Skip to main content

Examples of Quantum Dynamics in Optomechanical Systems

  • Conference paper
Book cover Quantum Communication and Quantum Networking (QuantumComm 2009)

Abstract

Optomechanical systems exploit the interaction between the optical radiation field and mechanical resonators in a laser-driven cavity. In the past few years, these systems have been the focus of considerable experimental and theoretical attention, yielding promising successes, particularly in using optomechanical cooling to reduce the thermal occupation of the resonators. This offers the prospect of observing quantum dynamics involving the motion of macroscopic mechanical objects. We review two features: First, the nonlinear self-induced mechanical oscillations induced by a strong laser drive can exhibit interesting quantum behaviour at low temperatures. Second, a mechanically driven membrane inside an optical cavity can ’shuttle photons’ around, and this system exhibits intricate dynamical interference effects (Landau-Zener-Stueckelberg oscillations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gröblacher, S., Hertzberg, J.B., Vanner, M.R., Cole, G.D., Gigan, S., Schwab, K.C., Aspelmeyer, M.: Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5(7), 485–488 (2009)

    Article  Google Scholar 

  2. Schliesser, A., Arcizet, O., Riviere, R., Anetsberger, G., Kippenberg, T.J.: Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5(7), 509 (2009)

    Article  Google Scholar 

  3. Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  4. Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006)

    Article  Google Scholar 

  5. Ludwig, M., Kubala, B., Marquardt, F.: The optomechanical instability in the quantum regime. New Journal of Physics 10, 095013 (2008)

    Article  Google Scholar 

  6. Höhberger, C., Karrai, K.: Self-oscillation of micromechanical resonators. In: Nanotechnology 2004, Proceedings of the 4th IEEE conference on nanotechnology, p. 419 (2004)

    Google Scholar 

  7. Kippenberg, T.J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.J.: Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)

    Article  Google Scholar 

  8. Metzger, C., Ludwig, M., Neuenhahn, C., Ortlieb, A., Favero, I., Karrai, K., Marquardt, F.: Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008)

    Article  Google Scholar 

  9. Murch, K.W., Moore, K.L., Gupta, S., Stamper-Kurn, D.M.: Observation of quantum-measurement backaction with an ultracold atomic gas. Nat. Phys. 4(7), 561–564 (2008)

    Article  Google Scholar 

  10. Heinrich, G., Harris, J.G.E., Marquardt, F.: The photon shuttle: Landau-Zener-Stueckelberg dynamics in an optomechanical system (2009), arXiv:0909.2164

    Google Scholar 

  11. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452(7183), 72–75 (2008)

    Article  Google Scholar 

  12. Sankey, J.C., Jayich, A.M., Zwickl, B.M., Yang, C., Harris, J.G.E.: Improved “position squared” readout using degenerate cavity modes. In: Cote, R., Gould, P.L., Rozman, M. (eds.) Proceedings of the XXI International Conference on Atomic Physics. World Scientific, Singapore (2008)

    Google Scholar 

  13. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. London A 137(Non-Adiabatic Crossing of Energy Levels), 696 (1932)

    Article  MATH  Google Scholar 

  14. Landau, L.D.: On the theory of transfer of energy at collisions ii. Phys. Z. USSR 2, 46–51 (1932)

    Google Scholar 

  15. Stückelberg, E.C.G.: Theorie der unelastischen Stösse zwischen Atomen. Helv. Phys. Acta 5, 369–422 (1932)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Ludwig, M., Heinrich, G., Marquardt, F. (2010). Examples of Quantum Dynamics in Optomechanical Systems. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics