Synchronous Message Passing and Semaphores:
An Equivalence Proof

Tain Craig! and Egon Boérger?

! Visiting Researcher, Department of Computer Science, University of York
(Correspondence address: Flat 4, 34 Sherbourne Road, Birmingham, UK)
idcraig@talktalk.net
2 Dipartimento di Informatica, Universita di Pisa, Italy boerger@di.unipi.it

Abstract. A natural encoding of synchronous message exchange with
direct wait-control is proved to be equivalent in a distributed environ-
ment to a refinement which uses semaphores to implement wait control.
The proof uses a most general scheduler, which is left as abstract and as-
sumed to satisfy a few realistic, explicitly stated assumptions. We hope to
provide a scheme that can be implemented by current theorem provers.

1 Introduction

This paper is part of an endeavor a) to rigorously model kernels of small but
real-life operating systems (OS) at a high level of abstraction, b) to verify math-
ematically the major OS properties of interest in the models and c) to refine the
models in a provably correct way by a series of steps to implementation code.
So that the refinement steps reflect the major design decisions, which lead from
the abstract models to executable code, and to make their correctness mathe-
matically controllable, we use algorithmic (also called operational) models. Thus
we deviate from the axiomatic (purely declarative) point of view underlying the
Z-based formal models of operating system kernels in the two recent books [5,
6], which are, however, our starting point. We are careful to ensure that our
models, technically speaking, Abstract State Machines [4], whose semantic foun-
dation justifies our considering them an accurate version of pseudo-code, are
understandable by programmers without further training in formal methods, so
that they can be effectively used in practice by designers and teachers for a
rigorous analysis of OS system functionalities.

In a first paper [3] we presented the method, focussing on modeling the be-
havior of the clock process, more specifically the clock interrupt service routine,
which interacts with a priority-based scheduler of device, system and user pro-
cesses. The paper uses an abstract form of synchronous message passing. In this
paper we show that a natural high-level specification of synchronous message
exchange which uses a direct wait control mechanism has a provably correct
refinement (in fact is equivalent to it) which uses semaphores to implement the
wait control.

The equivalence of a direct implementation of synchronous message passing
and of one using semaphores is often cited in the literature (e.g., [7]). The purpose

of this paper is to illustrate how one can turn this equivalence claim, in a way
which supports the intuitive operational understanding of the involved concepts,
into a precise mathematical statement and prove it, with reasonable generality,
that is, in terms of a faithful abstract model and its refinement.

A natural direct implementation of the synchronous message-passing mech-
anism uses a queue of processes, whose running mode is controlled by explicit
intervention of the scheduler (Sect. 3)!. An alternative implementation uses a
semaphore structure, which allows one to separate the issues related to process
control (handing the permission to processes to run in a critical section) from
the message transfer functionality (Sect. 5). In a specification which already in-
cludes semaphores as a component, using semaphores in the refinement of an
implementation that uses direct process control makes sense because it reduces
the complexity of individual code modules as well as the related verification
tasks. Proceeding this way is an example of the use of standard components for
stepwise refinement in a sense similar to the library types often provided with
object-oriented programming languages.

We collect, in Sect. 2, the minimal assumptions that must be guaranteed for
the underlying scheduling mechanism. We exhibit these assumptions to clarify
the sense in which our model and its verification apply to any OS scheduling
policy encountered in real life. In Sect. 4, we specify the underlying semaphore
concept. The definitions in these two sections are re-elaborations of those given
in [3] to which we refer for their motivation. The equivalence proof as presented
in Sect. 6 applies only to the uniprocessor case.

2 Scheduling

Both semaphores and synchronous message passing require a scheduler and its
associated operations. In this section, we briefly provide this background, for-
mulating the minimal assumptions needed for the equivalence proof.

In the uniprocessor case, an operating system comes with a notion of a unique
currently-executing process, which we denote by currp. It is an element of a
dynamic set Process of processes, or it is the idleProcess. The currprocess can
be thought of as the only one with status(currp) = run (read: instruction pointer
ip pointing into its code). The scheduler selects it from a queue, readyq, of
processes whose status is ready to execute, possibly respecting some predefined
priorities (e.g. selecting device processes before system processes and those before
user processes, see [3]). We make no specific assumptions as to how readyqueue
is ordered, so that any fair scheduling policy (as specified by the assumptions
stated below) is covered by our equivalence proof.

Only two scheduler operations are required, the exact nature of which can
remain abstract. One operation, defined by SUSPENDCURR below, suspends a
sender process, currp, when it has sent a message to a destination process. The

! One reviewer suggested to use instead the ”await” blocking rule constructor defined
in [1] for concurrent ASMs. We want to keep the construction here as elementary as
possible to easen the implementation of the equivalence theorem by theorem provers.

other operation, defined by MAKEREADY(src) below, makes the sender (also
called source) process, sre, ready again when the message has been communi-
cated to (read: received by) the receiver process, dest.

The main effect of SUSPENDCURR is to update currp to the next process,
which is selected by the scheduler from the readyq. We denote the selected ele-
ment by head(readyq) to convey the idea that the selection is made based upon
the order of the queue; the function head is defined by the scheduler and need
not be further specified here. In addition, the selected process is deleted from
the readyq and assigned the status run. Also, the current state of the previous
current process must be saved and the state of the new current process must be
restored. Since these state update operations are orthogonal to the mere schedul-
ing part of SUSPENDCURR, we denote them here by two abstract machines that
are not further specified: SAVESTATE and RESTORESTATE. Their execution is
considered to be atomic, which amounts to using a locking mechanism whose
specifics we can ignore here without loss of generality.?2 This leads to the fol-
lowing definition, where we use an abstract machine DEQUEUE to denote the
deletion of an element that has been chosen from readyq.?

SUSPENDCURR =
let h = head(readyq)* in
UPDATESTATE(currp, h)
currp :=h
status(h) := run
DEQUEUE(h, readyq)
where
UPDATESTATE(p, p’) =
SAVESTATE(p)
RESTORESTATE(p’)

The effect of MAKEREADY(p) is to ENQUEUE(p, readyq) and to update its
status to ready. As a result of executing MAKEREADY(p), process p becomes a
candidate for the scheduler’s next choice for updating currp. Here, we do not
specify the order of readyq, so ENQUEUE is left as an abstract machine, which is
assumed to respect the intended readyq order when inserting an element.

MAKEREADY(p) =
ENQUEUE(p, readyq)
status(p) := ready

2 The locking effect is captured here by the atomicity of ASM steps, see [3].

3 We remind the reader that due to the simultaneous parallel execution of all updates
in an ASM rule, currp on the right hand side of := denotes the previous value and
currp on the left hand side of := the newly assigned value.

4 In the special case of an empty readyq, the well known idleProcess is chosen to
become the new currp. This case is of no importance here, so that, without loss of
generality, we omit it in this rule to streamline the exposition.

3 Directly Controlled Synchronous Message Passing

In both this section and section Sect. 5, we assume an abstract set, Msg, of
messages as given. We analyze synchronous message passing between processes
as triples of three steps, each described using abstract machine components as
follows:

m STARTSENDing out a message m from a source src to a destination
e by recording m, say in a location outboz(src), for the transfer

and WAIT for the synchronization with dest;

m STARTSYNChronizing with a source process src and WAIT for the synchro-
nization with dest to become effective;

= Upon synchronization bw src and dest:

e DELIVERMSCG to the destination process, say by transfer of the value of
outboz(src) into a location inbozx(dest)
e TERMINATESYNChronization.

For both the direct implementation and the one using semaphores, we define
a version for each of the named components. Note that STARTSEND& WAIT and
STARTSYNC& WAIT can be executed in any order, depending on whether the
sender or the receiver initiates the message passing.

3.1 The MsGPAsS¢y machine (ground model)

A natural way directly to control synchronous message passing in a distributed
environment consists of making sender and receiver wait for each other until each
one has ‘seen’ the other. To describe the waiting phase, one can use an exten-
sion of the scheduler’s status control. To do this, on the sender side, execution
of STARTSEND& WAIT ¢y (m, src, dest) will RECORDFORTRANSFER(m, src) the
message m, suspend the sender src (read: the currently executing process), switch
its status to sndr and ENQUEUE(src) in a collection, wtsndr(dest), of senders
waiting for their message to be received by the destination process. The operation
STARTSYNC& WAIT ¢y of dest consists of, first, testing whether there is a message
waiting to be received. If wtsndr(dest) is empty, dest switches to receiver status
rcvr and suspends itself, whereafter only a sender move can MAKEREADY/(dest)
again. If wtsndr(dest) is found not to be empty (any more), both parties are syn-
chronized. This triggers the receiver’s second move PASSMSG ¢y to DELIVERMSG
in the receiver side and to terminate the synchronization (i.e. MAKEREADY the
sender and delete it from wtsndr(dest)).

The preceding protocol description is formalized by the following definitions.
We deliberately leave the ENQUEUE and DEQUEUE operations abstract; their
instantiation depends on the scheduling policy®.

® Note, however, that for our equivalence proof in Sect. 6, the unipro-
cessor assumption is used. It guarantees that at each moment in
MsGPASScy, at most one ENQUEUE(src, wtsndr(dest)) move is made (as

SEND ¢y (m, src, dest) = STARTSEND& WAIT ¢y (m, src, dest) where
STARTSEND& WAIT ¢4y (m, sre, dest) =
RECORDFORTRANSFER(m, src)
status(src) := sndr
ENQUEUE(sre, wtsndr(dest))
if status(dest) = rcvr then MAKEREADY (dest)
SUSPENDCURR
RECORDFORTRANSFER(m, src) = (outboz(src) := m)°

For the definition of the submachine PASSMSG ¢y of RECEIVE ¢y, it remains
to decide whether the protocol should simultaneously permit multiple senders
to STARTSEND& WAIT ¢y a message to the same destination process and in the
positive—the more general—case, whether, and possibly how, such sender pro-
cesses should be ordered in wtsndr(dest). This decision influences the prop-
erty that can be proved in the equivalence theorem. Since the usual model of
semaphores is that they work with queues, we assume in the following that
wtsndr(dest) is a (possibly priority) queue.

RECEIVE ¢y splits into a step STARTSYNC& WAIT ¢y followed by PASSMSG ¢y.
To formalize this sequentiality in the context of simultaneous parallel execution
of ASM rules, we use the interruptable version of sequential execution introduced
for ASMs in [3]7. It is borrowed from the traditional FSM-control mechanism
and denoted step®. Since wtsndr(dest) is treated as a queue, we again use a
‘head’ function, denoted hd, to select (possibly in a priority-based manner) the
next element to be DEQUEUEd from wtsndr(dest).

RECEIVE ¢y (dest) =

part of a STARTSEND&WAITcy(m, src, dest) move) and, in MSGPASSgema,
at most one corresponding WAITSEMA (insema(dest)) move (as part
of a STARTSEND&WAITSemq(m, src, dest) move—see the definition of
SEND sema (M, sre, dest), below).
Since STARTSEND& WAIT ¢y suspends the sender, there is no buffering of messages
at the sender side; i.e. outbox is only an internal location for recording a message a
sender wants to send in a synchronized fashion, it is not a message box.
" One reviewer observed that given the mutually exclusive guards of
STARTSYNC&WAITcy; and PASSMsSGey, we could have avoided here (but not
in the analogous situation of SENDgemq in Sect. 5) to use the step notation, which
forces the receiver to each time perform two steps (the first of which may result
in only changing the implicit control state). However, eliminating step here would
slightly complicate the comparative analysis of sender and receiver moves in the
two protocols in Sect. 6, where we exploit the simple correspondence of message
exchange triples.
M step M consists of two rules:

if ctl_state = 1 then
M,
ctl_state := 2

and the same with interchanging 1 and 2.

STARTSYNC& WAIT ¢y (dest) step PASSMSG ¢y (dest)
where
STARTSYNC& WAIT oy (p) =
if wtsndr(p) = 0 then
status(p) = revr
SUSPENDCURR
PassMsGey(p) =
if wtsndr(p) # 0 then
let src = hd(wtsndr(p)) in
DELIVERMSG(sre, p)
TERMINATESYNC(scr, p)
DELIVERMSG(q, p) = (inboz(p) := outboz(q))
TERMINATESYNC(s, p) =
DEQUEUE(s, wtsndr(p))
MAKEREADY(S)

MsaPAss¢ey denotes an asynchronous (also called distributed) ASM where
sender agents are equipped with the STARTSEND& WAIT ¢y; program and receiver
agents with the RECEIVE ¢y program.

3.2 Properties of MsGPASS¢y runs

In this section, we justify the definition of MSGPASS ¢y by proving that it speci-
fies a correct synchronous message passing scheme, which, under minimal sched-
uler assumptions, is also a fair one. First of all we have to clarify what correctness
and fairness mean in this context.

Due to the distributed context and depending on the scheduler, it may hap-
pen that multiple senders send a message to the same destination process before
the latter has had a chance to synchronize with any of the former. This produces
an asymmetry between sender and receiver moves: it is decided at the receiver’s
side which one of the waiting senders is considered next for synchronization.
Therefore the waiting phase a sender src enters to send a message is terminated
only by the synchronization with the destination process (see the SndrWait
property in Theorem 1), whereas the receiver dest may enter and terminate var-
ious waiting phases (namely for receiving messages from other senders) before
entering its waiting phase for src (if at all), which can be terminated only by
synchronization with src (see the RevrWait condition in Theorem 1).

To support the reader’s general intuitions, we speak in this section of sender
(source) or receiver (destination) process to refer to an agent with program
STARTSEND& WAIT oy or RECEIVE gy, respectively. Saying that a process p is
scheduled, is a shorthand for p = currp. In the following theorem, we first for-
mulate the (intuitive requirements for the) correctness property in general terms
and then make them precise and prove the resulting statement for MSGPASS ¢y;.

Theorem 1. (Correctness Property for Message Passing) The following prop-
erties hold in every run of MSGPASS ¢y .

SndrWait Whenever a source process src is scheduled for sending a message,
m, to a receiver process dest, it will record the message for transfer and then
wait (without making any further move) until it is synchronized with dest;
it will wait forever if it cannot be synchronized with dest. In MSGPASScy,
src is said to be synchronized with dest when the receiver process dest has
performed a STARTSYNC& WAIT move and is scheduled, ready to receive a
message sent from src (i.e. src = hd(wtsndr(p))).

RcvrWait Whenever a process, dest, is scheduled for receiving a message, it
will wait (i.e. not perform any further move) until it is synchronized with a
sender process src.

Delivery Whenever the sender src of a message and its receiver dest are syn-
chronized, the message is delivered at the receiver process, one at a time and
at most once, and the synchronization of the two processes terminates.

To turn the wording of this theorem into a precise statement for MSGPASS ¢y
so that it can be proved, we use the notion of runs of an asynchronous (multi-
agent) ASM. Such a run is defined as a partially ordered set of moves (execution
of ASM steps by agents) which a) satisfies an axiomatic coherence condition, b)
yields a linear order when restricted to the moves of any single agent (sequen-
tiality condition), ¢) for each single move of any agent has only finitely many
predecessor moves (so-called finite history condition). The coherence condition
guarantees that for each finite run segment, all linearizations yield runs with the
same final state (see [4] for a detailed definition).

The axiomatic description of the notion of a run of asynchronous (multi-
agent) ASMs fits well with the purpose of this paper. Without providing any
information on how to construct a class of admissible runs (read: to implement
a scheduler), it characterizes the minimal ordering conditions needed so that,
when of a run the ordering of some moves of some agents could matter for
the outcome, this ordering appears explicitly in the ordering conditions (read:
the partial order). Therefore the properties of runs of an arbitrary MsGPASS oy
that we formulate and prove in this section, hold in full generality for every
implementation or refinement of MSGPASS ¢y by a scheduling policy that extends
the partial order (e.g. to a linear order).

Proof. For the rest of this section, whenever we speak of a run we refer to an
arbitrarily given, fixed run of MSGPASS¢y; with respective sender and receiver
agents. The proof of Theorem 1 is by induction on the number of times a process
is scheduled for sending or receiving a message in MSGPASS ¢y runs.

The first two claims of property SndrWait follow from the execution of the
first three updates and the SUSPENDCURR submachine of STARTSEND& WAIT ¢y
The waiting phase of a sender is characterized here by the following two prop-
erties of the sender: it must

» be in sndr status—which prevents it from being scheduled because, in order
to be scheduled, a process must be in ready status and in (usually at the
head of) the scheduler’s readyqueue;

» be an element of wtsndr of some destination process.

The third claim follows because, by the definition of MSGPASS¢y, only a
PASSMSG ¢y move can MAKEREADY(src¢); for this to happen, the destination
process involved, upon being scheduled,” must have determined src as its next
waiting sender to synchronize with. Before PASSMSG ¢y (dest) checks this 'readi-
ness to receive from sre’ condition (namely by the guard sre = hd(wtsndr(dest))),
by definition of RECEIVEy(dest), the dest process must already have been
scheduled to execute its STARTSYNC& WAIT ¢y (dest) move once (possibly a skip
move, which does not cause the status to change to rcvr status).

For the proof of the RcurWait property, let us assume that a process, dest,
is scheduled to receive a message from some sender process and has executed
its STARTSYNC& WAIT ¢y (dest) step. Case 1: there is no waiting sender. Then
dest switches to status rcvr. At this point, by definition of MSGPASS¢y, only
a STARTSEND& WAIT ¢y move can MAKEREADY(dest), after which dest can
again be scheduled by the scheduler. Case 2: wtsndr(dest) # 0. Then dest is
still scheduled (unless, for some reason, the scheduler deschedules it, possibly
rescheduling it again later). In both cases, whenever dest is scheduled, it is
ready to receive a message from the sender process, src, it finds at the head of
its queue of waiting senders (src¢ = hd(wtsndr(dest))). Therefore dest and src
are synchronized so that now, and only now, the DELIVERMSG can take place,
as part of the PASSMSG ¢y (dest) move, for the message sent by src.

The Delivery property holds for the following reason. When two processes,
src and dest, are synchronized, by definition of PASSMSG ¢y (dest), exactly one
execution of DELIVERMSG(sre, dest) is triggered, together with the machine
TERMINATESYNC(scr, dest) which terminates the sender’s waiting phase. Note
that dest, by being scheduled, has just terminated its waiting phase. Note that
the one-at-a-time property holds only for the uniprocessor case.

O

Remark on Fairness. Although in the presence of timeouts fairness plays a
minor role, fairness issues for MSGPASS ¢y can be incorporated into Theorem 1.

An often-studied fairness property is related to overtaking. For example, to
guarantee that messages are delivered (if at all) in the order in which their
senders present themselves to the receiver (read: enter its wisndr collection), it
suffices to declare wtsndr(p) as a queue where the function hd in PASSMSG is
the head function. In addition, one has to clarify the order in which senders
simultaneously presenting to the same destination process are enqueued into
wtsndr(dest).

Any fairness property of the underlying scheduler results in a correspond-
ing fairness property of MSGPASS¢y. For example, if the scheduler repeatedly
schedules every (active) process, every message sent can be proved eventually to
be delivered to the receiver.

9 Obviously, if dest is never scheduled, sre¢ can never synchronize with it.

4 Semaphores

We borrow the ASM specification of semaphores from [3]. For the equivalence
proof in Sect. 6 binary semaphores, often called mutual exclusion or mutex
semaphores, suffice. They permit at most one process at any time in their critical
section, thus bind their counter to one of two values (e.g. 0,1) at any time.

A (counting) semaphore, s, has two locations, a counter and a queue of pro-
cesses waiting to enter the critical section guarded by s, written semacount(s),
resp. semaq(s) or just semacount resp. semagq if s is clear from the context. The
semaphore counter is usually initialized to a value allowed(s) > 0, the number
of processes simultaneously permitted by s in its associated critical section; the
semaphore queue is assumed to be initialized to an empty queue.

Semaphores have two characteristic operations: WAITSEMA, which is exe-
cuted when trying to access the critical section, and SIGNALSEMA, which is exe-
cuted when leaving the critical section. WAITSEMA subtracts 1 from semacount;
SIGNALSEMA adds 1 to it. As long as semacount remains non-negative, noth-
ing else is done when WAITSEMA is scheduled, so that currprocess can enter
the critical section. If semacount is negative, at least allowed processes are cur-
rently in the critical section. Therefore, in this case, the WAITSEMA move will
SUSPENDCURR, add currp to the semaphore queue semaq and put it into status
semawait(s). Only a later SIGNALSEMA move can bring the suspended process
back to ready status (see below). This leads to the following definition, where
we use abstract ENQUEUE and DEQUEUE operations. For the sake of generality
we use a caller parameter, which we will use below only for caller = currp.'°

WAITSEMA(s, caller) =
let newcount = semacount(s) — 1 in
semacount(s) := newcount
if newcount < 0 then
ENQUEUE(caller, semaq(s))
status(caller) := semawait(s)
SUSPENDCURR
WAITSEMA(s) = WAITSEMA(s, currp)

The SIGNAL operation, which is assumed to be performed each time a process
leaves the critical section, adds one to semacount. If the new value of semacount
is not yet positive, semagq still contains some process that is waiting to enter the
critical section. Then the process which first entered semaq is removed from the
queue and made ready, so that (when scheduled) it can enter the critical section.

SIGNALSEMA(s) =
let newcount = semacount(s) + 1 in
semacount(s) := newcount

0 The operations performed by WAIT and SIGNAL must be atomic, as guaranteed by
an ASM step. In the literature, auxiliary LOCK and UNLOCK operations guarantee
the atomicity.

if newcount < 0 then
let h = head(semaqueue(s)) in
DEQUEUE(h, semaqueue(s))
MAKEREADY(h)

SEMA(s) is the ASM with rules WAITSEMA(s, currp), SIGNALSEMA(S).

Theorem 2. (Semaphore Correctness Theorem) For every semaphore, s, and
every properly initialized SEMA(s) run the following properties hold:

Exclusion There are never more than allowed(s) processes within the critical
section guarded by s.

Fairness If every process that enters the critical section eventually leaves it
with a SIGNALSEMA(s) move and if the head function is fair (i.e. eventually
selects every element that enters semaqueue(s)) and if the scheduler is fair,
then every process that makes a WAITSEMA(s) move in an altempt to enter
the critical section will eventually enter it.

Proof. The exclusion property initially holds because the semaphore queue is
initialized to empty. Since the initial counter value satisfies semacount(s) =
allowed(s) and in each WAITSEMA(s), resp. SIGNALSEMA($) move, the counter
is decremented, resp. incremented, after successive allowed(s) WAITSEMA(s)
moves that are not yet followed by a SIGNALSEMA(s) move, every further move
WAITSEMA(s) before the next SIGNALSEMA(s) move has newcount as a nega-
tive number. Thus it triggers an ENQUEUE(currp, semaq(s)) operation, blocking
currp from entering the critical section until enough SIGNALSEMA (s) moves turn
the content of semacount(s) into a non negative value.

To prove the fairness property, assume that in a given state a process makes a
WAITSEMA (s) move. If in this move, newcount is not negative, then the process is
not ENQUEUEd into the semaphore queue and thus can directly enter the critical
section. Otherwise, the process is ENQUEUEd into semag(s) where, by the first
two fairness assumptions, it will eventually become the value of head(semagq(s))
and thus be made ready. Then the scheduler, which is assumed to be fair, will
eventually schedule it, so that the process, from the point where it was suspended
by its WAITSEMA (s) move, does enter the critical section. O

5 Semaphore-based Synchronous Messages

In this section, we define a specification MSGPASSgem, of synchronous message
passing using semaphores, which can be viewed as a refinement of MSGPASS ¢;.
We start from scratch, thinking about what is needed for a most general solution
of the problem, i.e. a semaphore-based solution with minimal assumptions. We
then define the meaning of correctness of MSGPASSsem, and provide a direct
proof for the correctness theorem. The equivalence theorem in Sect. 6 together
with the correctness Theorem 1 for MSGPASS ¢y provide an alternative correct-
ness proof for MSGPASSsema-

10

5.1 The MsGPASSsen, machine

The idea is to refine entering a sender’s waiting period, which has to take
place as part of a STARTSEND& WAIT gepmq (m, src, dest) move, to a WAITSEMA
move for a binary semaphore insema(dest), which for handshaking is signalled
by the receiver process dest. Thus the receiver controls the permission, given
at any time to at most one process src, to write to its inbozx(dest). To let
the receiver get ready again after its handshaking move, but only after the
DELIVERMSG(sre, dest) move has been made, its inbox(dest)-write-permission
move SIGNALSEMA (insema(dest)) is coupled to a WAITSEMA move for another
binary semaphore outsema(dest), which in turn is signalled by the sender process
when DELIVERMSG(sre, dest) is performed.

In the following and for the equivalence theorem in Sect. 6, both semaphores
insema(dest) and outsema(dest) are assumed to be initialized with 0.

This leads to the following definition of an asynchronous MSGPASSgema
by sender, resp. receiver, agents with rules SENDgemq, resp. RECEIVEgema,
where SEND gepmq is sequentially composed out of a STARTSEND& WAITgepm, and
PASSMSG geme Submachine.

SEND gema (m, sre, dest) =
STARTSEND& WAIT gepma (m, sre, dest) step PASSMSG gemaq (ST, dest)
where
STARTSEND& WAIT gemq (0, sTe, dest) =
RECORDFORTRANSFER(m, src)!!
WAITSEMA (insema(dest))
PASSMSG sema(s7¢, dest) =
DELIVERMSG(src, dest)'?
SIGNALSEMA (outsema(dest))

RECEIVEgemq (dest) = STARTSYNC& WAIT gepq (dest)
where
STARTSYNC& WAIT geima(d) =
SIGNALSEMA (insema(d))
WaIT(outsema(d))

Note that a SEND gemqe(m, sre, dest) move is executed when currp = src and
a RECEIVEgemq (dest) move when currp = dest.

5.2 Correctness Proof for MSGPASSsema

Theorem 3. (Correctness Property for Message Passing in MSGPASSsema) The
message passing correctness properties SndrWait, RcvrWait and Delivery hold
in every run of MSGPASSsema-

1 RECORDFORTRANSFER is defined as for STARTSEND& WAIT ¢y.
12 DELIVERMSG is defined as for RECEIVEy.

11

Proof. To turn the theorem into a precise statement, it remains to define when
exactly two processes src and dest are synchronized in MSGPASSgem, runs. We
define this to be true in any one of the two following situations, depending
on whether the sender or the receiver starts the attempt to synchronize for a
message exchange:

SenderStarts src has made a STARTSEND& WAIT gema (M, src, dest) move that
ENQUEUEed it into the insema(dest)-queue); thereafter dest has made a
(first) RECEIVE gemq (dest) move that DEQUEUE sre from the insema(dest)-
queue and src is again scheduled.

ReceiverStarts dest has made a RECEIVE e, (dest) move which is followed by
a (first) STARTSEND& WAIT gemaq (M, src, dest) move that does not ENQUEUE
src into the insema(dest)-queue.

SenderStarts implies that, from its STARTSEND& WAIT gerq (M, $TC, dest) move
until reaching the synchronization point, src stayed in the insema(dest)-queue
without making any further move. ReceiverStarts implies that between the two
moves RECEIVEgem, (dest) and STARTSEND& WAIT geinq (M, s7e, dest), dest has
made no move; it will be DEQUEUEd from the outsema(dest)-queue by the
subsequent src-move PASSMSG gemq (s7e, dest). Note that in the ReceiverStarts
case, after the indicated STARTSEND& WAIT gepmq (m, src, dest) move sre remains
scheduled (or will be rescheduled after an interrupt).

From the definition of synchronization and of MSGPASSgema, the correct-
ness properties SndrWait, RcurWait and Delivery follow by an induction on
MSsGPASSgemq runs.

O

Remark. The above algorithm for exchanging messages using semaphores
was implemented as a collection of threads in C by the first author. Experiments
with this implementation demonstrated that it behaves in a fashion equivalent
to synchronous message passing. In the next section we mathematically define
and prove this equivalence for the above two specifications.

6 Equivalence Proof

In this section, we formulate what it means (and prove) that MSGPASS e, and
MsGPASSqy are equivalent. We base the analysis upon the notion of correct
(and complete) ASM refinement defined in [2] and show that MSGPASSgema is
a correct refinement of MsGPASS¢y;, and vice versa (completeness). As a by-
product, this implies, by Theorem 1, an alternative proof for the correctness of
MSGPASSgemq- The two machines have different operations; also the ways the
operations are structured slightly differ from each other. Therefore, we have to
investigate in what sense one can speak of pairs of corresponding and possibly
equivalent runs in the two machines.

In MscPaAsSey or MSGPASSgemq runs, each successful message exchange is
characterized by a message exchange triple of moves

12

(STARTSEND& WAIT(m, sre, dest) | STARTSYNC& WAIT(dest))
; PAssMsG(dest)

where by m | m’, we indicate that the two moves m,m’ can occur in any order
in the run in question (remember: both a sender and a receiver can initiate an
attempt to synchronize with a partner for message exchange), and by m; m’ the
sequential order of m preceding m’ in the run note: a synchronized PAsSMSsG
move can come only after the corresponding two moves STARTSYNC& WAIT and
STARTSEND& WAIT). The message exchange triple components are furthermore
characterized by the following requirements:

s The STARTSYNC& WAIT ¢y(dest) move is the last STARTSYNC& WAIT ¢y
move of the receiver agent dest that precedes the PASSMSG ¢y (dest) move
executed when src and dest are synchronized.

= By the SIGNALSEMA (insema(dest)) move of STARTSYNC& WAIT gema (dest)
src is made ready to be scheduled to PASSMSG gema (s7c, dest).

We call message exchange triple moves in the two runs corresponding to
each other if they have the same name and concern the same parameters among
(m, src, dest). Similarly we speak about correspondence of message exchange
triples. Pairs of corresponding MSGPASS¢y and MSGPASSgem, runs are those
runs which are started in equivalent corresponding initial states and perform
corresponding message exchange triple moves in the same order. Since single
moves correspond to each other, the segments of computation of interest to be
compared in corresponding runs consist only of the given single moves. The
locations of interest to be compared are inboz(dest) and outboz(dest), the ones
updated by RECORDFORTRANSFER resp. DELIVERMSG moves in the two states
of interest, the same in both machines. The equivalence is here simply the identity
of the values of these locations in the corresponding states of interest.

By the ASM refinement framework defined in [2], these definitions turn the
following sentence into a mathematically precise statement.

Theorem 4. MSGPASSgemq is a correct refinement of MSGPASS ¢y .-

Proof. One has to show that given corresponding MSGPASSgema, MSGPASS oy
runs, for each message exchange triple move in the MSGPASSgemq run, one can
find a corresponding message exchange triple move in the MSGPASS ¢;; run such
that the locations of interest in the corresponding states of interest are equiva-
lent. This follows by an induction on runs and the number of message exchange
triple moves. The basis of the induction is guaranteed by the stipulation that the
two runs are started in equivalent corresponding states. The induction step fol-
lows from the one-to-one relation between (occurences of) corresponding message
exchange triple moves described above, using the definitions of the respective ma-
chine moves and the fact that the two crucial operations RECORDFORTRANSFER
and DELIVERMSG, which update the locations of interest, are by definition the
same in both machines. O

13

Symmetrically, one can prove the following theorem. The two theorems to-
gether constitute the equivalence theorem (also called bisimulation).

Theorem 5. MSGPASS¢y is a correct refinement of MSGPASSsema -

7 Concluding Remarks and Future Work

Possible extensions of interest concern stronger machines, as in the example
below. Similar examples include the consideration of timeouts, etc. A central
question is whether, and how, the equivalence-proof scheme can be extended to
work in the multiprocessor case.

Assume we want to use MSGPASScy for the case that RECEIVEqy is re-
stricted to receive from a set of expectedsndrs, which is assumed to be defined
when RECEIVE ¢y is called. The first issue to decide is whether the receiver waits
until a message from an expected sender shows up (blocking case) or whether in
absence of such a message the receiver may receive other messages.

In the non-blocking case the issue is simply a question of priority. There-
fore it suffices to refine the function hd used in PASSMSG to choose the first
element from wtsndr(p) N expectedsndr(p) if this set is not empty, and the first
element from wtsndr(p) otherwise. This extension includes the case that the set
expectedsndr itself may contain elements of different priorities.

In the blocking case, it suffices to strengthen the RECEIVEqy rule by re-
placing wtsndr(p) with wtsndr(p) N expectedsndr(p) in the guards of the two
subrules. The notion of src being synchronized with dest in Theorem 1 has to
be refined by restricting scr to elements in expectedsndr(dest). This refinement
represents a conservative extension of the abstract model (meaning that the ef-
fect of corresponding steps in the abstract and the refined machine is the same
over the common signature).

Acknowledgement. We thank Gerhard Schellhorn for a discussion of an earlier
version of the proof, which led to its simplification.

References

1. M. Altenhofen and E. Bérger. Concurrent abstract state machines and T CAL pro-
grams. In A. Corradini and U. Montanari, editors, WADT 2008, volume 5486 of
LNCS, pages 1-17. Springer, 2009.

2. E. Borger. The ASM refinement method. Formal Aspects of Computing, 15:237-257,
2003.

3. E. Borger and I. Craig. Modeling an operating system kernel. In V. Diekert,
K. Weicker, and N. Weicker, editors, Informatik als Dialog zwischen Theorie und
Anwendung, pages 199-216. Vieweg+Teubner, Wiesbaden, 2009.

4. E. Borger and R. F. Stark. Abstract State Machines. A Method for High-Level

System Design and Analysis. Springer, 2003.

1. Craig. Formal Models of Operating System Kernels. Springer, 2007.

I. Craig. Formal Refinement for Operating System Kernels. Springer, 2007.

A. S. Tanenbaum. Modern Operating Systems: Design and Implementation.

Prentice-Hall, 1987.

oo

14

