Supporting Proactive Application Event
Notification to Improve Sensor Network
Performance*

Christophe J. Merlin and Wendi B. Heinzelman

Department of Electrical and Computer Engineering,
University of Rochester, Rochester NY
{merlin,wheinzel}@ece.rochester.edu

Abstract. As wireless sensor networks gain in popularity, many de-
ployments are posing new challenges due to their diverse topologies and
resource constraints. Previous work has shown the advantage of adapting
protocols based on current network conditions (e.g., link status, neighbor
status), in order to provide the best service in data transport. Protocols
can similarly benefit from adaptation based on current application condi-
tions. In particular, if proactively informed of the status of active queries
in the network, protocols can adjust their behavior accordingly. In this
paper, we propose a novel approach to provide such proactive application
event notification to all interested protocols in the stack. Specifically, we
use the existing interfaces and event signaling structure provided by the
X-Lisa (Cross-layer Information Sharing Architecture) protocol archi-
tecture, augmenting this architecture with a Middleware Interpreter for
managing application queries and performing event notification. Using
this approach, we observe gains in Quality of Service of up to 40% in
packet delivery ratios and a 75% decrease in packet delivery delay for
the tested scenario.

Keywords: Wireless Sensor Networks, Middleware, Architectures.

1 Introduction

Wireless Sensor Networks (WSNs) have received much attention from the re-
search community, and many advances have improved their behavior. However,
WSNs provide many great challenges because of their resource constraints. Soft-
ware solutions must operate on a variety of platforms and deployments while
providing continuous Quality of Service (QoS) to the end user. In general, QoS
should not exceed the level required by the application, as this usually results
in depleting network resources faster. Fulfilling this requirement may be further
complicated by the inherently dynamic topology of the network, whether sensor
nodes are mobile, and whether their energy sources can be replenished.

* This work was supported in part by NSF #CNS-0448046.

J. Zheng et al. (Eds.): ADHOCNETS 2009, LNICST 28, pp. 3 2010.

© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

4 C.J. Merlin and W.B. Heinzelman

To support an application, protocols may take advantage of network infor-
mation, such as knowledge of the resources or locations of the individual nodes.
We argued in past work [I] that all protocols could benefit from such additional
information, but that this wealth of new information requires proper channels
for dissemination to a node’s protocols and neighbors. For example, ad-hoc vi-
olations of an OSI model-based architecture could lead to a “spaghetti design”
cautioned against by Kawadia et al. [2]. On the other hand, allowing information-
sharing among protocols, as we proposed in X-Lisa (Cross-Layer Information
Sharing Architecture) [I], safeguards against this risk while still providing the
required information to all protocols in the stack. In particular, X-Lisa shares
data repositories among all layers in the stack from the node activation layer to
the Data Link / MAC layer through a common interface called CLOI (Cross-
Layer Optimization Interface). However, X-Lisa does not provide any interface
between the application and the protocols in the stack—this is typically the role
of middleware.

In [3], Romer et al. define middleware through its purpose “to support the
development, maintenance, deployment, and execution of sensing-based applica-
tions.” To achieve this goal, middleware should necessarily abstract the network
mechanisms and heterogeneity. In this paper, we introduce ideas for information-
sharing architectures to support middleware. We also introduce the counter-
part of middleware support: protocols in the stack can benefit from informa-
tion that an application event has occurred. Thus, while the immediate fo-
cus of existing middleware techniques is resource, data, or code management
horizontally among nodes (e.g., interactions between middleware of two neigh-
bors), we present the idea of vertical integration of middleware (inside a node
itself).

We start with the idea that protocols in the stack may benefit from
application-related information. For instance, consider a network in which an
a fire is detected and will likely cause node failures. The routing protocol should
likely circumvent the event in order to reach the data sink. With this in mind,
we propose a Middleware Interpreter that logs complex queries from the applica-
tion. Thus the Middleware Interpreter can determine that an event has occurred.
If so, the Middleware Interpreter notifies all subscribing protocols and (if chosen
so by the middleware) the node’s neighbors, thus shifting the burden of event
detection, notification and management away from middleware, which can then
revert to its core tasks. These new features entail tight cooperation between the
Middleware Interpreter and the neighbor information, as may be stored in a
neighbor table, such as that provided in X-Lisa.

In the following, Section [2] outlines desirable goals for WSN architectures,
and Section [3 introduces related architectures and middleware designs. Because
existing solutions do not respond to the goals we set, we introduce our solution,
X-Lisa, and we summarize the features provided by X-Lisa in Section[d Section [
describes the Middleware Interpreter, a new X-Lisa component for middleware
support. Evaluation of the Middleware Interpreter is given in Section [G] and
Section [concludes this paper.

Supporting Proactive Application Event Notification 5

2 Goals and Challenges of WSN Architectures and
Middleware Support

In previous work [I]], we identified some of the key goals for WSN architectures:

— Flexibility through modularity, universality accommodation to all platforms,
event notifications and service support.

— Information freshness for an up-to-date vision of the local network.

— Low overhead for energy efficiency.

— Simplicity for quick adoption.

To help support these four goals further, we argue that WSN architectures
should support middleware. Since the purpose of wireless sensor networks is to
serve an application, information about the application is every bit as important
to the functioning of the network as local or global network information. Support
for middleware, which maps application requirements to the behavior of the
network, appears as a key feature of WSN architectures. Application events
such as the detection of a fire or the injection of a new query in the network
often spur a change in direction for the protocols: respectively, the search of a
newer and safer route, or the activation of more nodes.

However, few current middleware solutions share their information with the
rest of the protocol stack. This forces middleware to contact protocols individu-
ally or to post information that has to be periodically read by various protocols
(mobilizing compute resources frequently). Both solutions introduce more viola-
tions to layered models (a hindrance to modularity). On the other side of this
issue, protocols that do not receive notifications from middleware are left in a
reactive position, waiting for events to be brought to their attention (through a
specific packet type to send or receive, periodic enquiry of data, explicit signal-
ing from another protocol, etc.) before they can act. We argue that a proactive
stance would increase the QoS, which we will show in Section

Among resource management middleware [4], only MiLAN [5] suggests direct
interactions with protocols in the stack, although in a very ad-hoc manner. This
illustrates the need to facilitate the various middleware tasks, which Roémer
identifies [3] as formulating and dispatching complex sensing tasks and reporting
related results. We propose to shift the burden of interacting with the protocol
stack away from middleware. While middleware must still supply information
understandable by the network, it is how this information is communicated to
the stack that is the focus of this work. For instance, while middleware maps
application requirements to a set of query conditions, automatic notification
of application events by the architecture can simplify the interactions between
middleware and the protocols. This allows middleware to concentrate on tasks
such as aggregation and other network abstractions.

3 Related Work

This section provides a short overview of related work on cross-layer protocol
architectures and middleware. We describe in more detail our past work, X-Lisa,
in Section [l

6 C.J. Merlin and W.B. Heinzelman

3.1 On Existing Architectures

In [06], Srivastava et al. provide a definition of cross-layer designs and a survey of
existing cross-layer models. The authors define cross-layer interactions as back-
and-forth information flows, merging of adjacent layers, design coupling without
a common interface, and vertical calibration across layers. They also list im-
plementations for cross-layer interactions: explicit interfaces between different
layers, shared databases, and heap organization, which provides completely new
abstractions (no protocol layers).

CLASS [7], MobileMan [8], CrossTalk [9], SNA [I0] [II] and Chameleon /
RIME [12] are some of the most prominent architectures for WSNs and Mo-
bile Ad-hoc Networks (MANETS). They offer original solutions to integrate the
protocol stack in a modular manner or to abstract parts of it.

3.2 On Existing Middleware

Wang et al. provide a survey of middleware for WSNs in [4]. They analyze
middleware projects in terms of programming abstractions (how the program-
mer views the system), system services (support for application deployment,
execution, and network management), runtime support (management and redis-
tribution of resources when the node cannot provide them), and QoS mechanism
(interaction between the application and the network infrastructure, usually in
the form of cross-layer components).

Among existing middleware for QoS mechanism, Wang et al. cite MiLAN [5],
whose role is to map application requirements to the nodes’ sensing capabilities
so as to provide the exact QoS required by the application. MiLAN allows the
network protocols and the application to communicate via various graphs that
specify what variables are needed under different states of the monitored envi-
ronment and what abilities each sensor node has in providing QoS. As was shown
in [I3], this information can be used by the node activation and routing proto-
cols to increase the time for which an application can be supported. However,
interactions between MIiLAN and lower protocols is done in an ad-hoc manner,
which is not favorable to modular designs. The work presented here proposes an
elegant solution to this problem.

Other middleware techniques also manage resources proactively: e.g., DSware
[14], MagnetOS [I5], AutoSeC [I6], etc. DSware does not require or allude to
vertical interactions with the protocol stack. MagnetOS, although a Java-based
operating system, carries middleware tasks to redistribute application compo-
nents within the network. Even if direct interaction with the protocol stack is
not supported, this redistribution has a direct impact on network protocols due
to the shifting of communication endpoints. Conversely, AutoSeC specifically in-
teracts with the protocol stack. It manages network resources by collecting data
from various protocols and services. However, this relation is not bidirectional
since middleware decisions are not explicitly fed back to the protocol stack.

Most closely related to this work is Impala [I7]. Liu et al. proposed a mid-
dleware system, articulated around a new architecture that specifically focuses

Supporting Proactive Application Event Notification 7

on middleware. Their design goals mirror many of our own (modularity, ease of
updates, energy efficiency, etc.). Much of Liu et al.’s work focuses on replacing
pieces of code on the fly. Impala also lets the application dynamically adapt to
improve QoS and energy efficiency through a dedicated interface. Packet-, data-
and device-related events are provided to the application through this interface,
which filters and dispatches these events to the relevant application. Our model
differs in that a similar interface extends to all layers of the stack, and that the
flow of information is bidirectional. Moreover, data filtering is done by checking
whether an application query has fired before it is dispatched (a new sensor value
will not necessarily create a new event if it does not match the conditions of a

query).

4 X-Lisa, an Architecture for Cross-Layer Information
Sharing

Following the goals outlined in Section [2 we argued that architectures relying
on a non-abstracted shared database are both simple and flexible. Thus, we pro-
posed X-Lisa [I], a new Cross-Layer Information-Sharing Architecture that com-
bines simplicity with support for cross-layer interactions, services, information
propagation and event notification. X-Lisa shares information between layers
that are not necessarily adjacent, and provides atomic access to the informa-
tion. It also facilitates modularity, a key aspect of network maintenance such as
protocol upgrade or replacement.

The X-Lisa architecture retains a layered structure such that each layer is
matched to a communication function in order to maintain a practical and simple
design. While fused layer design is still possible with X-Lisa, it is not favored as
it hinders modularity.

The Cross-Layer Optimization Interface (CLOI) provided by X-Lisa offers
indirect access to a repository of information that may be needed by one or more
protocols. CLOI maintains this information through three structures, a neighbor
table, a sink table and a message pool, and it supports services that will fill these
data structures either once or continuously, depending on the information. X-
Lisa also supports event notifications to ease coordination between various layers
in the stack.

CLOI is available to all layers and services in the stack and is in charge of
automatically propagating information to other protocols and neighbors. It has
no authority to make protocol decisions such as route selection, node activation
or medium access.

4.1 Information Sharing Structures

Information about a node and its neighbors is kept in a neighbor table, a message
pool and a sink table. The neighbor table is particularly dynamic thanks to a
Key-Length-Value solution.

8 C.J. Merlin and W.B. Heinzelman

4.2 Event Signaling

X-Lisa already provides various types of event notifications through the same
parameterized interface CloiEvents: it relays events generated in the protocol
stack, and also adds network administration events such as a new packet in the
pool, a new neighbor, full neighbor table, etc.

Protocols may subscribe to any type of notification, although they must do so
at compile time because of the absence of dynamic wiring in TinyOdzl. However,
this requirement is not a limitation as protocols (for instance, MAC and routing)
are designed to improve the network behavior given information of a known type
(link quality, routing costs, etc.) prior to deployment.

4.3 Information Exchange

In order to keep the information contained in the neighbor table current, X-
Lisa provides an automatic update service. The information exchange is carried
by an information vector that updates the neighbors of a node. The informa-
tion included in the vector can be curtailed to the needs of the protocols only,
preventing unnecessary overhead.

4.4 Important Services

X-Lisa offers and coordinates services important to the correct behavior of pro-
tocols. Peripheral services, such as a location service or remaining energy mea-
surement, supply some of the information needed to fill CLOI’s information
repositories.

5 Middleware Support

5.1 General Ideas

Keeping in mind the goals set for a WSN architecture, we add middleware sup-
port. This section does not provide new middleware strategies, but sets to im-
prove communication between existing middleware and other protocols, based
on the idea that the protocols, too, could benefit from application information.

The guiding idea of this work is that protocols should be notified when an
application event happens so that they may adjust their behavior to new ap-
plication and network conditions in a proactive manner. Event signaling is the
method of choice so that protocols need not constantly check whether an event
has occurred.

In effect, the basic implementation principles are to keep an information-
sharing structure with common data repositories storing neighbor, message, and
query information. The queries must be stored in a way that is understandable
by all the protocols. Since updates of monitored fields are not always meaningful
to all the protocols in the stack, only a subset of the protocols can subscribe to

1 Another operating systems, MeshC [18], allows dynamic wiring.

Supporting Proactive Application Event Notification 9

information changes. These updates, including those marking the occurrence of
an application event, should be signaled through a simple and common interface
(in the case of X-Lisa, CLOI). To the best of the architecture’s capabilities,
new information should benefit all protocols and services in a node so as to
guarantee the most up-to-date view of the local network and the application. As
a new query event fires, subscribing protocols are automatically notified so they
may anticipate the new conditions in the network.

5.2 Integration into an Information-Sharing Architecture

Motivation and Modifications. In deployments for which the middleware
layer is absent from the protocol stack, the application acts as the source of data
packets in the network, reacting to a stimulus, or simply following a schedule,
usually fixed before compile time. This imposes limitations on the complexity
of the task that can be performed. For example, consider the difference between
requesting the sensor reading at a specific node (as can be done when middleware
is absent) and asking for locations where the sensor reading exceeds a certain
value (which requires middleware to manage). The latter case is more of value to
data-centric networks such as WSNs and can benefit from a middleware layer.

Middleware was introduced to map complex application requirements to an
abstracted network. These requirements can be expressed by semantically rich
queries, whether in SQL-style syntax [19] [14], or not [20]. We assume that the
data sink is either able to map end user requests into a query that can be sent
to and interpreted by the nodes in the network, or that the data sink receives
this query already formatted for the network from another party. The query
is propagated throughout the network, and it is interpreted and stored by the
nodes’ Middleware Solution (the logical layer in charge of query dissemination,
interpretation, aggregation, etc.) and passed up to the application.

For example, the Middleware Solution can receive commands from the end
user asking for data reports if a certain sensor reading is below or above a thresh-
old. The Middleware Solution makes the decision to record the query depending

Application
Middleware Solution [Services 1
S o | + Sink Table
Node Activation =
Services 2
ervices :%
Transport ’m §| + Middleware Interpreter
IRUiligE ‘ Services 4 €
+ Neighbor Table
CLOI
. E
Data Link / MAC ’7$ervice55 Q|| + Message Pool
PhySIcaI Services 6

Fig. 1. New X-Lisa architecture with middleware support

10 C.J. Merlin and W.B. Heinzelman

on local conditions and parameters in the network. Madden et al. [I9] give a
good description of possible fields in such a query.

However, if the query information is stored within the Middleware Solution
only, it may not benefit all layers in the stack. Therefore, we propose a Middle-
ware Interpreter, or MI. This Middleware Interpreter’s main function is to store
queries in a form commonly understood by all the protocols. It also makes sense
to store queries (that express an interest in a field such as sensor data) closely
tied to the structure that manages these fields, the neighbor table. This can be
easily accomplished using X-Lisa. A diagram of the updated X-Lisa architecture
is shown in Figure [l

Query Structure. A query stored in the MI is named by a number that helps
identify queries uniquely in the protocol stack and throughout the network. A
query ID identifies a particular semantic meaning, for instance “high stress level”
(when a patient’s heart rate and blood pressure are both high). A query is also
associated with a field of interest, a date to live (“dtl”, the time at which the
query expires), and an epoch (the time separating two data reports about the
monitored fields). These query fields have to be understood by all the protocols
in the stack (this is a limitation of this work, although these fields are common
in many middleware solutions).
We also added several additional fields to the stored queries in the MT:

— A status field to signal whether an event is happening (“FIRED”) or not
(“IDLE”),

— A publish field to request that X-Lisa automatically notify its direct neigh-
bors that a query has fired, thus easing collaboration between nodes,

— A composite field, because queries may be aggregate (e.g., “send data reports
every tepoch S from locations in the network where the temperature exceeds
0 and the infrared measurement exceeds "),

— A conditions fields indicating values under and above which a query event
has happened, although this could be replaced by a function wherever simple
“higher” or “lower” conditions are not sufficient, and

— Additional memory space (the size of which must be indicated when the
query is first added) that can be allocated for the needs of the Middleware
Solution or other protocols (e.g., for data caching, node scheduling, event
confidence determinations). This is indicated as the field “extra” in Table[l

Table [illustrates how these fields are stored within the ML

Table 1. Some of the fields of the Middleware Interpreter with their TinyOS primitive
type and an example

ID publish field dtl epoch conditions composite status extra
int8 int8 uint8 tos time uintl6 uint32 int16 uint8 int&*
6 0 TEMP 0 5000 >5 -1 IDLE NULL

Supporting Proactive Application Event Notification 11

Entering a query into the Middleware Interpreter is accomplished by calls to
two functions. The first, to

query = call Cloi.getQueryBuffer(int queryID, int additionalSize),

which specifies the ID type of the query and the extra memory that must be
allocated for the needs of the middleware or protocols, and that returns a pointer
to the query. If the ID is already present in the MI, the returned buffer points to
the address of the already registered query, and information may be overwritten.
All fields with the exception of dtl and status, must be filled in the query before
the query can be entered into the Middleware Interpreter. Invoking

Cloi.addQuery(MiddlewareQuery *query)

finishes the insertion of the query inside the MI. Access to a query is provided
by read, add and remove functions, for instance

command MiddlewareQuery* Cloi.readInterest(int8 t queryID)

5.3 Composite Query Registration and Deregistration

The Middleware Solution must break complex queries into simple subqueries.
Composite queries are entered with the composite field set to their query ID and
by specifying the number of subqueries (this tells the Middleware Interpreter that
it is part of a composite query). The Middleware Solution must enter subqueries
immediately after with their subQueries field set to the ID of the composite
query. The subqueries may be reused from already existing queries, and they can
be part of other complex queries. A composite query is considered to have fired
when all subqueries have fired (logical “AND” of the individual subqueries). The
information is stored as shown in Table 2l In this example, the composite query
with ID 6 denotes a fire (a high temperature, and a particular IR, signature). It
is composed of two subqueries of ID 1 (temperature) and 2 (IR light).

Table 2. Composite Query Stored within the Middleware Interpreter

Field ... ID Composite subQueries Status

Comp. -1 .6 6 [12] IDLE
Sub. TEMP. ... 1 0 [6 5] IDLE
Sub. IR . 2 0 6 IDLE
Comp. -1 .. 5 5 [13] IDLE
Sub. PRES. ... 3 0 5 IDLE

The inverse operation of query deregistration is invoked with the following
call:
call Cloi.removeQuery(int queryID).

For composite queries, the MI automatically searches for and removes all sub-
queries that are no longer used by any existing composite query.

12 C.J. Merlin and W.B. Heinzelman

5.4 Interest Registration and Deregistration

Protocols may register an interest in fields that are relevant to their behavior.
An “interest” can be seen as a stripped down query that fires every time the
field value is updated in the neighbor table.

The Middleware Interpreter can be tightly coupled to the neighbor table to
follow what fields are of interest to the protocols in the stack. Interest in different
types of queries is kept at the Middleware Interpreter, while other field (data or
network related) interests are managed by the neighbor table. Upon updating a
field in the neighbor table, CLOI checks whether it is of interest to any protocol.
A positive answer results in signaling the change to subscribing protocols (if the
value is different from the one previously stored). This procedure allows protocols
to dynamically register for event notification, preventing unwanted events from
interrupting the code when they are not needed.

5.5 Query Notification

A similar behavior is at work for queries. The burden of detecting that a query
event has happened is now with the Middleware Interpreter, leaving the bur-
den of data aggregation or query dissemination to the Middleware Solution. As
a field is updated in the neighbor table (which includes information about the
node itself, including sensed data values), the MI receives a notification from
the neighbor table because it is a subscriber to all node field changes. The M1
matches the new field value to conditions expressed by registered queries and
determines whether a query has fired. If so, the MI signals the event to all sub-
scribing protocols, including necessarily the Middleware Solution and possibly
other protocols down the stack. The notification identifies the query with its ID
number and returns a pointer to the query in the Middleware Interpreter query
table. This process is illustrated by Figure 2

For composite queries, the MI looks through its entries and searches for the
status of all its subqueries (which are identified in the subQueries field). If

E Middleware Intrepreter
i [Query iD| dti Conditions

Middleware Sol.

Query Subscriber Temp. | dtl, Conditions, 3\/ e
Protocol IR dtl Conditions, x|
Temp. dtl, Conditions, 3X :
Protocol2 | \ / @ T Y .}
P CELE T EEETPEELEP VIV CErr
Protocol 3) 1

i Neighbor Table :
D | x|Y]| 1emp. VIR].. |}

Query Subscriber

Fig. 2. Event filtering and notification process: 1. A service or protocol updates the
neighbor table. 2. If the field is of interest, and the new value is different from the old
one, it is submitted to the MI. 3. The MI checks conditions realizing a query. 4. The
MI notifies subscribing protocols and services that the query has fired.

Supporting Proactive Application Event Notification 13

Table 3. Query Notifications and Status Based on the Preexisting Status of a Query
and Whether Its Conditions Are Met Upon an Update in the Neighbor Table

Conditions X \/
Status
IDLE — Notify and set to FIRED
FIRED Notify and set to IDLE —

all have a FIRED status, the composite field of any subquery points to the
aggregate query that will serve as the basis for the event notification. In case the
composite query must be published to direct neighbors, the notification contains
the updated values of all the fields related to the composite query, as well as the
ID number of the query.

The Middleware Solution does not need to establish ad-hoc interfaces with
other protocols to signal that a query has fired. In fact, it does not even need
to use the protocol event signaling described in Section as this is carried
on by the MI automatically through the process described directly above. The
notified protocols do not preoccupy themselves with checking whether an event
is occurring, but they simply wait for event notification and then perform the
appropriate actions when they are notified that a query has fired. For example,
notification that a query has happened may prompt a routing protocol to refresh
a route, a node activation protocol to wake-up neighbors, etc. When the query
conditions are no longer met, a notification that the event has gone IDLFE is sent
and the protocols can similarly take action.

Table [}l summarizes the behavior of the MI based on the preexisting status
of a query and whether its conditions are met.

6 Evaluation of Middleware Support

Although we cannot easily evaluate the convenience of this new middleware
component in X-Lisa, it follows our goals of modularity, data freshness, and
simplicity—the Middleware Interpreter is accessible by simply wiring to the
existing Cloi and CloiEvents interfaces in TinyOS. However, we set out to
evaluate what gains in QoS can be obtained through proactive query status
notification to the protocols.

Before considering the gains, we note here the additional memory cost for
providing proactive query status notification to the protocols. Using the Tmote
Sky motes, the overhead is 7.4 K B in the EEPROM and 100 B in the RAM.

6.1 Health Monitoring Test Scenario

Let us consider a health monitoring application served by a sensor network where
nodes are attached with heart rate and blood pressure sensors. As samples about
the state of the patient are gathered, the application will accept varying quality of
service depending on the aggregate stress level detected by the sensors. The fixed
tree network topology is represented by Figure [B] where node 5 is monitoring

14 C.J. Merlin and W.B. Heinzelman

Fig. 3. Topology of the test network

the person of interest to the end user (all other nodes may act as routers). We
assume that the node activation protocol keeps nodes 0 through 5 always active,
and that the routing protocol has two routes from the source node 5 to the data
sink 0: paths Py, {5-4-2-0} and P, {5-3-1-0}. Py passes through nodes
with higher residual energy, but suffers from higher packet error rates than P;.
Under high stress levels, packet delivery should be reliably sent to the data sink.
The MAC protocol uses a Low-Power-Listening (LPL) scheme [21]: nodes sleep
and periodically wake-up every ¢; s to listen for incoming transmissions. Packets
must therefore be sent with very long preambles (at least ¢; s) during which
the destination will wake-up at least once. Most LPL MAC protocols, although
very energy efficient, cause significant delays of ‘i /5 s on average. In order to
reduce delivery latency for urgent packets, we implement a LPL MAC protocol
that may reduce its t; value by a factor of four when certain conditions in the
network and application are met.

The application requirements are summarized in Table @l In our simulation,
the patient’s blood pressure increases from normal to high rapidly, and the heart
rate readings cycle from low, to medium, to high, and again. Consequently, the
source node will send packets with types 0, 2 and 4 (see Table @). Although this
succession of sensor readings is not very likely in real deployments, it will help
gauge the responsiveness of the network.

The simulation starts with the base station sending a query to spread its in-
terest in detecting events related to the patient’s health (source node 5). The
routing and LPL MAC protocols subscribe to these queries (their type must be
meaningful to all concerned layers). Every time a query state changes, notifica-
tion to the routing protocol ensues, and the routing protocol selects either path
Py or Py (for the case without the MI, the routing protocol is left randomly
choosing between Py and P; because it does not benefit from advanced query
notifications). When a query event fires, notification is sent to the LPL MAC
protocol, which increases or decreases its duty cycle by a factor of four depending
on the current situation.

We simulated ten runs of this scenario for 1,800 s in TOSSIM (the TinyOS
simulator) and compared them to the protocol stack without X-Lisa or the Mid-
dleware Interpreter. While surely the application could be equally well served
with ad-hoc middleware / other protocols interactions, that architecture would

Supporting Proactive Application Event Notification 15

Table 4. Application requirements for the Middleware Interpreter only scenario

BloodPressure—

HeartRate] Normal ngh
Low 30 s epoch
Delivery Failure OK
Long Delivery Delay OK
Packet type 0
Medium 30 s epoch 15 s epoch
Delivery Failure OK No Delivery Failure
Long Delay OK Long Delay OK

Packet type 1 Packet type 2
High 15 s epoch 5 s epoch
No Delivery Failure No Delivery Failure
Long Delay OK Short Delay
Packet type 3 Packet type 4

be exceedingly complex and inappropriate for modular designs. Thus, for fair-
ness purposes, the MI solution was only compared to a layered scheme where
protocols share a neighbor table among themselves, although it does not support
event and query notification.

For each packet type (or patient state), we measure the per-hop delivery
delays, the “output delay” (as the difference between a change in the patient’s
aggregate stress level and the time a report is sent), and total delivery delay
(the time at which the data sink receives a packet whose type corresponds to
the new patient state). Packet delivery ratios are also of interest and give a good
indication of the possible QoS improvement brought by the MI.

6.2 Simulation Results

Delays. Figure shows the various delays experienced by different packet
types. The per-hop delivery delay (top graph) illustrates the behavior of the
MAC layer: for packet types 0 and 2, it is very similar for the case with and
without the MI. However, type 4 packets enjoy a much reduced per-hop packet
delay (at least 50% shorter). This is consistent with the requirements set by the
application in Table [l

With the MI, after a change in the state of the patient’s health (middle graph),
a packet is sent by the source after 15 s for type 0 (no particular emergency),
and only a few milliseconds in other cases. Without the MI, corresponding delays
vary: this is because in a certain state, the application checks for the sensor
readings periodically depending on the reporting epoch for that state. In state
0, the application checks the sensor reading every 30 s, causing the highest
packet output delay when going from state 0 to 2. In state 2, the application
reads sensor outputs every 15 s, which explains the delay when transitioning
from 2 to 4.

The total packet delivery delay after a change in the patient’s state is shown
in Figure bottom graph. For the case when the patient is in a relaxed state

16 C.J. Merlin and W.B. Heinzelman

Average Per-Hop Packet Delay Packet Delivery Ratio
T T

T
” -6.65% [Without Mi 38.61%
1122 I with M1 *

T
i
—_ With M1
1t - L
_ _64.07% +32.74%
z -29.02%
051 1 eof
701
Average Pa

1 T

cket Output Time After Change
T T
|] Without MI L
208 124.45% -99.72% Wit i * 60
=5 1=~
z -99.69% g 50
10
st a0
. . .
Average Total Reaction Time After Change 20
T T
A =T wihout i
L - [With M1
® +26.16° Bl 20
z fop . 1
—74.19% ok
1 _—DJ_;
o

2 4 0 2
Packet Type Packet Type

(a) (b)

Fig. 4. Comparison of the (a) delays and (b) PDR for the patient monitoring scenario
with and without the Middleware Interpreter

(type 0), the MI actually increases packet delay because the application does
not require immediate notification. In other cases however, The MI helps reduce
the first state change notice packet to the data sink by 50 to 75% depending on
the severity of the patient’s health. This delay combines per-hop delivery gains
as well as faster reaction with the MI.

These results show that both the application and MAC protocols can adapt to
proactive query notification and substantially increase the QoS to the
application.

Packet Delivery Ratios. Figure shows the benefits brought by the MI
to the routing protocol and delivery reliability. Without the MI, packet delivery
ratios stand at about 75% (the average of using a 100% reliable path P, and
a ~ 50% = 0.83 reliable path Py). With the MI, delivery reliability of packets
of type 0 is &~ 50% because the application can tolerate lower PDR on these
packets, but 100% for packets denoting a higher patient stress level.

7 Conclusions and Future Work

WSN architectures should exhibit some important features in order to boost
their popularity, most importantly support for cross-layer protocols and modu-
larity. In this paper, we propose extending these principles to the middleware
solution. A Middleware Intrepreter component extends the benefit of proactive
event notification to all protocols, vertically (through layers of a same node) and
horizontally (between nodes of the same neighborhood). The Middleware Inter-
preter provides a convenient information repository for application queries and
their management. We added these ideas to X-Lisa, a cross-layer information-
sharing architecture that retains a layered structure while supporting cross-layer
improvements.

Supporting Proactive Application Event Notification 17

The originality of this work lies in the event filtering made possible by X-
Lisa: in many cases, protocols need not be aware that a new sensor reading is
available, only that an application query has occurred. For instance, the routing
protocol may update its routes, and the node activation protocol may choose to
wake up more neighbors.

We implemented these new ideas in TinyOS so as not to ignore limitations
imposed by some lightweight operating systems. Simulation results showed up
to 40% increase in packet delivery ratios for important packets, even as the
number of data packets delivered to the data sink could fit exactly the needs
of the application and the reality of the network. X-Lisa was also successful in
reducing urgent packet delivery delay. These improvements (of up to 75% in
packet delivery delays for the tested scenarios) were obtained with no increase
in packet overhead.

Our future work will focus on facilitating other aspects of middleware systems,
such as the ones cited by Wang et al. in [4]. We also plan to fully test the
combined features of the Middleware Interpreter and X-Lisa.

References

1. Merlin, C.J., Heinzelman, W.B.: Information-sharing architectures for wireless sen-
sor networks: the state of the art (submission, 2008),
http://www.ece.rochester.edu/~merlin/X-Lisa/X-Lisa_Survey_URTR.pdf

2. Kawadia, V., Kumar, P.: A cautionary perspective on cross-layer design. In: Pro-
ceedings Wireless Communications (February 2005)

3. Romer, K., Kasten, O., Mattern, F.: Middleware challenges for wireless sensor
networks. In: ACM SIGMOBILE Mobile Computing and Communications Review,
vol. 6 (2002)

4. Wang, M.M., Cao, J.N., Li, J., Das, S.K.: Middleware for wireless sensor networks:
A survey. Journal of Computer Science and Technology 23, 305-326 (2008)

5. Heinzelman, W., Murphy, A., Carvalho, H., Perillo, M.: Middleware to support
sensor network applications. IEEE Network 18, 6-14 (2004)

6. Srivastava, V., Motani, M.: Cross-layer design: A survey and the road ahead. IEEE
Communications Magazine 43, 112-119 (2005)

7. Wang, Q., Abu-Rgheff, M.A.: Cross-layer signalling for next-generation wireless
systems. In: Proceedings of the IEEE Wireless Communications and Networking
Conference (WCNC 2003), March 2003, vol. 2, pp. 1084-1089 (2003)

8. Conti, M., Maselli, G., Turi, G., Giordano, S.: Cross-layering in mobile ad hoc
network design. IEEE Computer, 48-51 (2004)

9. Winter, R., Schiller, J.H., Nikaein, N.; Bonnet, C.: Crosstalk: Cross-layer decision
support based on global knowledge. IEEE Communications Magazine (2006)

10. Ee, C.T., Fonseca, R., Kim, S., Moon, D., Tavakoli, A., Culler, D., Shenker, S.,
Stoica, I.: A modular network layer for sensornets. In: Proceedings 7th Symposium
on Operating Systems Design and Implementation (OSDI 2006) (November 2006)

11. Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., Stoica, I.: A unifying
link abstraction for wireless sensor networks. In: Proceedings of the 3rd Embedded
Networked Sensor Systems (SenSys 2005) (November 2005)

12. Dunkels, A.: An adaptive communication architecture for wireless sensor networks.
In: Proceedings 1st ACM Conference on Embedded Networked Sensor Systems
(SenSys 2007) (November 2007)

http://www.ece.rochester.edu/~merlin/X-Lisa/X-Lisa_Survey_URTR.pdf

18

13.

14.

15.

16.

17.

18.

19.

20.

21.

C.J. Merlin and W.B. Heinzelman

Merlin, C.J., Heinzelman, W.B.: Sensor network middleware for managing a cross-
layer architecture. In: Proceedings DCOSS 2006 - EAWMS Workshop (2006)

Li, S., Lin, Y., Son, S.H., Stankovic, J.A., Wei, Y.: Event detection services using
data service middleware in distributed sensor networks. In: Proceedings of the
2nd International Conference on Information Processing in Sensor Networks, April
2003, pp. 502-517 (2003)

Barr, R., Bicket, J.C., Dantas, D.S., Du, B., Kim, T.D., Zhou, B., Sirer, E.G.:
On the need for system-level support for ad hoc and sensor networks. Operating
Systems Review 36 (2002)

Han, Q., Venkatasubramanian, N.: Autosec: An integrated middleware framework
for dynamic service brokering. IEEE Distributed Systems Online 2 (2001)

Liu, T., Martonosi, M.: Impala: A middleware system for managing autonomic,
parallel sensor systems. In: Proceedings of the 9th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP 2003), June 2003, pp.
107-118 (2003)

Belenki, Product Director, Luxoft Labs, A.: Overcoming challenges of TinyOS use
in commercial zigbee applications. In: TinyOS Technology Exchange III (February
2006)

Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a tiny aggregation ser-
vice for ad-hoc sensor networks. In: Proceedings of the ACM Symposium on Op-
erating System Design and Implementation (OSDI 2002) (2002)

Souto, E., Guimarées, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C.: A
message-oriented middleware for sensor networks. In: Proceedings of the 2nd Work-
shop on Middleware for Pervasive and Ad-hoc Computing (MPAC 2004), October
2004, pp. 127-134 (2004)

Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: Proceedings of the 2nd ACM Conference on Embedded Networked
Sensor Systems (SenSys 2004), November 2004, pp. 95-107 (2004)

	Supporting Proactive Application Event Notification to Improve Sensor Network Performance
	Introduction
	Goals and Challenges of WSN Architectures and Middleware Support
	Related Work
	On Existing Architectures
	On Existing Middleware

	X-Lisa, an Architecture for Cross-Layer Information Sharing
	Information Sharing Structures
	Event Signaling
	Information Exchange
	Important Services

	Middleware Support
	General Ideas
	Integration into an Information-Sharing Architecture
	Composite Query Registration and Deregistration
	Interest Registration and Deregistration
	Query Notification

	Evaluation of Middleware Support
	Health Monitoring Test Scenario
	Simulation Results

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

