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Abstract. Harsh deployment environments and uncertain run-time con-
ditions create numerous challenges for postmortem time reconstruction
methods. For example, motes often reboot and thus lose their clock state,
considering that the majority of mote platforms lack a real-time clock.
While existing time reconstruction methods for long-term data gathering
networks rely on a persistent basestation for assigning global timestamps
to measurements, the basestation may be unavailable due to hardware
and software faults. We present Phoenix, a novel offline algorithm for re-
constructing global timestamps that is robust to frequent mote reboots
and does not require a persistent global time source. This independence
sets Phoenix apart from the majority of time reconstruction algorithms
which assume that such a source is always available. Motes in Phoenix ex-
change their time-related state with their neighbors, establishing a chain
of transitive temporal relationships to one or more motes with references
to the global time. These relationships allow Phoenix to reconstruct the
measurement timeline for each mote. Results from simulations and a de-
ployment indicate that Phoenix can achieve timing accuracy up to 6 ppm
for 99% of the collected measurements. Phoenix is able to maintain this
performance for periods that last for months without a persistent global
time source. To achieve this level of performance for the targeted envi-
ronmental monitoring application, Phoenix requires an additional space
overhead of 4% and an additional duty cycle of 0.2%.

1 Introduction

Wireless sensor networks have been used recently to understand spatiotemporal
phenomena in environmental studies [13,22]. The data these networks collect
are scientifically useful only if the collected measurements have corresponding,
accurate global timestamps. The desired level of accuracy in this context is in
the order of milliseconds to seconds. In order to reduce complexity of the code
running on the mote, it is more efficient to record sensor measurements using the
mote’s local time frame and perform a postmortem reconstruction to translate
them to global time.

Each mote’s clock (referred to as local clock henceforth) monotonically in-
creases and resets to zero upon reboot. A naive postmortem time reconstruction
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scheme collects 〈local, global〉 pairs during a mote’s lifetime, using a global clock
source (typically, an NTP-synchronized PC). These pairs (also referred to as
“anchor points”) are then used to translate the collected measurements to the
global time frame by estimating the motes’ clock skew and offset. We note that
this methodology is unnecessary for architectures such as Fleck, which host a
battery-backed on-board real-time clock (RTC) [5]. However, many commonly-
used platforms such as Telos, Mica2, MicaZ, and IRIS (among others) lack an
on-board RTC.

In the absence of reboots, naive time reconstruction strategies perform well.
However, in practice, motes reboot due to low battery power, high moisture, and
software defects. Even worse, when motes experience these problems, they may
remain completely inactive for non-deterministic periods of time. Measurements
collected during periods which lack 〈local, global〉 anchors (due to rapid reboots
and/or basestation absence) are difficult or impossible to accurately reconstruct.
Such situations are not uncommon based on our deployment experiences and
those reported by others [23].

In this work, we devise a novel time reconstruction strategy, Phoenix, that
is robust to random mote reboots and intermittent connection to the global
clock source. Each mote periodically listens for its neighbors to broadcast their
local clock values. These 〈local, neighbor〉 anchors are stored on the mote’s flash.
The system assumes that one or more motes can periodically obtain global time
references, and they store these 〈local, global〉 anchors in their flash. When the
basestation collects the data from these motes, an offline procedure converts the
measurements timestamped using the motes’ local clocks to the global time by
using the transitive relationships between the local clocks and global time.

The offline nature of Phoenix has two advantages: (a) it reduces the com-
plexity of the software running on the mote, and (b) it avoids the overhead as-
sociated with executing a continuous synchronization protocol. We demonstrate
that Phoenix can reconstruct global timestamps accurately (within seconds) and
achieve low (< 1%) data losses in the presence of random mote reboots even when
months pass without access to a global clock source.

2 Motivation

We claim that the problem of rebooting motes is a practical aspect of real de-
ployments that has a high impact on environmental monitoring applications.
We also quantify the frequency and impact of reboots in a long-term deploy-
ment. We begin by understanding why mote reboots complicate postmortem
time reconstruction.

2.1 Postmortem Timestamp Reconstruction

The relationship between a mote’s local clock, LTS, and the global clock, GTS,
can be modeled with a simple linear relation: GTS = α × LTS + β, where α
represents the mote’s skew and β represents the intercept (global time when the



Basestation

20 meters

Fig. 1. The 53-mote “Cub Hill” topology, located in an urban forest northeast
of Baltimore, Maryland.

mote reset its clock) [19]. This conversion from the local clock to global clock
holds as long as the mote’s local clock monotonically increases at a constant rate.
We refer to this monotonically increasing period as a segment. When a mote
reboots and starts a new segment, one needs to re-estimate the fit parameters.
If a mote reboots multiple times while it is out of contact with the global clock
source, estimating β for these segments is difficult. While data-driven treatments
have proven useful for recovering temporal integrity, they cannot replace accurate
timestamping solutions [10,11]. Instead, time reconstruction techniques need to
be robust to mote reboots and not require a persistent global time source.

2.2 Case Studies

We present two cases which illustrate the deployment problems that Phoenix
intends to address. The first is an account of lessons learned from a year-long
deployment of 53 motes. The second is a result of recent advances in solar-
powered sensor networks.

Software Reboots. We present “Cub Hill”, an urban forest deployment of 53
motes that has been active since July 2008 (Figure 1). Sensing motes collect
measurements every 10 minutes to study the impact of land use on soil condi-
tions. The basestation uses the Koala protocol to collect data from these motes
every six hours [16]. We use TelosB motes driven by 19 Ah, 3.6 V batteries.

We noticed that motes with low battery levels and/or high internal moisture
levels suffered from periodic reboots. As an example, Figure 2 shows the battery
voltage of a mote that rebooted thrice in one month. Despite their instability,
many of these motes were able to continue collecting measurements for extended
periods of time.

Following a major network expansion, a software fault appeared which caused
nodes to “freeze”. Unable to reproduce this behavior in a controlled environment,
we employed the MSP430’s Watchdog Timer to reboot motes that enter this
state [21]. While this prevented motes from completely failing, it also shortened
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Fig. 2. An example of a mote rebooting due to low battery voltage (no watchdog
timer in use). The sharp downward spikes correspond to gateway downloads
(every six hours). Gaps in the series are periods where the mote was completely
inoperative.
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Fig. 3. The distribution of the segment lengths before and after adding the
watchdog timer to the mote software.

the median length of the period between reboots from more than 50 days to only
four days, as Figure 3 shows.

Solar Powered Sensor Networks. A number of research groups have demon-
strated the use of solar energy as a means of powering environmental monitor-
ing sensor networks [12,20]. In such architectures, a mote can run out of power
during cloudy days or at night. Motes naturally reboot in such architectures,
and data losses are unavoidable due to the lack of energy. It is unclear how one
can achieve temporal reliability without a persistent basestation or an on-board
RTC. To the best of our knowledge, no one has addressed the issue of temporal
integrity in solar-powered sensor networks. Yang et al. employ a model in which
data collection happens without a persistent basestation [24]. The data upload
takes place infrequently and opportunistically. Hard-to-predict reboot behavior
is common to these systems. Furthermore, we note that even though there is
very little information about the rate of reboots in such architectures, it is clear
that such systems are susceptible to inaccurate timestamp assignments.
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(a) The fraction of measurements that were assigned timestamps.
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(b) An example of the impact of estimating β incorrectly when using approximate
methods. Data from one of the motes (represented with the dark line) that rebooted
multiple times between Jun. 22 and Jun. 25. During this period, the mote was out of
sync with the rest (shown in gray) due to inaccurate β estimates

Fig. 4. Impact of time reconstruction methodology using the RGTR algorithm.

2.3 Impact

We evaluate the impact of mote reboots on the Cub Hill deployment using our
existing time reconstruction methodology.

The basestation records an anchor point each time it downloads data from
a mote. Motes that are poorly connected to the basestation may remain out
of contact for several download rounds before connectivity improves and they
can transfer their data. When motes reboot at a rate faster than the frequency
with which the basestation contacts them, there exist periods which lack enough
information to accurately reconstruct their measurement timestamps.

Upon acquiring the anchor points, the measurements are converted from their
local clock to the global clock at the basestation. We employ our previously pro-
posed algorithm, Robust Global Timestamp Reconstruction algorithm (referred
to as RGTR), for this purpose [10]. We note that in order to estimate the fit
parameters (α, β) for the segments, RGTR requires at least two anchor points.
Depending on the accuracy requirements, one can assume that the skew (α) is
stable per mote for small segments. Using this assumption, at least one anchor
point is needed to estimate the β for any given segment, provided that α has
been estimated accurately for the mote.

Figure 4(a) demonstrates the impact of mote reboots on time reconstruction
for the Cub Hill deployment. During period A, motes were prone to freezing (and
thus stopped sampling), leading to a decrease in the total data collected. At point



B, the addition of the watchdog timer caused the total data collected to return
to its previous level. However, due to the increased frequency of reboots, a larger
portion of the samples could not be assigned a global timestamp (exacerbated
by the absence of the base station during period C).

For segments where no anchor points were collected, we assumed that node
reboots are instantaneous. However, this assumption does not always hold (see
Figure 2) and leads to a small fraction of misaligned measurements. Figure 4(b)
presents an example of this misalignment. One node (shown in bold) rebooted
multiple times and could not reach the basestation during its active periods. The
assumption of instantaneous reboots led to inaccurate β estimates.

3 Solution

Phoenix is a postmortem time reconstruction algorithm for motes operating
without in-network time synchronization. It consists of two stages.

3.1 In-Network Anchor Collection

Each mote operates solely with respect to its own local clock. A new segment
(uniquely identified by 〈moteid, reboot count〉) begins whenever a mote reboots:
each segment starts at a different time and may run at a different rate. Our
architecture assumes that there is at least one mote in the network that can
periodically obtain references from an accurate global time source. This is done
to establish the global reference points needed by Phoenix. This source may be
absent for long periods of time (see Section 4). The global time source can be any
reliable source (a mote equipped with a GPS receiver, NTP-synced basestation,
etc). Without loss of generality, we assume that the network contains a mote
connected to GPS device and a basestation that collects data infrequently1.

All motes (including the GPS-connected mote) broadcast their local clock
and reboot-count values every Tbeacon seconds. Each receiving mote stores this in-
formation (along with its own local clock and reboot counter) in flash to form an-
chor records. The format of these records is 〈moteidr, rcr, lcr,moteids, rcs, lcs〉;
where rc, lc, r, and s refer to the reboot counter, local clock, receiver and sender
respectively. Periodically, motes turn on their radios and listen for broadcasts
in order to anchor their time frame to those of their neighbors. Each mote tries
to collect this information from its neighbors after every reboot and after every
Twakeup seconds (� Tbeacon). The intuition behind selecting this strategy is as
follows. The reboot time determines the β parameter. The earliest opportunity
to extract this information is immediately after a reboot. To get a good estimate
of the skew, one would like to collect multiple anchors that are well distributed
in time. Thus, Twakeup is a parameter that governs how far to spread out anchor
collections. In the case of a GPS mote, the moteidr, rcr and moteids, rcs are
identical, and lcr, lcs represent the local and global time respectively.

1 Note that the basestation collects data only and it does not provide a time source,
unless specified otherwise.



Algorithm 1 Phoenix
Definitions:
a, b : alpha and beta for local-local fits;
P : parent segment; Π : Ancestor segments

procedure Phoenix(AP )
for each (i, j) in Keys(AP ) do . All unique segment pairs in AP

LFa,b,χ,df (i, j)← Llse(AP (i, j)) . Compute the local-local fits

for each s ∈ S do . Set of all unique segments
GFα,β,P,Π,χ,df (s)← (∅, ∅, ∅, s, χMAX , ∅) . Initialize global fits

for each g ∈ G do . All segments anchored to GTS
InitGTSNodes(g, LF,GF )
Enqueue(Q, g) . Add all the GTS nodes to the queue

while NotEmpty(Q) do
q ← Dequeue(Q)
C ← NeighborAnchors(q)
for each c ∈ C do

Tα,β,P,Π,χ,df (c)←GlobalFit(c, q, GF, LF )
if (UpdateFit(c, T,GF )) then . Check for a better fit

Enqueue(C)

return GF

procedure InitGTSNodes(g, LF,GF )
GF (g)← (LFa(g, g′), LFb(g, g

′), ∅, g, LFχ(g, g′), LFdf (g, g′)) . g′ is GTS, g is LTS

procedure GlobalFit(c, q, GF, LF )
if q > c then . Smaller segment is the independent variable

αnew ← GFα(q) ∗ LFa(q, c)
βnew ← GFα(q) ∗ LFb(q, c) +GFβ(q)

else
αnew ← GFα(q)/LFa(q, c)
βnew ← GFα(q)− αnew ∗ LFb(q, c)

χ←
GFdf (q)∗GFχ(q)+LFdf (q,c)∗LFχ(q,c)

GFdf (q)+LFdf (q,c)
. Compute the weighted GOF metric.

df ← GFdf (q) + LFdf (q, c)
return (αnew, βnew, q, {c ∪GFΠ(q)}, χ, df) . Update parent/ancestors

procedure UpdateFit(c, T,GF )
if c ∈ TΠ(c) then . Check for cycles

return false
if Tχ(c) < GFχ(c) then

GFα,β,P,Π,χ,df (c)← Tα,β,P,Π,χ,df (c)
return true

else
return false

The basestation periodically downloads these anchors along with the mea-
surements. This information is then used to assign global timestamps to the
collected measurements using Algorithm 1. If the rate of reboots is known, the
anchor collection frequency can be fixed conservatively to collect enough anchors
between reboots. One could also employ an adaptive strategy by collecting more
anchors when the segment is small and reverting to a larger Twakeup when an
adequate number of anchors have been collected. It is advantageous for a mote
to attempt to collect anchors from a small set of neighbors (to minimize stor-
age), but this requires a mote to have some way of identifying the most useful
segments for anchoring (see Section 4).



3.2 Offline Timestamp Reconstruction

The Phoenix algorithm is intuitively simple. We will outline it in text and draw
attention to a few important details. For a more complete treatment, please refer
to the pseudocode in Algorithm 1. Phoenix accepts as input the collection of all
anchor points AP (both 〈local, neighbor〉 and 〈local, global〉). It then employs
a least-square linear regression to extract the relationships between the local
clocks of the segments that have anchored to each other (LF , for Local Fit).
In addition to LFa(i, j) (slope), LFb(i, j) (intercept), Phoenix also obtains a
goodness-of-fit (GOF ) metric, LFχ(i, j) (unbiased estimate of the variance of
the residuals) and LFdf (degrees of freedom). For segments which have global
references, Phoenix stores this as GF (for Global Fit).

The algorithm then initializes a queue with all of the segments which have
direct anchors to the global clock. It dequeues the first element q and examines
each segment c that has anchored to it. Phoenix uses the transitive relationship
between GF (q) and LF (q, c) to produce a global fit T (c) which associates seg-
ment c to the global clock through segment q. If Tχ(c) is lower than the previous
value for GFχ(c) (and using q would not create a cycle in the path used to reach
the global clock), the algorithm replaces GF (c) with T (c), and places c in the
queue. When the queue is empty, no segments have “routes” to the global clock
which have a better goodness-of-fit than the ones which have been previously
established. At this point, the algorithm terminates.

The selection of paths from an arbitrary segment to a segment with global
time references can be thought of as a shortest-path problem (each segment rep-
resents a vertex and the fit between the two segments is an edge). The GOF
metric represents the edge weight. The running time complexity of the imple-
mentation of Phoenix was validated experimentally by varying the deployment
lifetime (thereby varying number of segments). The runtime was found to in-
crease slower than the square of the number of segments.

4 Evaluation

We evaluate the effect of varying several key parameters in Phoenix using both
simulated and real datasets. We begin by describing our simulator.

4.1 Simulator

Our goal is to minimize the data loss in long-term deployments. Hence, we fix
the simulation period to be one year. We also assume that the basestation is
not persistently present and does not provide a time source to the network. The
network contains one global clock source (a GPS mote) that is susceptible to
failures. The main components of the simulator are described below. The de-
fault values for the simulator are based on empirical data obtained from the one
year long Cub Hill deployment.



Clock Skew: The clock skew for each segment is drawn from a uniformly dis-
tributed random variable between 40 ppm and 70 ppm. Burri et al. report this
value to be between 30 and 50 ppm at room temperature2 [1].
Segment Model: We use the non-parametric segment-length model based on
the Cub Hill deployment after the watchdog timer fix (Figure 3). Additionally,
after a reboot, we allowed the mote to stay inactive for a period that is randomly
drawn between zero and four hours with a probability given by pdown = 0.2 .
The GPS mote’s behavior follows the same model.
Communication Model: The total end-to-end communication delay for re-
ceiving anchor packets is drawn uniformly between 5 and 15 milliseconds. This
time includes the interrupt handling, transmission, reception and propagation
delays. To model the packet reception rate (PRR), we use the log-distance
path loss model as described in [18,25] with parameters: (Pr(d0), η, σ, d0) =
(−59.28, 2.04, 6.28, 2.0m).
Topology: The Cub Hill topology was used as the basis for all simulations.
Event Frequencies: Motes recorded a 26-byte sample every 10 minutes. They
beacon their local clock values with an interval of Tbeacon. They stay up after
every reboot and periodically after an interval of Twakeup to collect these broad-
casts. While up, they keep their radios on for a maximum of Tlisten. The GPS
mote collects 〈local, global〉 anchors with a rate of Tsync. By default, Tbeacon,
Twakeup, Tlisten and Tsync were set to 30 s, 6 h, 30 s and 6 h respectively.
Maximum Anchorable Segments: To minimize the space overhead in stor-
ing anchors, we limit the number of segments that can be used for anchoring
purposes. At any given time, a mote can only store anchors for up to NUMSEG
segments. The default NUMSEG value is set to four. Motes stop listening early
once they collect NUMSEG anchors in a single interval.
Eviction Policy: Since segments end and links between motes change over time,
obsolete or rarely-heard segments need to be evicted from the set of NUMSEG
segments for which a mote listens. The timeout for evicting stale entries is set
to 3×Twakeup. We evaluated three different strategies for selecting replacements
for evicted segments. First-come, first-served (FCFS) accepts the first segment
that is heard when a vacancy exists. RAND keeps track of the previous segments
that were heard and selects a new segment to anchor with at random. Longest
local clock (LLC) keeps track of the local clock values of the segments that are
heard and selects the segment that has the highest local clock. FCFS was chosen
as the default.

4.2 Evaluation metrics

Data loss (DL): The fraction of data that cannot be assigned any times-
tamps, expressed as a percentage.

PPM Error: The average error (in parts per million) for the assigned times-

tamps. PPM error is |t
′−t|
tδ
× 106, where t is the true timestamp of the mea-

2 We ignore the well-studied temperature effects on the quartz crystal. For a more
complete treatment on the temperature dependence, refer to [15,17].
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Fig. 5. Evaluation of Phoenix in simulation. In (c), faults were injected to GPS
anchors after day 237. Figure shows the α and χ values for the GPS mote for
the entire period.

surement, t′ is the assigned timestamp, and tδ denotes the elapsed time since
the start of the segment in terms of the real clock.

Space overhead: The fraction of space that is used for storing anchors relative
to the total space used, expressed as a percentage.

Duty cycle: The fraction of time the radio was kept on for anchor collection
and beaconing, expressed as a percentage.

4.3 Simulation Experiments

Dependence on Global Clock Source: We studied the effect of the global clock’s
absence on data loss. We assume that the network contains one GPS mote that
serves as the global clock source and it is inoperative for a specified amount of
time. In order to avoid bias, we randomly selected the starting point of this period
and varied the GPS down time from 0 to 150 days in steps of 10. Figure 5(a)
shows the effect on the reconstruction using 60 independent runs. The accuracy
decreases as the number of days without GPS increases, but we note that this
decrease is tolerable for our target applications. The data loss stayed relatively
stable at 0.21%, even when the global clock source is absent for as long as
5 months. We note that in a densely connected network, the number of paths
between any two segments is combinatorial, and hence, the probability of finding



a usable path is very high3. The variance of the error increased with the length
of the gateway’s absence.

Dependence on Wake-up Interval: Figures 5(b) show the effect of varying wake-
up rate on data loss. As expected, data loss increases as the rate of anchor
collection decreases. This curve is strongly related to the segment model: if
collections are less frequent than reboots, many segments will fail to collect
enough anchors to be reconstructed.

Robustness: We studied the effect of faulty global clock references on time
reconstruction. Noise from a normal distribution (µ = 60 min., σ =10 min.) was
added to the global references for a period of 128 days. Figure 5(c) shows the
alpha and χ values for the GPS mote during the entire simulation period. One
can also notice the correlation between high χ values and α values that deviate
from 1.0 in Figure 5(c). These faults did not change the data loss rate. The faults
increased the PPM error from 4.03 to 16.5. Although these faults decreased
accuracy, this decrease is extremely small in comparison to the magnitude of the
injected errors and within the targeted accuracy requirements. Phoenix extracted
paths which were least affected by these faults by using the χ metric.

Effect of eviction and NUMSEG: We studied the effect of NUMSEG on space,
duty cycle, and data loss. The space overhead increases linearly with NUMSEG
(Figure 6(a)). The impact on duty cycle4 was quite low (Figure 6(b)). A constant
duty cycle penalty of 0.075% is incurred due to the beaconing messages sent every
30 s [16]. At low values of NUMSEG, motes are able to switch off their radios
early (once they have heard announcements from segments they have anchored
with), while at higher values, they need to stay on for the entire Tlisten period.
Increasing NUMSEG decreases data loss, because motes have a better chance
of collecting good segments to anchor with. We found that the FCFS eviction
policy outperforms LLC and RAND. We found no significant differences in the
PPM error results as we vary NUMSEG, and hence, we do not report those
results here.

Neighbor Density: In this experiment, we removed links from the Cub Hill topol-
ogy until we obtained the desired neighbor density. At every step, we ensured
that the network was fully connected. We did not find any significant impact on
performance as the average number of neighbors was decreased. In this experi-
ment, the radios were kept on for the entire Tlisten period, and no eviction policy
was employed. This was done to compare the performance at each density level
at the same duty cycle. Figure 6(d) presents our findings.

3 One can estimate the probability for finding a usable path using Warshall’s algorithm
[6]. The input to this algorithm would be a connectivity matrix where the entries
represent the anchoring probabilities of the neighbor segments.

4 Note that the duty cycle that we are referring to does not consider the communication
costs during data downloads. Reducing the storage requirements would reduce the
communication costs when the basestation collects data.
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Fig. 6. Effect of NUMSEG on different eviction policies.

4.4 Deployment - I

We deployed a network (referred to as the “Olin” network) of 19 motes arranged
in a grid topology in an urban forest near the Johns Hopkins University campus
in Baltimore, MD. Anchors were collected for the entire period of 21 days using
the methodology described in Section 3.1. The basestation collected data from
these motes once every four hours and the NTP-corrected clock of the basestation
was used as a reliable global clock source. The motes rebooted every 5.7 days on
average, resulting in a total of 62 segments. The maximum segment length was
19 days and the minimum was two hours.

Perceived Ground Truth: It is very difficult to establish absolute ground truth in
field experiments. Instead, we establish a synthetic ground truth by reconstruct-
ing timestamps using all the global anchors obtained from the basestation5. We
record the α and β values for each segment and use these values as ground
truth. Because we downloaded data every four hours we obtained enough global
anchors from the motes to be confident with the derived ground truth estimates.

5 Note that every time a mote contacts the basestation, we obtain a global anchor for
that mote.



Table 1. Phoenix accuracy using the Olin dataset as a function of the number
of days that the basestation was unavailable.

Error\Days 2.4 6.8 10.12 14.16 18.

αmed (ppm) 1.73 1.73 1.85 1.70 1.96 2.20 4.36 5.47 5.93
αstd (ppm) 3.41 3.40 3.40 3.39 3.30 3.26 3.17 3.00 3.00

βmed (s) 0.88 0.88 0.91 0.94 1.16 1.55 4.52 6.02 6.44
βstd (s) 0.58 0.57 0.58 0.57 0.65 0.91 2.43 3.11 3.45
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Fig. 7. The stability of the α estimates using Phoenix and the data loss using
RGTR in comparison to Phoenix.

Emulating GPS node and Basestation Failure: In order to emulate a GPS mote,
we selected a single mote (referred to as G-mote) that was one hop away from the
basestation. We used the G-mote’s global anchors obtained from the basestation
as though they were taken using a GPS device. We ignored all other global
anchors obtained from other motes. Furthermore, to emulate the absence of the
basestation for N days, we discarded all the anchors taken by the G-mote during
that N -day long period. We tested for values of N from one to eighteen.

Phoenix Accuracy: After simulating the basestation failure, we reconstruct the
timestamps by applying Phoenix using only the 〈local, neighbor〉 anchors, and
global anchors available from the G-mote. This provides us with another set
of α and β estimates for each of the segments. We compare these estimates
with the ground truth estimates (pair-wise comparison). In order to provide a
deeper insight, we decompose the average PPM error metric into its constituent
components - α and β errors. Furthermore, we report the median and standard
deviation of these α and β errors. Table 1 reports the results of these experiments.
We found that the median α error stayed as low as 5.9 ppm, while the median β
error stayed as low as 6.4 s for N =18. In general, αmed, βmed and βstd increased
as N increased and αstd stayed relatively consistent for different values of N .
The stability of the α estimates using Phoenix with N = 0 and N = 18 is shown



in Figure 7(a). The CDF shows that median skew was found to be around 75
ppm and the two curves track each other closely.

Data Loss: The data loss using Phoenix was found to be as low as 0.055%
when N was 18 days. In comparison, we found that there was significant data
loss when the timestamps were reconstructed using RGTR. Figure 7(b) shows
the data losses for different values of N . The figure does not report the Phoenix
data loss as we found it to be 0.055% irrespective of N . This demonstrates that
Phoenix is able to reconstruct more than 99% of the data even when motes
reboot frequently and the basestation is unavailable for days. We note that in
comparison to Phoenix, RGTR does not incur any additional storage and duty
cycle overheads as anchors are recorded at the basestation directly as part of the
data downloads.

4.5 Deployment - II

The second deployment (termed Brazil) was at the Nucleo Santa Virginia re-
search station in the Atlantic coastal rain forest near Sao Paolo, Brazil [2]. The
goal of this deployment was to collect data to improve atmospheric micro-front
models. 52 nodes were deployed for a total of 35 days and 5, 418, 074 data points
were produced during this campaign. The site could not host a persistent bases-
tation. Instead, researchers would download data every alternate data using
a laptop that served as a temporary mobile basestation. The basestation was
running a linux VM over windows 7 - our download protocol required a linux
installation.

Deployment Setup: Two GPS receivers were built on two motes and these were
to serve as the global clock source. These motes would advertise their local
clock values for others to anchor with and would also periodically store the
(local,GPS) timestamps on their flash - this is in addition to storing time state
announcements from other motes. However, due to the lithium battery shipping
problems, these GPS motes were unavailable until 22 days into the deployment.
Due to these problems, we had to use the laptop’s VM clock as the global clock
source for the first 22 days. After the batteries arrived, we found out that one
of the GPS receivers did not work.

Experiences: When we looked at the temperature time series plots of the recon-
structed data for the first few days, we found a few motes “shifted” and “out-
of-sync” from one another. The peaks and troughs in the temperature seemed
lagged at a few sensors. The motes initially started in-sync and then gradually
went out of sync. This indicated to us that some of the motes had poor esti-
mates of α. On further investigation, we realized that the VM clock was highly
unstable and this lead to poor reconstruction.

Our only hope was to then rely on using the GPS anchors, available from
day 22 to day 35 collected by the one working GPS mote. Even though we did
not intend things to go this way, this situation was exactly what phoenix was
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designed for - tolerance to a missing global clock source for extended periods of
time.

Results: Using the GPS anchors, Phoenix was able to timestamp 99.7% of all
the data that was collected. The data loss due to timestamping for all the motes
in the Brazil deployment is shown in Figure 8. Other than mote 41 and 46, more
than 70% of the motes have less than 0.1% of timestamping data loss.

The accuracy of these timestamps is difficult to report since ground truth
was not available to us. Nonetheless, we can compare the relative quality of the
two global clock sources. The CDF of the residuals for the fits obtained using
the VM clock and the GPS clock is shown in Figure 9. Note that low residuals
indicate a good linear fit between mote clocks and the reference clock. By looking
at the distribution in Figure 9, the median residual for GPS is almost two orders
of magnitude lower than the VM clock. One can also notice the long tail (high
errors) in the distribution of the VM residuals. The effect of temperature on the
mote clock and non-deterministic delays in the GPS interrupt handling account
for variation in the GPS residuals. An obvious, but often overlooked, take away
from this experience is to ensure that the global clock source is trustworthy and
accurate - just having one is not good enough.

5 Related Work

Assignment of timestamps in sensor networks falls under two broad categories.
Strict clock synchronization aims at ensuring that all the mote clocks are syn-
chronized to the same clock source. Flooding Time Synchronization Protocol
(FTSP, [14]), Reference Broadcast Synchronization (RBS, [8]), and the Timing-
sync Protocol for Sensor Networks [9] are examples of this approach. These
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systems are typically used in applications such as target tracking and alarm de-
tection which require strong real-time guarantees of reporting events. The sec-
ond category is known as postmortem time reconstruction and it is mostly used
due to its simplicity. While strict synchronization is appropriate for applications
where there are specific events of interest that need to be reported, postmortem
reconstruction is well-suited for applications where there is a continuous data
stream and every measurement requires an accurate timestamp.

Phoenix falls under the second class of methods. The idea of using linear
regression to translate local timestamps to global timestamps was first intro-
duced by Werner-Allen et al. in a deployment that was aimed at studying active
volcanoes [23]. This work, however, does not consider the impact caused by re-
booting motes and basestation failures from a time reconstruction perspective.
More recently, researchers have proposed data-driven methods for recovering
temporal integrity [10,11]. Lukac et al. use a model for microseism propagation
to time-correct the data collected by their seismic sensors. Although data-driven
methods have proved useful for recovering temporal integrity, they are not a
solution for accurate timestamping.

Routing integrated time synchronization protocol (RITS, [19]) spans these
categories. Each mote along the path (to the basestation) transforms the time of
the reported event from the preceding mote’s time frame, ending with an accu-
rate global timestamp at the basestation. RITS does not consider the problem
of mote reboots, and is designed for target tracking applications. The problem
of mote reboots have been reported by a number of research groups. Chang et
al. report that nodes rebooted every other day due to an unstable power source



[3], whereas Dutta et al. employed the watchdog timer to reboot nodes due to
software faults [7]. Allen et al. report an average node uptime of 69% [23]. More
recently, Chen et al. advocate Neutron, a solution that detects system violations
and recovers from them without having to reboot the mote [4]. They advocate
the notion of preserving “precious” states such as the time synchronization state.
Nevertheless, Neutron cannot prevent all mote reboots and therefore Phoenix is
still necessary.

6 Conclusions

In this paper we investigate the challenges facing existing postmortem time re-
construction methodologies due to basestation failures, frequent random mote
reboots, and the absence of on-board RTC sources. We present our time recon-
struction experiences based on a year-long deployment and motivate the need
for robust time reconstruction architectures that minimize data losses due to the
challenges we experienced.

Phoenix is an offline time reconstruction algorithm that assigns timestamps
to measurements collected using each mote’s local clock. One or more motes
have references to a global time source. All motes broadcast their time-related
state and periodically record the broadcasts of their neighbors. If a few mote seg-
ments are able to map their local measurements to the global time frame, this
information can then be used to assign global timestamps to the measurements
collected by their neighbors and so on. This epidemic-like spread of global infor-
mation makes Phoenix robust to random mote reboots and basestation failures.
We found that in practice there are more than enough possible ways to obtain
good fits for the vast majority of data segments.

Results obtained from simulated datasets showed that Phoenix is able to
timestamp more than 99% of measurements with an accuracy up to 6 ppm
in the presence of frequent random mote reboots. It is able to maintain this
performance even when there is no global clock information available for months.
The duty-cycle and space overheads were found to be as low as 0.2% and 4%
respectively. We validated these results using a 21 day-long real deployment and
were able to reconstruct timestamps in the order of seconds.

In the future, we will investigate using other metrics for determining edge
weights and their impact on the quality of the time reconstruction. Moreover, we
will explore adaptive techniques for determining the anchor collection frequency.
Finally, we will derive theoretical guarantees on the accuracy of Phoenix, which
can be used to allow for fine-grained tradeoffs between reconstruction quality
and overhead.
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