pp. 83–88 (1988)

    Google Scholar 

  9. Ashish, N., Knoblock, C.A., Levy, A.Y.: Information gathering plans with sensing actions. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 13–25. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Bacchus, F., Ady, M.: Planning with resources and concurrency: A forward chaining approach. In: IJCAI 2001 [58]

    Google Scholar 

  11. Bacchus, F., Kabanza, F.: Using temporal logic to control search in a forward chaining planner. In: Ghallab, M., Milani, A. (eds.) New Directions in AI Planning (EWSP 1995), Amsterdam, The Netherlands. IOS Press, Amsterdam (1996)

    Google Scholar 

  12. Barsalou, L.W.: Ad-hoc categories. Memory and Cognition 11, 211–227 (1983)

    Google Scholar 

  13. Beetz, M., Burgard, W., Fox, D., Cremers, A.B.: Integrating active localization into high-level robot control systems. Robotics and Autonomous Systems 23, 205–220 (1998)

    Article  Google Scholar 

  14. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic domains under partial observability via symbolic model checking. In: IJCAI 2001 [58], pp. 473–478

    Google Scholar 

  15. Blaylock, N., Allen, J., Ferguson, G.: Managing communicative intentions with collaborative problem solving. In: Smith, R., van Kuppevelt, J. (eds.) Current and New Directions in Discourse and Dialogue. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  16. Blum, A., Furst, M.L.: Fast planning through planning graph analysis. Artificial Intelligence 90(1-2) (1997)

    Google Scholar 

  17. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1-2), 5–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 109–124. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Boutilier, C., Brafman, R.: Partial order planning with concurrent interacting actions. Journal of Artificial Intelligence Research (2001)

    Google Scholar 

  20. Boutilier, C., Poole, D.: Computing optimal policies for partially observable decision processes using compact representations. In: Proceedings of the 13th National Conference of the American Association for Artificial Intelligence (AAAI 1996), pp. 1168–1175. The MIT Press, Cambridge (1996)

    Google Scholar 

  21. Brenner, M.: Multiagent planning with partially ordered temporal plans. In: IJCAI 2003 [59]

    Google Scholar 

  22. Brenner, M.: Multiagent planning with partially ordered temporal plans. Technical report, Institut für Informatik, Univerisität Freiburg, Germany (2003)

    Google Scholar 

  23. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  24. Burgard, W., Fox, D., Thrun, S.: Active mobile robot localization. In: Proc. of the International Joint Conference on Artificial Intelligence, IJCAI (1997)

    Google Scholar 

  25. Buxton, H.: Learning and understanding dynamic scene activity. In: European Conference on Computer Vision: ECCV Generative Model Based Vision Workshop, pp. 71–81 (2002)

    Google Scholar 

  26. Cassell, J., Bickmore, J., Campbell, I., Chang, K., Vilhjalmsson, H., Yan, H.: Requirements for an architecture for embodied conversational characters. In: Proceedings Eurographics 1999, Berlin, Germany. Springer, Heidelberg (1999)

    Google Scholar 

  27. Cassell, J.: Embodied conversational agents: Representation and intelligence in user interfaces. AI Magazine 22(3), 67–83 (2001)

    Google Scholar 

  28. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelligence 42(2-3), 213–361 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Crowley, J.L., Christensen, H.: Vision as Process. ESPRIT BR Series. Springer, Heidelberg (1995)

    Google Scholar 

  30. de Freitas, N.: Rao-blackwellised particle filtering for fault diagnosis. In: Proc. of the IEEE Aerospace Conference (2001)

    Google Scholar 

  31. Dearden, R., Clancy, D.: Particle filters for real-time fault detection in planetary rovers. In: Proc. of the Thirteenth International Workshop on Principles of Diagnosis (2002)

    Google Scholar 

  32. Decker, K., Lesser, V.: Designing a family of coordination algorithms. In: Proceedings of the 1st International Conference on Multiagent Systems (ICMAS 1995), San Francisco, CA, pp. 73–80. MIT Press, Cambridge (1995)

    Google Scholar 

  33. Dickenson, S., Christensen, H.I., Tsotsos, J., Olofsson, G.: Active recognition integrating attention and view point control. CVIU 67(3), 239–260 (1997)

    Google Scholar 

  34. Durfee, E., Montgomery, T.: Coordination as distributed search in hierarchical behavior space. IEEE Transactions on Systems, Man, and Cybernetics (1991)

    Google Scholar 

  35. Durfee, E.: Coordination of Distributed Problem Solvers. Kluwer, Dordrecht (1988)

    MATH  Google Scholar 

  36. Elfes, A.: Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation RA-3(3), 249–265 (1987)

    Article  Google Scholar 

  37. Ephrati, E., Rosenschein, J.S.: Divide and conquer in multi-agent planning. In: AAAI 1994 [1]

    Google Scholar 

  38. Erol, K., Hendler, J.A., Nau, D.S.: HTN planning: Complexity and expressivity. In: AAAI 1994 [1], pp. 1123–1129

    Google Scholar 

  39. Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for hierarchical task-network planning. Annals of Mathematics and Artificial Intelligence 18, 69–93 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ritter, F.E., et al. (eds.): Techniques for Modeling Human Performance in Synthetic Environments: A Supplementary Review. Defense Technical Information Center, Ft Belvoir, VA (2002)

    Google Scholar 

  41. Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., Williamson, M.: An approach to planning with incomplete information. In: Nebel, B., et al. (eds.) [87], pp. 115–125

    Google Scholar 

  42. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: CVPR 2003, pp. II:264–II:271 (2003)

    Google Scholar 

  43. Fergus, R., Zisserman, Z., Perona, P.: Object class recognition by unsupervised scale-invariant learning. In: CVPR. IEEE Press, Los Alamitos (June 2003)

    Google Scholar 

  44. Fink, G., Jungclaus, N., Kummert, F., Ritter, H., Sagerer, G.: A distributed system for integrated speech and image understanding. In: International Symposium on Aritifical Intelligence, Cancun, Mexico, pp. 117–126 (1996)

    Google Scholar 

  45. Fox, M., Long, D.: PDDL 2.1: an Extension to PDDL for Expressing Temporal Planning Domains (2002)

    Google Scholar 

  46. Georgeff, M.P.: Communication and interaction in multi-agent planning. In: Proceedings of the 3rd National Conference of the American Association for Artificial Intelligence (AAAI 1983), Washington, DC, August 1983, pp. 125–129 (1983)

    Google Scholar 

  47. Georgeff, M.P.: A theory of action for multiagent planning. In: Proceedings of the 4th National Conference of the American Association for Artificial Intelligence (AAAI 1984), Austin, TX, pp. 121–125 (1984)

    Google Scholar 

  48. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: Proceedings of the 2nd International Conference on Artificial Intelligence Planning Systems (AIPS 1994), Chicago, IL. AAAI Press, Menlo Park (1994)

    Google Scholar 

  49. Gibson, J.: The Perception of the Visual World. Houghton Mifflin, Boston (1950)

    Google Scholar 

  50. Golden, K., Weld, D.: Representing sensing actions: The middle ground revisited. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) KR 1996: Principles of Knowledge Representation and Reasoning, pp. 174–185. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  51. Grossberg, S.: The link between brains, learning, attention, and consciousness. Consciousness and Cognition 8, 1–44 (1998)

    Article  Google Scholar 

  52. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial Intelligence 86(2), 269–357 (1996)

    Article  MathSciNet  Google Scholar 

  53. Grosz, B.J., Sidner, C.L.: Attention, intentions, and the structure of discourse. Computational Linguistics 12(3), 175–204 (1986)

    Google Scholar 

  54. Guivant, J., Masson, F., Nebot, E.: Simultaneous localization and map building using natural features and absolute information. Robotics and Autonomous Systems (2002)

    Google Scholar 

  55. Hähnel, D., Burgard, W., Lakemeyer, G.: GOLEX — bridging the gap between logic (GOLOG) and a real robot. In: Günter, A., Herzog, O. (eds.) KI 1998. LNCS, vol. 1504. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  56. Hansen, E.A., Zilberstein, S.: LAO *: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence 129(1-2), 35–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

    MATH  Google Scholar 

  58. Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle, WA, August 2001. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  59. Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, August 2003. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  60. Jensfelt, P., Kristensen, S.: Active global localisation for a mobile robot using multiple hypothesis tracking. IEEE Transactions on Robotics and Automation 17(5) (2001)

    Google Scholar 

  61. Johnston, M.: Deixis and conjunction in multimodal systems. In: Proceedings of COLING 2000 (2000)

    Google Scholar 

  62. Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., Whittaker, S., Maloor, P.: MATCH: An architecture for multimodal dialogue systems. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL 2002), pp. 376–383 (2002)

    Google Scholar 

  63. Jugessur, D., Dudek, G.: Local appearance for robust object recognition. In: CVPR 2000, pp. I:834–I:839 (2000)

    Google Scholar 

  64. Kaelbling, L.P., Cassandra, A.R., Kurien, J.A.: Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In: Proc. of the International Conference on Robots and Intelligent Systems, IROS (1996)

    Google Scholar 

  65. Kant, I.: Critique of Pure Reason. Macmillan, London, 1781 (1929); Translated by Norman Kemp Smith

    Google Scholar 

  66. Kennedy, C., Sloman, A.: Autonomous Recovery from Hostile Code Insertion using Distributed Reflection. Journal of Cognitive Systems Research 4(2), 89–117 (2003)

    Article  Google Scholar 

  67. Knoblock, C.A.: Planning, executing, sensing, and replanning for information gathering. In: Mellish, C. (ed.) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 1686–1693. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  68. Koenig, S., Simmons, R.: A robot navigation architecture based on partially observable Markov decision process models. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots. MIT/AAAI Press, Cambridge (1998)

    Google Scholar 

  69. Koller, D., Daniilidis, K., Nagel, H.-H.: Model-based object tracking in monocular image sequences of road traffic scenes. IJCV 10(3), 257–281 (1993)

    Article  Google Scholar 

  70. Kuipers, B., Byun, Y.-T.: A robot exploration and mapping strategy based on a semantic hierachy of spatial representations. Journal of Robotics and Autonomous Systems 8, 47–63 (1991)

    Article  Google Scholar 

  71. Lakoff, G.: Women, Fire, and Dangerous Things – What Categories Reveal about the Mind. Univ. of Chicago Press, Chicago (1987)

    Google Scholar 

  72. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: CVPR 2003, Madison, WI (June 2003)

    Google Scholar 

  73. Leibe, B., Schiele, B.: Interleaved object categorization and segmentation. In: Proceedings of British Machine Vision Conference (BMVC 2003) (September 2003)

    Google Scholar 

  74. Lenser, S., Veloso, M.: Sensor resetting localization for poorly modelled mobile robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA (2000)

    Google Scholar 

  75. Leonard, J.J., Feder, H.J.S.: A computationally effecient mathod for large-scale concurrent mapping and localization. In: Proc. 9th International Symposium on Robotics Research (December 1999)

    Google Scholar 

  76. Leuschen, M., Walker, I., Cavallaro, J.: Robot reliability through fuzzy markov models. In: Proc. IEEE Annual Reliability and Maintainability Symposium (1998)

    Google Scholar 

  77. Littman, M.L., Goldsmith, J., Mundhenk, M.: The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research 9, 1–36 (1998)

    MATH  MathSciNet  Google Scholar 

  78. Lochbaum, K.E.: A collaborative planning model of intentional structure. Computational Linguistics 24(4), 525–572 (1998)

    Google Scholar 

  79. Lowe, D.G.: Towards a computational model for object recognition in IT cortex. In: First IEEE International Workshop on Biologically Motivated Computer Vision, May 2000, pp. 20–31 (2000)

    Google Scholar 

  80. Lowe, D.G.: Local feature view clustering for 3D object recognition. In: CVPR 2001, pp. I:682–I:688 (2001)

    Google Scholar 

  81. McAllester, D.A., Rosenblitt, D.: Systematic nonlinear planning. In: Proceedings of the 9th National Conference of the American Association for Artificial Intelligence (AAAI 1991), Anaheim, CA, pp. 634–639. The MIT Press, Cambridge (1991)

    Google Scholar 

  82. Minsky, M.L.: Steps towards artificial intelligence. In: Feigenbaum, E.A., Feldman, J. (eds.) Computers and Thought, pp. 406–450. McGraw-Hill, New York (1963)

    Google Scholar 

  83. Morales-Menéndez, R., de Freitas, N., Poole, D.: Real-time monitoring of complex industrial processes with particle filters. In: Proc. of the Neural Information Processing Systems Conference, NIPS (2002)

    Google Scholar 

  84. Murphy, R., Hershberger, D.: Handling sensing failures in autonomous mobile robots. International Journal of Robotics Research (2000)

    Google Scholar 

  85. Nagel, H.-H.: Image sequence evaluation: 30 years and still going strong. In: ICPR, Washington DC, pp. 148–158. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  86. Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: SHOP: Simple hierarchical ordered planner. In: Dean, T. (ed.) Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1999), Stockholm, SE. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  87. Nebel, B., Swartout, W., Rich, C. (eds.): Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference (KR 1992), Cambridge, MA. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  88. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: IJCAI 2001 [58]

    Google Scholar 

  89. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco (1998)

    MATH  Google Scholar 

  90. Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. In: Proceedings of the IEEE International Conference on Image Processing (2003)

    Google Scholar 

  91. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavirol and Brian Sciences 24(4), 883–917 (2001)

    Google Scholar 

  92. O’Regan, J.K., Rensink, R.A., Clark, J.J.: Change-blindness as a result of ”mudsplashes”. Nature 398(34) (1999)

    Google Scholar 

  93. Oviatt, S.L.: Advances in the robust processing of multimodal speech and pen systems. In: Yuen, P.C., Tang, Y.Y., Wang, P.S. (eds.) Multimodal Interfaces B for Human Machine Communication. Series on Machine Perception and Artificial Intelligence, pp. 203–218. World Scientific Publisher, London (2001)

    Google Scholar 

  94. Oviatt, S.L.: Breaking the robustness barrier: Recent progress on the design of robust multimodal systems. In: Zelkowitz, M. (ed.) Advances in Computers, pp. 305–341. Academic Press, London (2002)

    Google Scholar 

  95. Papageorgiou, C., Poggio, T.: A trainable system for object detection. IJCV 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  96. Pednault, E.P.D.: Formulating multiagent, dynamic-world problems in the classical planning framework. In: Georgeff, M.P., Lansky, A. (eds.) Reasoning about Actions and Plans: Proceedings of the 1986 Workshop, Timberline, OR, pp. 47–82. Morgan Kaufmann, San Francisco (1986)

    Google Scholar 

  97. Scott Penberthy, J., Weld, D.S.: UCPOP: A sound, complete, partial order planner for ADL. In: Nebel, B., et al. (eds.) [87], pp. 103–114

    Google Scholar 

  98. Philipona, D., O’Regan, J.K., Nadal, J.-P.: Is there anything out there? inferring space from sensorimotor dependencies. Neural Computation 15(9), 2029–2050 (2003)

    Article  MATH  Google Scholar 

  99. Philipona, D., O’Regan, J.K., Nadal, J.-P., Coenen, O.J.-M.D.: Perception of the structure of the physical world using unknown multimodal sensors and effectors. In: NIPS (2003) (in press)

    Google Scholar 

  100. Pollack, M.E.: The uses of plans. Artificial Intelligence 57(1), 43–68 (1992)

    Article  MathSciNet  Google Scholar 

  101. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), San Mateo CA, pp. 473–484. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  102. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  103. Rencken, W.D.: Concurrent localisation and map building for mobile robots using ultrasonic sensors. In: IROS 1993, July 1993, vol. 3, pp. 2192–2197. IEEE, Los Alamitos (1993)

    Google Scholar 

  104. Riesenhuber, M., Poggio, T.: Models of object recognition. Nature Neuroscience 3, 1199–1204 (2000)

    Article  Google Scholar 

  105. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)

    MATH  Google Scholar 

  106. Robinson, A., Petchenik, B.: The Nature of Maps: Essays toward Understanding Maps and Mapping. The University of Chicago Press, Chicago (1976)

    Google Scholar 

  107. Rosch, E., Mervis, C., Gray, W., Johnson, D., Boyes-Braem, P.: Basic objects in natural categories. Cognitive Psychology 8, 382–439 (1976)

    Article  Google Scholar 

  108. Roy, N., Burgard, W., Fox, D., Thrun, S.: Coastal navigation: Mobile robot navigation with uncertainty in dynamic environments. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA (1999)

    Google Scholar 

  109. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  110. Scheding, S., Nebot, E., Durrant-Whyte, H.: The detection of faults in navigation systems: A frequency domain approach. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA (1998)

    Google Scholar 

  111. Schiele, B., Crowley, J.L.: Recognition without correspondence using multidimensional receptive field histograms. IJCV 36(1), 31–50 (2000)

    Article  Google Scholar 

  112. Schneiderman, H., Kanade, T.: A statistical method of 3d object detection applied to faces and cars. In: CVPR 2000, pp. 746–751 (2000)

    Google Scholar 

  113. Schölkopf, B., Mallot, H.A.: View-based cognitive mapping and path planning. Technical Report 7, Max-Planck -Institut fur biologische Kybernetik (November 1994)

    Google Scholar 

  114. El Fallah Seghrouchni, A., Haddad, S.: A recursive model for distributed planning. In: Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS 1996), Kyoto, Japan, pp. 307–314. MIT Press, Cambridge (1996)

    Google Scholar 

  115. Selfridge, O.: A paradigm for learning. In: Symposium on Mechanization of Thought Processes: National Physical Laboratory Symposium (1959)

    Google Scholar 

  116. Shanahan, M.: A logical account of the common sense informatic situation for a mobile robot. Electronic Transactions on Artificial Intelligence 2, 69–104 (1998)

    MathSciNet  Google Scholar 

  117. Shanahan, M.: A logical account of perception incorporating feedback and expectation. In: Proceedings of Knowledge Representation 2002, pp. 3–13 (2002)

    Google Scholar 

  118. Shanker, S.G., King, B.J.: The emergence of a new paradigm in ape language research. Behavioral and Brain Sciences 25(5), 605–606 (2002)

    Google Scholar 

  119. Siskind, J.: Grounding the lexical semantics of verbs in visual perception using force dynamics and event logic. Journal of Artificial Intelligence Research 15, 31–90 (2001)

    MATH  Google Scholar 

  120. Sloman, A.: The Computer Revolution in Philosophy. Harvester Press/Humanities Press, Hassocks, Sussex (1978), http://www.cs.bham.ac.uk/research/cogaff/crp

    Google Scholar 

  121. Sloman, A.: Beyond shallow models of emotion. Cognitive Processing: International Quarterly of Cognitive Science 2(1), 177–198 (2001)

    Google Scholar 

  122. Sloman, A.: Evolvable biologically plausible visual architectures. In: Cootes, T., Taylor, C. (eds.) Proceedings of British Machine Vision Conference, pp. 313–322. BMVA, Manchester (2001)

    Google Scholar 

  123. Sloman, A., Logan, B.S.: Building cognitively rich agents using the Sim_agent toolkit. Communications of the Association for Computing Machinery 42(3), 71–77 (1999)

    Google Scholar 

  124. Stark, L., Boyer, K.W.: Generic object recognition using form and functions. Machine Perception and Artifical Intelligence 10 (1996)

    Google Scholar 

  125. Stone, M.: Modality in Dialogue: Planning, Pragmatics and Computation. PhD thesis, Department of Computer and Information Science, University of Pennsylvania (1998)

    Google Scholar 

  126. Stone, M.: Communicative intentions and conversational processes in human-human and human-computer dialogue. In: Trueswell, J., Tanenhaus, M. (eds.) World-Situated Language Use. The MIT Press, Cambridge (2003)

    Google Scholar 

  127. Stone, M., Doran, C.: Sentence planning as description using tree-adjoining grammar. In: Proceedings of ACL 1997, pp. 198–205 (1997)

    Google Scholar 

  128. Sussman, G.J.: A computational model of skill acquisition. American Elsevier, New York (1975)

    Google Scholar 

  129. Tate, A.: Generating project networks. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI 1977), Cambridge, MA, August 1977, pp. 888–893. William Kaufmann, San Francisco (1977)

    Google Scholar 

  130. Thiebeaux, S., Hoffmann, J., Nebel, B.: In defense of axioms in PDDL. In: IJCAI 2003 [59]

    Google Scholar 

  131. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localisation for mobile robots. Artificial Intelligence 128(1–2), 99–142 (2001)

    Article  MATH  Google Scholar 

  132. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte-Carlo localization for mobile robots. Artificial Intelligence 128(1-2) (2001)

    Google Scholar 

  133. Tonino, H., Bos, A., de Weerdt, M., Witteveen, C.: Plan coordination by revision in collective agent based systems. Artificial Intelligence 142(2) (2002)

    Google Scholar 

  134. Torralba, A.: Contextual priming for object detection. IJCV 53(2), 153–167 (2003)

    Article  Google Scholar 

  135. Verma, V., Gordon, G., Simmons, R.: Efficient monitoring for planetary rovers. In: International Symposium on Artificial Intelligence and Robotics in Space, iSAIRAS (2003)

    Google Scholar 

  136. Verma, V., Langford, J., Simmons, R.: Non-parametric fault identification for space rovers. In: International Symposium on Artificial Intelligence and Robotics in Space, iSAIRAS (2001)

    Google Scholar 

  137. Verma, V., Thrun, S., Simmons, R.: Variable resolution particle filter. In: Proc. of the International Joint Conference on Artificial Intelligence, IJCAI (2003)

    Google Scholar 

  138. Washington, R.: On-board real-time state and fault identification for rovers. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA (2000)

    Google Scholar 

  139. Weber, M., Welling, M., Perona, P.: Towards automatic discovery of object categories. In: CVPR 2000, pp. II:101–II:108 (2000)

    Google Scholar 

  140. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  141. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for visual object class recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 18–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  142. Wilkins, D.E.: Practical Planning. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  143. Wilkins, D.E.: Can AI planners solve practical problems? Computational Intelligence 6(4), 232–246 (1990)

    Article  Google Scholar 

  144. Wilkins, D.E., Myers, K.L., Lowrance, J.D., Wesley, L.P.: Planning and reacting in uncertain and dynamic environments. Journal of Experimental and Theoretical AI 7(1), 197–227 (1995)

    Google Scholar 

  145. Yang, Q.: Intelligent Planning: A decomposition and abstraction based approach. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  146. Zunino, G., Christensen, H.I.: Simultaneous mapping and localisation in domestic environments. In: Dillmann, R. (ed.) Multi-Sensory Fusion and Integration for Intelligent Systems, Baden-Baden, DE, August 2001, pp. 67–72 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christensen, H.I., Sloman, A., Kruijff, GJ., Wyatt, J.L. (2010). Cognitive Systems Introduction. In: Christensen, H.I., Kruijff, GJ.M., Wyatt, J.L. (eds) Cognitive Systems. Cognitive Systems Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11694-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11694-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11693-3

  • Online ISBN: 978-3-642-11694-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics