Skip to main content

Two Complementary Classification Methods for Designing a Concept Lattice from Interval Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5956))

Abstract

This paper holds on the application of two classification methods based on formal concept analysis (FCA) to interval data. The first method uses a similarity between objects while the second considers so-called pattern structures. We deeply detail these methods in order to show their close links. This parallel study helps understanding complex data with concept lattices. We explain how the second method obtains same results and how to handle missing values. Most importantly, this is achieved in full compliance with the FCA-framework, and thus benefits from existing and efficient tools such as algorithms. Finally, an experiment on real-world data in agronomy has been carried out for decision helping in agricultural practices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbut, M., Monjardet, B.: Ordre et Classification, Algèbre et Combinatoire. Hachette, Paris (1970)

    MATH  Google Scholar 

  2. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical foundations edn. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  3. Wille, R.: Why can concept lattices support knowledge discovery in databases? J. Exp. Theor. Artif. Intell. 14(2-3), 81–92 (2002)

    Article  MATH  Google Scholar 

  4. Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Generating Concept Lattices. J. Exp. Theor. Artif. Intell. 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  5. Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge discovery and data mining: The new challenges. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Pensa, R.G., Leschi, C., Besson, J., Boulicaut, J.F.: Assessment of discretization techniques for relevant pattern discovery from gene expression data. In: Zaki, M.J., Morishita, S., Rigoutsos, I. (eds.) BIOKDD, pp. 24–30 (2004)

    Google Scholar 

  7. Kaytoue, M., Duplessis, S., Napoli, A.: Using formal concept analysis for the extraction of groups of co-expressed genes. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) MCO. CCIS, vol. 14, pp. 439–449. Springer, Heidelberg (2008)

    Google Scholar 

  8. Messai, N.: Formal Concept Analysis guided by Domain Knowledge: Application to genomic resources discovery on the Web (in French). PhD Thesis in Computer Science, University Henri Poincaré – Nancy 1, France (March 2009)

    Google Scholar 

  9. Messai, N., Devignes, M.D., Napoli, A., Smail-Tabbone, M.: Many-valued concept lattices for conceptual clustering and information retrieval. In: Ghallab, M., et al. (eds.) Proc. of 18th European Conference on Artificial Intelligence, pp. 127–131 (2008)

    Google Scholar 

  10. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Kuznetsov, S.O.: Galois connections in data analysis: Contributions from the soviet era and modern russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Chaudron, L., Maille, N.: Generalized formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 357–370. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Ferré, S., Ridoux, O.: A Logical Generalization of Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 357–370. Springer, Heidelberg (2000)

    Google Scholar 

  14. Kaytoue, M., Duplessis, S., Kuznetsov, S.O., Napoli, A.: Two FCA-Based Methods for Mining Gene Expression Data. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 251–266. Springer, Heidelberg (2009)

    Google Scholar 

  15. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Boston (1982)

    MATH  Google Scholar 

  16. Raedt, L.D.: 9: Kernels and Distances for Strucutred Data. In: Logical and Relational Learning, pp. 289–324 (2008)

    Google Scholar 

  17. Van der Werf, H., Zimmer, C.: An indicator of pesticide environmental impact based on a fuzzy expert system. Chemosphere 36(10), 2225–2249 (1998)

    Article  Google Scholar 

  18. Bockstaller, C., Girardin, P., van der Werf, H.: Use of agro-ecological indicators for the evaluation of farming systems. European Journal of Agronomy 7(1-3), 261–270 (1997)

    Article  Google Scholar 

  19. Assaghir, Z., Girardin, P., Napoli, A.: Fuzzy logic approach to represent and propagate imprecision in agri-environmental indicator assessment. In: Proc. of the European Society For Fuzzy Logic And Technology Conference (2009)

    Google Scholar 

  20. Dubois, D., de Saint-Cyr, F.D., Prade, H.: A possibility-theoretic view of formal concept analysis. Fundamenta Informaticae 75(1-4), 195–213 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Guillas, S., Bertet, K., Visani, M., Ogier, J.M., Girard, N.: Some links between decision tree and dichotomic lattice. In: CLA 2008, pp. 193–205 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaytoue, M., Assaghir, Z., Messai, N., Napoli, A. (2010). Two Complementary Classification Methods for Designing a Concept Lattice from Interval Data. In: Link, S., Prade, H. (eds) Foundations of Information and Knowledge Systems. FoIKS 2010. Lecture Notes in Computer Science, vol 5956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11829-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11829-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11828-9

  • Online ISBN: 978-3-642-11829-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics