Skip to main content

Efficiency of the Eavesdropping in B92 QKD Protocol with a QCM

  • Conference paper
Quantum Communication and Quantum Networking (QuantumComm 2009)

Abstract

Success of any eavesdropping attack on a quantum cryptographic protocol can be reduced by the legitime users if they partially compare their data. It is important to know for the legitime users what is (necessary and enough) amount of data which should be compared to ensure that (possible) illegitime user has an arbitrary small information about the rest of data. To obtain such amount the legitime users need to know efficiencies of all possible attacks for particular cryptographic protocol. In this work we introduce the eavesdropping attack on Bennett’s B92 protocol for quantum key distribution (QKD) with a quantum cloning machine (QCM). We demonstrate efficiency of suggested attack and compare it with efficiencies of alternative attacks proposed before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lo, H.-K., Chau, H.-F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999); Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000); references therein; Kilin, S.Ya., Choroshko, D.B., Nizovtsev, A.P.: Quantum Cryptography. Belorus science, Minsk (2007); references therein

    MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Proceeding, Bangalore, India, pp. 175–179 (1985)

    Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H.: Quantum cryptography uning any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018–3021 (1998)

    Article  Google Scholar 

  7. Cerf, N.J., Levy, M., Van Assche, G.: Quantum distribution of gaussian keys using squeezed states. Phys. Rev. A 63, 052311 (2001); Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  Google Scholar 

  8. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementation. Phys. Rev. Lett. 92, 057901 (2004)

    Article  Google Scholar 

  9. Ekert, A.K., Huttner, B., Palma, G.M., Peres, A.: Eavesdropping on quantum-cryptographical systems. Phys. Rev. A 50, 1047–1056 (1994)

    Article  Google Scholar 

  10. Bužek, V., Hillery, M.: Quantum copying: Beyond the non-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996)

    Article  MathSciNet  Google Scholar 

  11. Bruß, D., Cinchetti, M., D‘Ariano, G.M., Macchiavello, C.: Phase covariant quantum cloning. Phys. Rev. A 62, 012302 (2000)

    Article  Google Scholar 

  12. Scarani, V., Iblisbir, S., Gisin, N.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A 58, 1827–1832 (1998)

    Article  Google Scholar 

  14. Siomau, M., Fritzsche, S.: High-fidelity copies from a symmetric 1→2 quantum cloning machine (2009), ArXiv:0906.1453v1

    Google Scholar 

  15. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Acad. Publ., Dordrecht (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Siomau, M., Fritzsche, S. (2010). Efficiency of the Eavesdropping in B92 QKD Protocol with a QCM. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics