Skip to main content

Quasi-Delay-Insensitive Computing Device: Methodological Aspects and Practical Implementation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5953))

Abstract

The approaches to self-timed hardware design are presented. The conditions of intersystem integration of synchronous and self-timed devices are considered through the example of the quasi-delay-insensitive computing device development. This device performs functions of division and square root extraction. It operates with numbers of single and double precisions corresponding to the IEEE 754 standard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Varshavsky, V.: Time, Timing and Clock in Massively Parallel Computing Systems. In: Proceedings of International Conference Massively Parallel Computing Systems, Colorado Springs, USA, Special Session 2, April 6-9 (1998)

    Google Scholar 

  2. Beerel, P., Cortadella, J., Kondratyev, A.: Bridging the gap between asynchronous design and designers (Tutorial). In: VLSI Design Conference, Mumbai (2004)

    Google Scholar 

  3. Varshavsky, V., Kishinevsky, M., Marakhovsky, V., et al.: Automata Control of Concurrent Processes. In: Varshavsky, V. (ed.) Computers and Discrete Systems, Moscow, Nauka, p. 398 (1986) (in Russian); (English Translation - Self-Timed Control of Concurrent Processes, 428 p. Kluwer Academic Publishes Groop, Dordrecht (1990))

    Google Scholar 

  4. Sokolov, I.A., Stepchenkov, Y.A., Petrukhin, V.S., Djachenko, Y.G., Zakharov, V.N.: Self-Timed Circuitry - Perspective Method of Hardware Development. High Availability Systems 3(1-2), 61–72 (2007)

    Google Scholar 

  5. Plechanov, L., Stepchenkov, Y.: Experimental test of some features of strictly self-synchronized electronic circuits. Annual The Systems and Means of Informatics (16), 445–452 (2006) (in Russian)

    Google Scholar 

  6. IEEE Standard for Binary Floating-Point Arithmetic./IEEE Std. 754. New York ANSI-1985, August

    Google Scholar 

  7. McQuillan, S.E., McCanny, J.V.: Fast VLSI algorithms for division and square root. J. VLSI Signal Processing 8, 151–168 (1994)

    Article  Google Scholar 

  8. Montuschi, P., Ciminiera, L., Guistina, A.: Division unit with Newton-Raphson approximation and digit-by-digit refinement of the quotient. In: IEEE Proceedings: Computers and Digital Techniques, vol. 141, pp. 317–324 (1994)

    Google Scholar 

  9. Lang, T., Montuschi, P.: Very-high radix combined division and square root with prescaling and selection by rounding. In: Proceedings of the 12th IEEE Symposium on Computer Arithmetic, July 1995, pp. 124–131 (1995)

    Google Scholar 

  10. Arjun Prabhu, J., Zyner, G.B.: 167 MHz Radix-8 Divide and Square Root Using Overlapped Radix-2 Stages. In: Proceedings of the 12th Symposium on Computer Arithmetic, pp. 155–162 (1995)

    Google Scholar 

  11. Ajay, N., Atul, D., Warren, J., Debjit, D.S.: 1-GHz HAL SPARC64 Dual Floating Point Unit with RAS Features. In: Proceedings of the 15th IEEE Symposium on Computer Arithmetic (2001)

    Google Scholar 

  12. Williams, T.E., Horowitz, M.A.: A Zero-Overhead Self-Timed 160-ns 54-b CMOS Divider. IEEE Journal of Solid-State Circuits 26(11), 1651–1661 (1991)

    Article  Google Scholar 

  13. Matsubara, G., Ide, N., Tago, H., Suzuki, S., Goto, N.: 30-m 55-b Shared Radix 2 Division and Square Root Using a Self-Timed Circuit. In: Proceedings of the 12th Symposium on Computer Arithmetic, pp. 98–105 (1995)

    Google Scholar 

  14. Chartered Semiconductor 0.18m IB Process 1.8-Volt SAGE-XTM. Standard Cell Library Databook / Artisan Components, Release 1.0 (February 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stepchenkov, Y., Diachenko, Y., Zakharov, V., Rogdestvenski, Y., Morozov, N., Stepchenkov, D. (2010). Quasi-Delay-Insensitive Computing Device: Methodological Aspects and Practical Implementation. In: Monteiro, J., van Leuken, R. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2009. Lecture Notes in Computer Science, vol 5953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11802-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11802-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11801-2

  • Online ISBN: 978-3-642-11802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics