
Network Centered Multiple Resource Scheduling

In e-Science Applications

Yan Li, Sanjay Ranka, Sartaj Sahni and Mark Schmalz

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, Florida 32611

Email: {yanli,ranka, sahni, mssz} @cise.ufl.edu

Abstract. Workflows generated from e-Science applications require the
simultaneous use of multiple types of resources. In this paper, we present
the Multiple Resource Reservation Model (MRRM), which enables the
monitoring and scheduling of multiple heterogeneous and distributed re-
sources. MRRM provides a unified representation for multiple types of
distributed resources, and represents resource constrains such as com-
patibility and accessibility. Using MRRM , we solve the Multiple Re-
source First Slot problem based on a collection of algorithms that are
customized for different request and resource types. Our simulation re-
sults demonstrate efficiency and scalability of our algorithms for various
sizes of networks and resource sets.

1 Introduction

Many e-Science applications require the simultaneous use of multiple types of
resources. To fulfill such multiple resources requirements, we propose a frame-
work for conducting admission control and in-advance reservations on various
computational resources such as network bandwidth, CPU, storage and even
software licenses.

Resource Reservation has been long studied as an important approach to pro-
vide QoS guarantee. In the network field, bandwidth reservation is the major
concern. Either on-demand scheduling or in-advance scheduling has been
characterized by a set of algorithms and systems [1–5]. On the other hand, in sys-
tem and architecture field, many paper also focused on CPU of storage resources
reservation. [6–8]. For example, Maui [8], which is a popular high-performance
computing scheduler for clusters and supercomputers, do not schedule network
resources, although they are able to do advance reservation of resources such as
CPU and storage. On the other hand, network bandwidth management systems
such as those for UltraScienceNet (USN) and ESnet do not schedule computer
resources. The Sharc system [7] modeled both network and CPU resources in the
clusters as unified resources blocks, but the constrains among resources, such as
network topology, resource compatibilities are not considered.

In this paper, we envisioned those large scale e-Science applications which
consist of dedicated networks with hundreds of nodes, and computational re-
sources with different platforms. When multiple resources are reserved, their

2

topologies, dependencies, and compatibilities must be handled. The purpose of
our paper is to develop a co-scheduler that simultaneously schedules multiple
types of resources with a network focus based on a our Multiple Resources Reser-
vation Model (MRRM). We also solved a Multiple Resource First Slot problem
(MRFS) with the objective of determining the earliest time that can be used
to reserve all resources required to compute a given request.

The rest of the paper is organized as follows. In Section 2 we give the detail
of our resource model MRRM and define the related data structures. In Section
3 we introduce the MRFS problem and formally define the request pattern. In
Section 4, we propose our algorithms for multi-resource scheduling. In Section
5, we evaluate these algorithms to show their effectiveness. The conclusions are
drawn in Section 7.

2 Resource Model and Data Structure

2.1 Resource Model: MRRM

In this paper, the Multiple Resources Reservation Model (MRRM) is defined
to provide a unified presentation for different types of resources. In e-Science
applications, resources can be classified into network resources and local com-
putational resources. Network resources, including links, routers and switches,
transfer user’s data from one site to another. Local computational resources in-
clude CPU, storage and other resources that are used in processing user requests.
MRRM is modeled as a graph G < V, E > with the communication network in
the middle, and computational resources attached to network edge nodes. Each
switch or router is represented as a node in V, while each network link is mapped
to an edge in E. The local computational resources attached to one of the edge
routers. A single resource unit is modeled as an edge in that subgraph.

As the resources maybe of different types, we assign each resource link a type
ID (T −ID), to specify its type - for example, CPU, Memory. With the type ID,
all local resources can be grouped into one of several multi-partitioned resource
constraint graphs (MPRCGs), which is presented in Figure 1. Three resource
partitions are presented:Resource A, B and C. However, T − ID is not enough,
as the resources with same type(CPU) may not be cooperate together(X86 and
MIPS). So we also provide a compatibility ID (C-ID) to each resource. C −
ID facilitates grouping of resources with the same T-ID into smaller groups of
compatibility, as shown in the smaller grey cycles in partition A and C in Figure
1. With both T − ID and C − ID, user’s preference on various resources can be
explicitly specified.

A further consideration involves accessibility. For example, some computers
use Distributed Shared Memory to provide all CPU nodes full access to the mem-
ory model. However, other systems only allow certain CPUs to access specific
memory partitions. Our MRRM is capable of handling both scenarios. If two re-
source links within different MPRCGs are accessible to each other, then a specific
auxiliary link with unlimited capacity connects the two links. The connections

3R e s o u r c e N o d eD u m m y N o d eyR e s o u r c e L i n kI n c a p a c i t a t e dpL i n k
Fig. 1. Detailed Model of MRRM

between partition B and C in Figure 1 give an example of such scenarios. If
all resources in one MPRCG are accessible to all resources in another MPRCG,
then a connection is made at the MPRCG level, so that every resource link in
either MPRCG is connected with every resource link in the other MPRCG, as
shown in Figure 1 between partition A and B.

2.2 Data Structures

In MRRM , the status of each resource unit is maintained using a Time-Resource
list (TR list). It is comprised of tuples of the form (ti, ri), where ti is a time and
ri is the amount of resources. The tuples on a TR list are in increasing order
of ti. If (ti, ri) is a tuple of TR[l] (other than the last one), then the amount of
available resource l from ti to ti+1 is ri. When (ti, ri) is the last tuple, there are
ri units of resource l available from ti to ∞.

We also employ two other data structures: ST(Start Time) List and Basic
Interval. ST List, like TR List, is also associated with a resource link and is
directed computed from the corresponding TR list and current request. First,
we define, for each edge (u, v), an ST list ST (u, v), which is comprised of pairs of
the form (a, b), a ≤ b. The pair (a, b) has the below interpretation: for every start
time x ∈ [a, b], edge (u, v) has enough resources from time x to time x + dur to
fulfill the current request. As proved in [5], The earliest start time is the smallest
ai for which there is an path p from s to d in the graph and every edge in p has
a ST interval contains this ai.

Basic Interval is a time interval [ti, ti+1], where ti < ti+1 and within a Basic
Interval, for any edge e ∈ E in our multi-resource graph, its status, like band-
width or disk spaces, remains static. Also, any two disjoint steady stages are
independent from each other: any change on the link status in one Basic Interval
will not affect the scheduling result in any other steady stages. To build a list
that contain all the Basic Intervals, we first consider the time part of a edge’s
TR list, t0, t1, t2...tq, any time interval [ti, ti+1] forms a steady stage of that link.
Hence, if we union the time parts of each resource link’s TR list together, we
will obtain a list for all Basic Intervals.

4

3 Problem Definition

In MRFS scenario, the user’s request to have the job starts as early as possible
within a specific time window. If the request is feasible at some time within
the reservation window, the earliest time t will be reported to the user and the
corresponding resources will be reserved, or else, the request will be rejected.

A MRFS request is a 6-tuple (s, d, dur, ResWin < st, et >, RV <
R0, R1, R2... >, shareable). s and d are the source and destination node of
the data transfer, the computational resources attached to s and d are the com-
putational resources that are going to be reserved. dur is the duration that those
resources needs to be reserved. ResWin < st, et > is the reservation window,
which means the job’s start time must be in the time interval [st, et− dur]. RV
is a vector that contains the all resource requirements. shareable flag specifies
whether the job can be split among different resource units.

4 Multiple Resource Scheduling Algorithm

Based on whether job can be split and whether the local resources are fully
accessible(i.e. resources in one layer can access part of the resources in its neigh-
borhood layer or all of them), we divided the MRFS problem into 4 sub-problems:

WS-RC: The workload can be split, and local computational resources are
constrained on accessibility.

WN-RC: The workload cannot be split, but local computational resources
are constrained on accessibility.

WS-RN: The workload can be split, and local computational resources are
not constrained on accessibility.

WN-RN: The workload cannot be split, but local computational resources
are not constrained on accessibility.

4.1 WS − RC Scheduling Algorithm

If the workload can be split, then given request ri and the multi-resource graph
G, our WS − RC algorithm discovers the maximum flow from source’s sink to
destination’s sink for each basic interval within the reservation window. The
scheduler then attempts to identify (a) if there are enough resources within the
current basic interval BIi, if true, BIi is marked as feasible; and (b) whether
or not there exists one consecutive (i.e., temporally connected) sequences of
basic intervals [BIi, BIi+1, ..., BIj] with total length longer than the required
duration dur. If such a sequence is found, then the earliest possible start time
of the sequence becomes the first possible start time of the user’s request. The
detail of WS − RC Scheduling Algorithm is shown in the left part of Figure 2.

To apply the traditional max-flow algorithm to the various times of resources,
we need the scale the capacity of different types of resource links to one Base
Value or the flow that is directly computed will not make any sense. Here,
we chose network bandwidth as our base resource. If bandwidth’s request be

5W S R C S h d l i (G) { E t d d B l l F d (d) {W S $ R C S c h e d u l i n g (r e q i , G) {R a n d o m l y c h o o s e r e s o u r c e r k a s b a s e r e s o u r c e ;G
 = S c a l e (G , r k) ;B u i l d t h e g l o b a l t i m e l i s t L f r o m G ’ , r e m o v e a l l t h e T i E x t e n d e d B e l l m a n $ F o r d (s , d) {i n i t i a l i z e s t () = s t (0 ,) ;/ / c o m p u t e s t () = s t (n A 1 ,)p u t t h e s o u r c e v e r t e x i n t o l i s t 1 ;B u i l d t h e g l o b a l t i m e l i s t L f r o m G , r e m o v e a l l t h e T io u t s i d e t h e s c h e d u l i n g w i n d o w r e q i . R e s W i n ;I d e n t i f y a l l t h e S t e a d y S t a g e s ;F o r e a c h S t e a d y S t a g e S S i { p u t t h e s o u r c e v e r t e x i n t o l i s t 1 ;f o r (i n t k = 1 ; k < n ; k + +) {/ / s e e i f t h e r e a r e v e r t i c e sw h o s e s t v a l u e h a s c h a n g e dM F i = M a x F l o w (G

, S S i) ;i f (M F i J b a s e v a l u e)M a r k S S i a s a f e a s i b l e S t e a d y S t a g e ;} i f (l i s t 1 i s e m p t y)b r e a k ; / / n o s u c h v e r t e xw h i l e (l i s t 1 i s n o t e m p t y) {d l t t f l i t 1}T r a v e r s e t h e S t e a d y S t a g e l i s t a g a i n . f i n d o u t t h ef i r s t c o n s e c u t i v e f e a s i b l e s t e a d y s t a g e s l i s t w h i c hi s l o n g e r t h a n r e q i . d u r ; d e l e t e a v e r t e x v f r o m l i s t 1 ;f o r (e a c h e d g e (v , u)) {s t (u) = s t (u) { s t (v)

!
S T (v , u) } ;i f (s t (u) h a s c h a n g e d a n di f (s u c h l i s t e x i s t) ;a c c e p t t h e r e q u e s t ;s e t l i s t ’ s t h e s t a r t t i m e a s r e q u e s t ’ s s t a r t t i m e ;e l s e (() gu i s n o t o n l i s t 2)a d d u t o l i s t 2 ;}e l s er e j e c t t h e r e q u e s t ;} l i s t 1 = l i s t 2 ; m a k e l i s t 2 e m p t y ;} } }

Fig. 2. Algorithms for WS − RC(left) and WN − RC(right)

10(MB/s) and CPU’s request be 5(GHz), we scale all the CPU resource links’
capacity by a factor of 2 and we also need to set the CPU to requirement from
5GHz to 10GHz. In this way, we achieve the numeric unification among different
type of resources in MRRM , which enables the min-cut algorithm [9] to be
applied directly on our scaled graph.

The complexity of the above WS − RC scheduling algorithm is O(|SSRW | ∗
N3), where |SSRW | is the size of Basic Interval list what is within the reservation
window and N = NN +Ns +Nd. NN is the number of nodes in the network. Ns

and Nd the number of local computational resources attached to s and d.

4.2 WN − RC Scheduling Algorithm

In the WN − RC case, the workload can only be transferred on a single path
in the network and can only be processed using a single unit of each type local
computational resources. So we use the Extended Bellman-Ford algorithm [5] to
solve this problem. The algorithm is presented in the right part of Figure 2.

First, we will extend the concept of an ST list for an edge a path. Let
st(k, u) be the union of the ST lists for all paths from vertex s to vertex u that
have at most k edges on them. Clearly, st(0, u) = ∅ for u 6= s and we assume
st(0, s) = [0,∞]. Also, st(1, u) = ST (s, u) for u 6= s and st(1, s) = st(0, s). For

6

k > 1 (actually also for k = 1), we obtain the following recurrence

st(k, u) = st(k − 1, u) ∪ {∪
v:(v,u) is an edge

{st(k − 1, v) ∩ ST (v, u)}} (1)

where ∪ and ∩ are list union and intersection operations. For an n-vertex graph,
st(n − 1, d) gives the start times of all feasible paths from s to d. The Bellman-
Ford algorithm [10] may be extended to compute st(n − 1, d).

It is easy to see that the computation of the st(∗, ∗)s may be done in place
(i.e., st(k, u) overwriting st(k−1, u)) and the computation of the sts terminated
when st(k − 1, u) = st(k, u) for all u. With the above observation, here we give
the detail of Extended Bellman-Ford algorithm.

Each iteration of the for loop takes O(L) time, where L is the length of the
longest st list. Since this for loop is iterated a total of O(N ∗ E) times, the
complexity of the extended Bellman-Ford algorithm is O(N ∗ E ∗ L), where N
and E is the number of nodes and links in the whole multiple resource graph.

When using the extended Bellman-Ford algorithm to solve the first slot prob-
lem, we first find the earliest start time t for a feasible path using Extended
Bellman Ford algorithm. Then, the actual path may be computed using BFS
where the feasibility of each link is computed by fixed the job’s tstart = t and
tend = t + dur. Also BFS guaranteed to find the shortest feasible path in the
graph.

4.3 WS − RN Scheduling Algorithm

In the WS − RN scenario, although the WS − RC scheduling algorithm can
directly be applied, there still exists a much fast algorithm: First, we compute the
available ST List in network from the source edge router to the destination edge
router, using the WS − RC algorithm. Second, we compute the available time
slots for local resources by checking, for each computational resource partition
at source and destination, whether any set of compatible resources can provide
sufficient resources to satisfy the user’s job request. Given a certain partition
in a MPRCG, we group all the compatible resources together, and compute the
aggregate TR list for this compatibility group. Then, we compute the ST list
according to current request and union all the group ST List to produce a ST
list for the current partitions. Finally, we intersect the network’s ST list with
the ST lists specific to all local resource partitions, to determine availability of
a start time.

In this algorithm, we only check each local resource stage for each corre-
sponding request by visiting each resource link for O(1) times. Since the list
union and intersection can also be finished in linear time, we can reduce the
algorithm run time to O(|SSRW | ∗ (Ns + NN

3 + Nd).

4.4 WN − RN Scheduling Algorithm

The WN −RN problem is similar to the previous WS−RN problem. In partic-
ular, a network path can be computed via the Extended Bellman-Ford algorithm

7

to yield the first start time. This computation is followed by breadth-first search

to identify the path. For local computational resources, we can apply the same
approach as in WS−RN . However, WN−RN neglects the grouping of resources
according to compatibility. Since the requested job cannot be split, only one re-
source unit in each resource partition is required. In that case, the algorithm’s
complexity is bounded by O(NN ∗ EN ∗ L + Ns + Nd)

5 Evaluation

We tested our work on a USNET simulator at Oak Ridge National Laboratory
(ORNL). The evaluation results are presented below.

6 07 08 09 01 0 0R ati o(%) 01 02 03 04 05 0 1 2 3 4 5 6 7 8 9 1 0A ccept anceR R e q u e s t D e n s i t y (r e q / s e c)
(a) AR vs Density

8 0 0 01 0 0 0 01 2 0 0 0Ti me(ms) W N R F02 0 0 04 0 0 06 0 0 0 1 2 3 4 5 6 7 8 9 1 0Al gorith mR un R e q u e s t D e n s i t y (r e q / s e c) W N R PW S R FW S R P
(b) AR vs Network Size

Fig. 3. Acceptance ratio changing with (a)request density; (b)network size.

Figures 3a Figures 3b provides the average acceptance ratio and algorithm
run time as a function of request density, respectively. The result is acquired
using a 100 node random network with 15 randomly selected local resources
sites.

Our experiment results show the following:

1. The increase of request density will degrade every algorithms’ performance.
As more request come into the system within the same time interval, the
network and clusters becomes congested, hence more requests were rejected
since not enough resources are available. In the mean time, as more requests
are running in the system simultaneously, the length of Basic Interval list
and ST list increases, which leads to longer algorithms’ run time.

2. When multiple paths are allowed and resources are fully shared, the scheduler
can better utilize system resources, so as to accept more requests. However,
the resulting multi-path algorithms require more computation time to obtain
a feasible result.

3. Generally speaking, all 4 algorithms scales very well with either system size
or request density. Even when the workload is high, one request averagely
takes less than a minute to find out scheduling result.

8

6 Conclusion

In this paper, we consider the multiple resource scheduling problem, and present
several solutions in terms of a multi-resource model. In e-Science, computational
resources are widely distributed and are connected by fast optical networks.
Thus, we propose a co-scheduling solution comprised of a flexible and efficient
multi-resource reservation model (MRRM) and solve four instances of the multi-
ple reservation first slot (MFRS) problem. Based on our model, four algorithms
were developed to solve salient instances of MRFS. Experiments on a hetero-
geneous computer network showed that our algorithms are scalable linearly in
terms of network size and request ratio.

7 Acknowledgement

This work was supported, in part, by the National Science Foundation under
grant 0312038 and 0622423. Any findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the
views of NSF. The work was also supported in part by a grant from UltraHiNet
and Florida High Tech Corridor.

References

1. P. Aukia, M. Kodialam, P. V. N. Koppol, T. V. Lakshman, H. Sarin, and B. Suter,
“RATES: A server for MPLS traffic engineering,” IEEE Network, pp. 34–41,
March/April 2000.

2. R. Guerin, A. Orda, and D. Williams, “Qos routing mechanisms and ospf exten-
sions,” in IETF Internet Draft, 1996.

3. “On-demand secure circuits and advance reservation system,”
http://www.es.net/oscars.

4. R. A. Guerin and A. Orda, “Qos routing in networks witrh inaccurate information:
Theory and algorithms,” IEEE/ACM Transactions on Networking, vol. 7, no. 3,
pp. 350–364, 1999.

5. S. Sahni, N. Rao, S. Ranka, Y. Li, E.-S. Jung, and N. Kamath, “Bandwidth schedul-
ing and path computation algorithms for connection-oriented networks,” in Sixth
International Conference on Networking (ICN’07), 2007, p. 47.

6. B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An analytical
model for multi-tier internet services and its applications,” in In Proc. of ACM
SIGMETRICS, 2005, pp. 291–302.

7. B. Urgaonkar and P. Shenoy, “Sharc: Managing cpu and network bandwidth in
shared clusters,” IEEE Transactions on Parallel and Distributed Systems, Tech.
Rep., 2001.

8. “Maui,” http://www.clusterresources.com/pages/products/maui-cluster-
scheduler.php/.

9. R. Ahuja, T. Magnanti, and J. Orin, Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

10. S. Sahni, Data structures, algorithms, and applications in C++. Silicon Press,
2005, second Edition.

