Skip to main content

Two-Way Quantum Communication in a Single Optical Fiber with Active Polarization Compensation

  • Conference paper
Book cover Quantum Communication and Quantum Networking (QuantumComm 2009)

Abstract

We experimentally demonstrate a two-way stable transmission of polarization encoded qubits over 23 km of spooled dispersion-shifted fiber with active polarization control in both directions, while simultaneously exchanging classical data. Two classical reference channels (one containing a telecom 10 Gb/s data stream), wavelength-multiplexed with the quantum signal, are used as feedback. The feasibility of quantum communication is demonstrated in the two opposite directions over 6 hours of continuous operation, as well as a classical error rate better than 1.0 x 10− 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165 (2007)

    Article  Google Scholar 

  2. Takesue, H., et al.: Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343 (2007)

    Article  Google Scholar 

  3. Peng, C.-Z., et al.: Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  Google Scholar 

  4. Yuan, Z.L., Sharpe, A.W., Shields, A.J.: Unconditionally secure one-way quantum key distribution using decoy pulses. Appl. Phys. Lett. 90, 011118 (2007)

    Article  Google Scholar 

  5. Stucki, D., et al.: High speed coherent one-way quantum key distribution prototype (2008), arXiv:0809.5264 [quant-ph]

    Google Scholar 

  6. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. of Mod. Phys. 74, 145 (2002)

    Article  Google Scholar 

  7. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptology 5, 3 (1992)

    Article  MATH  Google Scholar 

  8. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys Rev. Lett. 94, 140501 (2005)

    Article  Google Scholar 

  9. Cerè, A., Lucamarini, M., Di Giuseppe, G., Tombesi, P.: Experimental test of two-way quantum key distribution in presence of controlled noise. Phys. Rev. Lett. 96, 200501 (2006)

    Article  Google Scholar 

  10. Kumar, R., et al.: Two-way quantum key distribution at telecommunication wavelength. Phys. Rev. A 77, 022304 (2008)

    Article  Google Scholar 

  11. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xavier, G.B., Vilela de Faria, G., Temporão, G.P., von der Weid, J.P.: Full polarization control for fiber optical quantum communication systems using polarization encoding. Opt. Express 16, 1867 (2008)

    Article  Google Scholar 

  13. Xavier, G.B., et al.: Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation. New. J. Phys. 11, 045015 (2009)

    Article  Google Scholar 

  14. Townsend, P.D., Rarity, J.G., Tapster, P.R.: Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel. Electron. Lett. 29, 634 (1993)

    Article  Google Scholar 

  15. Xavier, G.B., Vilela de Faria, G., Temporão, G.P., von der Weid, J.P.: Scattering Effects on QKD Employing Simultaneous Classical and Quantum Channels in Telecom Optical Fibers in the C-band. In: Ninth international conference on quantum communication, measurement and computing 2009. AIP Conf. Proc., Calgary, vol. 1110, p. 327 (2009)

    Google Scholar 

  16. Peters, N.A., et al.: Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments. New J. Phys. 11, 045012 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Xavier, G.B., de Faria, G.V., da Silva, T.F., Temporão, G.P., von der Weid, J.P. (2010). Two-Way Quantum Communication in a Single Optical Fiber with Active Polarization Compensation. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics