
Inductive Programming
A Survey of Program Synthesis Techniques

Emanuel Kitzelmann
Faculty of Information Systems and Applied Computer Science, University of Bamberg

emanuel.kitzelmann@uni-bamberg.de

Abstract
Inductive programming—the use of inductive reasoning
methods for programming, algorithm design, and software
development—is a currently emerging research field. A ma-
jor subfield is inductive program synthesis, the (semi-)au-
tomatic construction of programs from exemplary behavior.
Inductive program synthesis is not a unified research field
until today but scattered over several different established
research fields such as machine learning, inductive logic pro-
gramming, genetic programming, and functional program-
ming. This impedes an exchange of theory and techniques
and, as a consequence, a progress of inductive programming.
In this paper we survey theoretical results and methods of
inductive program synthesis that have been developed in
different research fields until today.

1. Introduction
Inductive programming (IP) is an emerging field, compris-
ing research on inductive reasoning theory and methods for
computer programming, algorithm design, and software de-
velopment. In this sense, albeit with different accentuation,
the term has been used by Partridge [30], by Flener and Par-
tridge [7], within the workshops on “Approaches and Appli-
cations of Inductive Programming”, and within the ICML’06
tutorial on “Automatic Inductive Programming”.

IP has intersections with machine learning, artificial intel-
ligence, programming, software engineering, and algorithms
research. Nevertheless, it goes beyond each of these fields in
one or the other aspect and therefore is a research field in its
own right, intrinsically.

It goes beyond classical machine learning in that the
focus lies on learning general programs including loops and
recursion, instead of merely (mostly non-recursive) models
or classifiers in restricted representational frameworks, such
as decision trees or neural networks.

In classical software engineering and algorithm design,
a deductive—reasoning from the general to the specific—
view of software development is predominant. One aspires
a general problem description as starting point from which
a program or algorithm is developed as a particular solu-
tion. Methods based on deductive reasoning exist to partly

automatize the programming and verification process—such
as automatic code generation from UML diagrams, (deduc-
tive) program synthesis to generate algorithmic parts, pro-
gram transformation and refactoring to optimize programs,
and theorem proving, model checking, and static analysis
to verify programs. To emphasize this common deductive
foundation one might speak of deductive programming to
subsume established software development methods.

Inductive programming, on the other side, aims at devel-
oping methods based on inductive—from the specific to the
general—reasoning (not to be confused with mathematical
or structural induction) to assist in programming, algorithm
design, and the development of software. Starting point for
IP methods is specific data of a problem—use cases, test
cases, desirable (and undesirable) behavior of a software, in-
put/output examples (I/O-examples) of a function or a mod-
ule interface, computation traces of a program for particu-
lar inputs and so forth. Such descriptions of a problem are
known to be incomplete. Inductive methods produce a gen-
eralization of such an incomplete specification by identify-
ing general patterns in the data. The result might be again
a—more complete—specification or an actual implementa-
tion of a function, a module, or (other parts of) a program.

Inductive reasoning is per se unsound. Inductively ob-
tained conclusions are hypotheses and incapable of proof re-
garding their premises. This is, perhaps, the most severe ob-
jection against IP. What is the use of methods whose results
cannot be proven correct and possibly deviate from what was
intended? However, if the data at hand is representative then
it is likely that identified patterns actually hold in the gen-
eral case and that, indeed, the induced result meets the gen-
eral problem. On the other side, all software development
necessarily makes a transition from a first informal and of-
ten incomplete problem description by the user or customer
to a complete and ideally formal specification. This transi-
tion is (i) also incapable of formal proof and (ii) possibly
based on—non-systematic, inexplicit—generalization. Also,
IP should not be understood as a replacement for deductive
methods but as an addition. IP may be used in different ways:
to generate candidate solutions subject to further inspection,
in combination with deductive methods to tackle a problem
from the general description as well as from concrete (coun-

ter-)instances, to systematize occurring generalizations, or
to check the representativeness of example cases provided
by the user. Some problems, especially many problems in
the field of artificial intelligence, elude a complete specifi-
cation at all, e.g., face recognition. This factum is known as
knowledge-acquisition bottleneck. Overall, there is no rea-
son why systematically incorporating existing or easily for-
mulated data by inductive methods should not improve effi-
ciency and even validity of software development.

One important aspect of IP is the inductive synthesis of
actual, executable programs including recursion or loops.
Except to professional software development, possible ap-
plication fields of the (semi-)automatic induction of pro-
grams from exemplary behavior are end-user programming
and learning of recursive policies [34] in intelligent agents.
Research on inductive program synthesis (IPS) started in the
seventies. However, it has, since then, always been only a
niche in several different research fields and communities
such as artificial intelligence, machine learning, inductive
logic programming (ILP), genetic programming, and func-
tional programming. Until today, there is no uniform body
of theory and methods. This fragmentation over different
communities impedes exchange of results and may lead to
redundancies. The problem is all the more profound as only
few people and groups at all are working on IPS worldwide.

This paper surveys theoretical results and IPS methods
that have been developed in different research fields until
today. We grouped the work into three blocks: First the clas-
sical, analytic data-driven induction of LISP programs as in-
vented by Summers [37] and its generalizations (Sec. 3), sec-
ond ILP (Sec. 4), and third several generate-and-test based
approaches to the induction of functional programs (Sec. 5).
In Sec. 6 we state some conclusions and ideas of further
research. As general preliminaries, we informally introduce
some common IPS concepts in the following section.

This survey is quite comprehensive, yet not complete and
covers functional generate-and-test methods less detailed
than the other two areas. This is due to limited space in
combination with the author’s areas of expertise and shall
not be interpreted as a measure of quality. We hope that it
will be a useful resource for all people interested in IP.

2. Basic Inductive Programming Concepts
IPS aims at constructing a computer program or algorithm
from a (known-to-be-)incomplete specification of a func-
tion to be implemented, called target function. Incomplete
means, that the target function is not specified on its whole
domain but only on (small) parts of it. Typically, an incom-
plete specification consists of a subset of the graph of the
function: input/output examples (I/O-examples). Variables
may be allowed in I/O-examples and also more expressive
formalisms have been used to specify the target function.

An induced program contains function primitives, prede-
fined functions known to the IPS system. Primitives may be

fixed within the IPS system or dynamically be given as an
extra, problem-specific, input. Dynamically provided primi-
tives are called background knowledge.

Example 1. Suppose the following I/O-examples on lists
(whatever the list elements A, x, y, z, 1, 2, 3, 5 stand for;
constants, variables, or compound objects), are provided:
(A) 7→ (), (x, y, z) 7→ (x, y), (3, 5, 2, 1) 7→ (3, 5, 2).
Given the common list constructors/destructors nil, cons,
head, tail, the predicate empty to test for the empty list,
and the if-then-else-conditional as primitives, an IPS
system might return the following implementation of the
Init-function returning the input list without its last element:

F(x) = if empty(tail(x)) then nil
else cons(head(x),F(tail(x))) .

Given a particular set of primitives, some target function
may not be representable by only one recursive function def-
inition such that a non-specified recursive subfunction needs
to be introduced; this is called (necessary) predicate inven-
tion in ILP. E.g., it is not possible to define the Reverse func-
tion by one recursive function definition of one parameter
only using the primitives from the example above.

IPS is commonly regarded as a search problem. In gen-
eral, the problem space consists of the representable pro-
grams as nodes and instances of the operators of the IPS
system to transform one program into another as arcs. Due
to underspecification in IP, typically infinitely many (seman-
tically) different programs meet the specification. Hence,
one needs criteria to choose between them. Such criteria are
called inductive bias [23]. Two kinds of inductive bias exist:
If an IPS system can only generate a certain proper subset of
all (computable) functions of some domain, either because
its language is restricted or because its operators are not able
to reach each program, this constitutes a restriction bias. The
order in which the problem space is explored and hence the
ordering of solutions is the preference bias; it can be mod-
elled as probability distribution over the program space.

3. The Analytical Functional Approach
A first systematic attempt to IPS was made by Summers [37].
He noticed that under particular restrictions regarding al-
lowed primitives, program schema, and choice of I/O-
examples, a recursive LISP program can be computed from
I/O-examples without search in program space. His insights
originated some further research.

3.1 Summers’ Pioneering Work
Summers’ approach to induce recursive LISP functions from
I/O-examples includes two steps: First, a so-called program
fragment, an expression of one variable and the allowed
primitives, is derived for each I/O-pair such that applied
to the input, evaluates to the specified output. Furthermore,
predicates are derived to distinguish between example in-
puts. Integrated into a McCarthy conditional, these predi-

cate/fragment pairs build a non-recursive program comput-
ing the I/O-examples and is considered as a first approxima-
tion to the target function. In a second step, recurrent rela-
tions between predicates and fragments each are identified
and a recursive program generalizing them is derived.

Example inputs and outputs are S-expressions, the funda-
mental data structure of the LISP language [22]. We define
the set of subexpressions of an S-expression to consist of the
S-expression itself and, if it is non-atomic, of all subexpres-
sions of both its components.

The programs constructed by Summers’ technique use
the LISP primitives cons , car , cdr , nil , atom , and T, the
last denoting the truth value true . Particularly, no other pred-
icates than atom and T (e.g., eq for testing equality of S-
expressions), and no atoms except for nil are used. This
choice of primitives is not arbitrary but crucial for Summers’
methodology of deriving programs from examples without
search. The McCarthy conditional and recursion are used as
control structure. Allowing atom and T as only predicates
and nil as only atom in outputs means that the atoms in the
I/O-examples, except for nil , are actually considered as vari-
ables. Renaming them does not change the meaning. This
implies that any semantic information must be expressed by
the structure of the S-expression.

3.1.1 1. Step: Initial Non-recursive Approximation
Given a set of k I/O-examples, {〈i1, o1〉, . . . , 〈ik, ok〉}, a
program fragment fj(x), j ∈ {1, . . . , k}, composed of cons ,
car , and cdr is derived for each I/O-pair, which evaluates to
the output when applied to the input: fj(ij) = oj .

S-expressions are uniquely constructed by cons and de-
structed by car and cdr . We call car -cdr compositions basic
functions (cp. [36]). Together with the following two condi-
tions, this allows for determining unique program fragments.
(i) Each atom may occur only once in each input. (ii) Each
atom, except for nil , occurring in an output must also occur
in the corresponding input. Due to the first condition, each
subexpression occurs exactly once in an S-expression such
that subexpressions are denoted by unique basic functions.

Deriving a program fragment works as follows: All
subexpressions of an input, together with their unique ba-
sic functions, are enumerated. Then the output is rewritten
by composing the basic functions from the input subexpres-
sions with cons and nil .

Example 2. Consider the I/O-pair ((a . b) . (c . d)) 7→
((d . c) . (a . b)). The input contains the following subexpres-
sions, paired with the corresponding unique basic functions:

〈((a . b) . (c . d)), I 〉 , 〈(a . b), car〉 , 〈(c . d), cdr〉 ,
〈a, caar〉 , 〈b, cdar〉 , 〈c, cadr〉 , 〈d, cddr〉 .

Since the example output is neither a subexpression of the
input nor nil , the program fragment becomes a cons of the
fragments for the car - and the cdr -component, respectively,
of the output. The car -part, (d . c), again becomes a cons ,

namely of the basic functions for d: cddr , and c: cadr .
The cdr -part, (a . b), is a subexpression of the input, its
basic function is car . With variable x denoting the input,
the fragment for this I/O-example is thus:

cons(cons(cddr(x), cadr(x)), car(x))

Next, predicates pj(x), j = 1, . . . , k must be determined.
In order to get the correct program fragment fj be evaluated
for each input ij , all predicates pj′(ij), 1 ≤ j′ < j (posi-
tioned before pj in the conditional) must evaluate to false
and pj(ij) to true . Predicates fulfilling this condition exist
if the example inputs form a chain.

We do not describe the algorithm here. Both algorithms,
for computing fragments and predicates, can be found
in [36]. Fig. 1 shows an example for the first step.

3.1.2 2. Step: Recurrence Relations
The basic idea in Summers’ generalization method is this:
The fragments are assumed to be the actual computations
carried out by a recursive program for the intended func-
tion. Hence fragments of greater inputs must comprise frag-
ments of lesser inputs as subterms, with a suitable substi-
tution of the variable x and in a recurrent form along the
set of fragments. The same holds analogously for the pred-
icates. Summers calls this relation between fragments and
predicates differences.

As a preliminary for the following, we need to define
the concept of a context. A (one-hole) context C[] is a
term including exactly one occurrence of the distinguished
symbol �. C[s] denotes the result of replacing the � by the
(sub)term s in C[].

Definition 1. A difference exists between two terms (frag-
ments or predicates) t, t′ iff t′ = C[tσ] for some context C[]
and substitution σ.

If we have k+1 I/O-examples, we only consider the first k
fragment/predicate pairs because the last predicate is always
’T ’, such that no sensible difference can be derived for it.

Example 3. The following differences, written as recur-
rence relations (2 ≤ i ≤ 3), can be identified in the first
k = 4 fragments/predicates of the program of Fig. 1.

p1(x) = atom(cdr(x)) f1(x) = nil

p2(x) = atom(cddr(x)) f2(x) = cons(car(x),nil)

pi+1(x) = pi(cdr(x)) fi+1(x) = cons(car(x), fi(cdr(x)))

In the general case, we have (for k fragments/predicates):

j − 1 “constant” fragments (as derived from the examples):

f1, . . . , fj−1,

further n constant base cases: fj , . . . , fj+n−1,

finally, remaining k − (j + n− 1) cases recurring to

previous cases: fi+n = C[fiσ1] for i = j, . . . , k − n ;
analogously for predicates:

p1, . . . , pj−1, pj , . . . , pj+n−1, pi+n = pi(σ2) .

(1)

(a) 7→ nil , F (x) = (atom(cdr(x))→ nil

(a, b) 7→ (a), atom(cddr(x))→ cons(car(x),nil)

(a, b, c) 7→ (a, b), atom(cdddr(x))→ cons(car(x), cons(cadr(x),nil))

(a, b, c, d) 7→ (a, b, c), atom(cddddr(x))→ cons(car(x), cons(cadr(x), cons(caddr(x),nil)))

(a, b, c, d, e) 7→ (a, b, c, d) . T → cons(car(x), cons(cadr(x), cons(caddr(x), cons(cadddr(x),nil)))))

Figure 1. I/O-examples (left) and the corresponding first approximation (right).

Index j denotes the first predicate/fragment pair which re-
curs in some following predicate/fragment pair (the first base
case). The precedent j − 1 predicate/fragment pairs do not
recur. n is the interval of the recurrence. For Example 3 we
have j = 2 and n = 1.

Inductive Inference. If k − j ≥ 2n then we inductively
infer that the recurrence relations hold for all i ≥ j.

In Example 3 we have k − j = 2 ≥ 2 = 2n and hence
induce that the relations hold for all i ≥ 2.

The generalized recurrence relations may be used to com-
pute new approximations of the assumed target function.
The mth approximating function, m ≥ j, is defined as

Fm(x) = (p1(x)→ f1(x), . . . , pm(x)→ fm(x), T → ω)

where the pi, fi with j < i ≤ m are defined in terms of
the generalized recurrence relations and where ω means un-
defined. Consider the following complete partial order over
partial functions, which is well known from denotational se-
mantics:

F (x) ≤F G(x) iff F (x) = G(x) for all x ∈ Dom(F) .

Regarding this order, the set of approximating functions
builds a chain. The assumed target function F is defined as
the supremum of this chain.

Now the hypothesized target function is defined, in terms
of recurrence relations. In his synthesis theorem and its
corollaries, Summers shows how a function defined this way
can be expressed by a recursive program.1

Theorem 1 ([37]). If F is defined in terms of recurrence
relations as in (1) for j ≤ i ∈ N then the following recursive
program is identical to F:

F (x) = (p1(x)→ f1(x), . . . , pj−1(x)→ fj−1(x),

T → G(x))

G(x) = (pj(x)→ fj(x), . . . , pj+n−1(x)→ fj+n−1(x),

T → C[G(σ(x))]) .

1 This works, in a sense, reverse to interpreting a recursively expressed
function by the partial function given as the fixpoint of the functional of
the recursive definition. In the latter case we have a recursive program and
want to have the particular partial function computed by it—here we have a
partial function and want to have a recursive program computing it.

Example 4. The recurrence relations from Example 3 with
i ≥ 2 define the function F to be the Init-function. Accord-
ing to the synthesis theorem, the resulting program is:

F (x) = (atom(cdr(x))→ nil , T → G(x))

G(x) = (atom(cddr(x))→ cons(car(x),nil),

T → cons(car(x), G(cdr(x)))) .

Introducing Additional Variables. It may happen that no
recurrent differences can be found between a chain of frag-
ments and/or predicates. In this case, the fragments/predicates
may be generalized by replacing some common subterm by
an additional variable. In the generalized fragment/predicate
chain recurrent differences possibly exist.

3.2 Early Variants and Extensions
Two early extensions are described. A broader survey of
these and other early extensions can be found in [36].

3.2.1 BMWK—Extended Forms of Recurrences
In Summers’ approach, the condition for deriving a recur-
sive function from detected differences is that the differences
hold—starting from an initial index j and for a particular in-
terval n—recurrently along fragments and predicates with
a constant context C[] and a constant substitution σ for x.
The BMWK2 algorithm [14] generalizes these conditions by
allowing for contexts and substitutions that are different in
each difference. Then a found sequence of differences orig-
inates a sequence of contexts and substitutions each. Both
sequences are considered as fragments of new subfunctions.
The BMWK algorithm is then recursively applied to these
new fragment sequences, hence features the automatic intro-
duction of (necessary) subfunctions.

Furthermore, Summers’ ad-hoc method to introduce ad-
ditional variables is systematized by computing least gen-
eral generalization (lgg) [31] of successive fragments.

3.2.2 Biermann et al—Pruning Enumerative Search
Based on Recurrences within Single Traces

Summers objective was to avoid search and to justify the
synthesis by an explicit inductive inference step and a subse-
quent proven-to-be-correct program construction step. This

2 This abbreviates Boyer-Moore-Wegbreit-Kodratoff.

could be achieved by a restricted program schema and the
requirement of a well chosen set of I/O-examples.

On the contrary, Biermann’s approach [3] is to employ
traces (fragments) to speed up an exhaustive enumeration of
a well-defined program class, the so-called regular LISP pro-
grams. Biermann’s objectives regarding the synthesis were

1. convergence to the class of regular LISP programs,

2. convergence on the basis of minimal input information,

3. robust behavior on different inputs.

Particularly 2 and 3 are contradictory to the recurrence
detection method—by 2 Biermann means that no synthesis
method exists which is able to synthesize every regular LISP
program from fewer examples and by 2 he means that exam-
ples may be chosen randomly.

3.3 From LISP to Term Rewriting Systems
At the beginning of Sec. 3.1 we stated the LISP primitives
as used in programs induced by Summers’ method (as well
as by BMWK and Biermann’s method). This selection is
crucial for the first step, the deterministic construction of
first approximations, yet not for the generalization step. In-
deed, the latter is independent from particular primitives,
it rather relies on matching (sub)terms over arbitrary first-
order signatures. Two recent systems inspired by Summers’
recurrence detection method use term rewriting systems over
first-order signatures to represent programs. Special types of
TRSs can be regarded as (idealized) functional programs.

A term rewriting system (TRS) is a set of directed equa-
tions or (rewrite) rules. A rule is a pair of first-order terms
〈l, r〉, written l→ r. The term l is called left-hand side (lhs),
r is called right-hand side (rhs) of the rule.

We get an instance of a rule by applying a substitution
σ to it: lσ → rσ. The instantiated lhs lσ is called redex
(reducible expression). Contracting a redex means replacing
it by its rhs. A rewrite step consists of contracting a redex
within an arbitrary context: C[lσ] → C[rσ]. The one-step
rewrite relation → of a rule is defined by the set of its
rewrite steps. The rewrite relation ∗→ of a rule is the reflexive
transitive closure of →. The rewrite relation of a TRS R,
→R, is the union of the rewrite relations of all its rules.

3.3.1 IGOR1—Inducing Recursive Program Schemes
The system IGOR1 [18] induces recursive program schemes
(RPSs). An RPS is a special form of TRS: The signature
is divided into two disjoint subsets F and G, called un-
known and basic functions, respectively; rules have the form
F (x1, . . . , xn) → t where F ∈ F and the xi are variables,
and there is exactly one rule for each F ∈ F .

IGOR1’s program schema is more general than Summers’
in that recursive subfunctions are found automatically with
the restriction that (recursive) calls of defined functions may
not be nested in the rhss of the equations. Furthermore,
additional parameters are introduced systematically.

(Mutually) recursive RPSs do not terminate. Their stan-
dard interpretation is the infinite term defined as the limit
lim

n→∞,F (x)
n→t
t where F denotes the main rule of the

RPS. One gets finite approximations by replacing infinite
subterms by the special symbol Ω, meaning undefined. Cer-
tainly, such an infinite tree and its approximations contain
recurrent patterns because they are generated by repeatedly
replacing instances of lhss of the rules by instances of rhss.
IGOR1 takes a finite approximation of some (hypothetical)
infinite tree as input, discovers the recurrent patterns in it,
and builds, based on these recurrences, an RPS R such that
the input is a finite approximation of the infinite tree of R.

Example 5. For a simple example without subfunctions (the
Init function again), consider the finite approximation of
some unknown infinite term:

if (atom(cdr(x)),nil ,

cons(car(x),

if (atom(cdr(cdr(x))),nil ,

cons(car(cdr(x)),

if (atom(cdr(cdr(cdr(x)))),nil ,

cons(car(cdr(cdr(x))),

Ω)))))) .

At the path from the root to Ω, where the latter denotes
the unknown infinite subterm of the infinite target term and
hence, which has been generated by an unknown recursive
RPS, we find a recurring sequence of if -cons pairs. This
leads to the hypothesis that a replacement of the lhs of a re-
cursive rule by its rhs has taken place at the if -positions.
The term is divided at these positions leading to three seg-
ments (assume, the break-positions are replaced by Ω). An
approximation of the assumed rhs is computed as the lgg of
the segments: if (atom(cdr(x)),nil , cons(car(x),Ω)).

The Ω denotes the still unknown recursive call. The non-
equal parts of the segments, which are replaced by the vari-
able x in the lgg, are highlighted by extra horizontal space in
the term. These parts must have been generated by the sub-
stitution {x ← cdr(x)} in the recursive call. Denoting the
induced function by F , it is now correctly defined as

F (x)→ if (atom(cdr(x)),nil , cons(car(x), F (cdr(x)))) .

Different methods to construct a finite approximation as
first synthesis step have been proposed. In [18], an extension
of Summers’ first step is described. Examples need not be
linearly ordered and nested if-then-else-conditionals are
used instead of the McCarthy conditional. In [34], universal
planning is proposed as first step.

3.4 IGOR2—Combining Search and Analytical
Techniques

All methods based on Summers’ seminal work described
so far suffer from strong restrictions regarding their general

program schemas, the commitment to a small fixed set of
primitives, and, at least the early methods, to the requirement
of linearly ordered I/O-examples.

The system IGOR2 [17] aims to overcome these restric-
tions, but not at the price of falling back to generate-and-
test search (cp. Sec. 5). IGOR2 conducts a search in pro-
gram space, but the transformation operators are data-driven
and use techniques such as matching and least generaliza-
tions, similar to the methods described so far. In contrast to
generate-and-test search, only programs being correct with
respect to the I/O-examples in a particular sense (but possi-
bly unfinished) are generated. This narrows the search tree
and makes testing of generated programs unnecessary.

Programs (as well as I/O-examples and background
knowledge) are represented as constructor (term rewriting)
systems (CSs). CSs can be regarded as an extension of RPSs:
The function sets F and G are called defined functions and
constructors, respectively. The arguments of a defined func-
tion symbol in a lhs need not be variables but may be terms
composed of constructors and variables and there may be
several rules for one defined function. This extension cor-
responds to the concept of pattern matching in functional
programming. One consequence of the CS representation
is that I/O-examples themselves already constitute “pro-
grams”, CSs. Hence, rewriting outputs into fragments to get
a first approximation (Sec. 3.1.1) is not necessary anymore.

IGOR2 is able to construct complex recursive CSs con-
taining several base- and (mutually) recursive rules, auto-
matically identified and introduced recursive subfunctions,
and complex compositions of function calls. Several inter-
dependent functions can be induced in one run. In addition
to I/O-examples, background knowledge may be provided.

3.5 Discussion
Summers’ important insights were first, how the algebraic
properties of data-structures can be exploited to construct
program fragments and predicates without search and sec-
ond, that fragments (and predicates) for different I/O-pairs
belonging to one recursively defined function share recurrent
patterns that can be used to identify the recursive definition.
Obviously, it is necessary for recurrence detection that I/O-
examples are not randomly chosen but that they consist of
the first k ∈ N examples regarding the underlying order on
S-expressions, i.e., that they are complete up to some level.

If the general schema of inducible functions becomes
more complex, e.g., if subfunctions can be found automat-
ically, and/or if background knowledge is allowed, then
search is needed. IGOR2 shows that Summers’ ideas for
generalization can be integrated into search operators.

Search is also needed if the goal is to induce programs
based on minimal sets of randomly chosen examples. In this
case, the recurrence detection method cannot be applied.
Biermann’s method shows that it is possible for particular
program classes to use fragments as generated in Summers’
first step to constrain an exhaustive search in program space.

4. Inductive Logic Programming
Inductive Logic Programming (ILP) [26, 28] is a branch of
machine learning [23]—intensional concept descriptions are
learned from (counter-)examples, called positive and nega-
tive examples. The specificity of ILP is its basis in compu-
tational logic: First-order clausal logic is used as uniform
language for hypotheses, examples, and background knowl-
edge, semantics of ILP is based on entailment, and inductive
learning techniques are derived by inverting deduction.

Horn clause logic together with resolution constitutes the
(Turing-complete) programming language PROLOG. Pro-
gram synthesis is therefore principally within the scope
of ILP and has been regarded as one application field of
ILP [26]. One of the first ILP systems, MIS [35], is an
automatic programming/debugging system. Today, ILP is
concerned with (relational) data-mining and knowledge dis-
covery and program synthesis does not play a role anymore.

4.1 Preliminaries
An atom is a predicate symbol applied to arguments, a literal
is an atom or negated atom. A clause is a (possible empty)
disjunction of literals, a Horn clause is a clause with at
most one positive literal, a definite clause is a clause with
exactly one positive literal. A definite program is a finite
set of definite clauses. A definite clause C consisting of the
positive literal A and the negative literals ¬B1, . . . ,¬Bn is
equivalent toB1∧ . . .∧Bn → A, written A← B1, . . . , Bn.

4.2 Overview
In the definite setting, hypotheses and background knowl-
edge are definite programs, examples are ground atoms. The
following two definitions state the ILP problem with respect
to the so-called normal semantics.3

Definition 2. Let Π be a definite program and E+, E− be
positive and negative examples. Π is

complete with respect to E+ iff Π |= E+,
consistent with respect to E− iff Π 6|= e for every e ∈ E−,
correct with respect to E+ and E− iff it is complete with

respect to E+ and consistent with respect to E−.

Definition 3. Given

• a set of possible hypotheses (definite programs)H,
• positive and negative examples E+, E−,
• consistent background knowledge B (i.e., B 6|= e for

every e ∈ E−) such that B 6|= E+,

find a hypothesis H ∈ H such that H ∪ B is correct with
respect to E+ and E−.

Entailment (|=) is undecidable in general and for Horn
clauses, definite programs, and between definite programs

3 There is also a non-monotonic setting in ILP where hypotheses need not
entail positive examples but only state true properties. This is useful for data
mining or knowledge discovery but not for program synthesis, so we do not
consider it here.

and single atoms in particular. Thus, in practice, different
decidable (and preferably also efficiently computable) re-
lations, which are sound but more or less incomplete, are
used. We say that a hypothesis covers an example if it can be
proven true from the background knowledge and the hypoth-
esis. That is, a hypothesis is regarded correct if it, together
with the background knowledge, covers all positive and no
negative examples. Two commonly used notions are:

Extensional coverage. Given a clauseC = A← B1, . . . , Bn,
a finite set of ground atoms B as background knowledge,
positive examples E+, and an example e, C extension-
ally covers e iff there exists a substitution θ such that
Aθ = e and {B1, . . . , Bn}θ ⊆ B ∪ E+.

Intensional coverage. Given a hypothesis H , background
knowledge B, and an example e, H ∪ B intensionally
covers e iff e can be proven true from H ∪B by applying
some terminating theorem proving technique, e.g., depth-
bounded SLD-resolution.

Example 6. As an example for extensional coverage, sup-
pose B = ∅ and E+ = { Init([c], []), Init([b, c], [b]),
Init([a, b, c], [a, b]) }. The recursive clause
Init([X|Xs], [X|Ys]) ← Init [Xs,Ys] extensionally cov-
ers the positive example Init([b, c], [b]) with θ = {X ←
b,Xs ← [c],Ys ← []}.

Both extensional and intensional coverage are sound.
Extensional coverage is more efficient but less complete.
As an example for the latter, suppose the positive example
Init([c], []) is missing in E+ in Example 6. Then the stated
recursive clause together with the base clause Init([X], [])
still intensionally covers e = Init([b, c], [b]) yet the recur-
sive clause does not extensionally cover e anymore. Ob-
viously, extensional coverage requires that examples (and
background knowledge) are complete up to some complex-
ity (cp Sec. 3.5). Another problem with extensional coverage
is that if two clauses each do not cover a negative example,
both together possibly do.

Extensional and intensional coverage are closely related
to the general ILP algorithm (Algo. 1) and the covering al-
gorithm 2 as well as to the generality models θ-subsumption
and entailment as described below (Sec. 4.3), respectively.

ILP is considered a search problem. Typically, the search
operators to compute new candidate programs are based
on the dual notions of generalization and specialization of
programs respectively clauses.

Definition 4. A program Π is more general than a program
Φ iff Π |= Φ. Φ is said to be more specific than Π.

This structure of the program space provides a way for
pruning. If a program is not consistent then all generaliza-
tions are also not consistent and therefore need not be con-
sidered. This dually holds for non-completeness and special-
izations. Algorithm 1 shows a generic ILP algorithm. Most
ILP systems are instances of it.

Algorithm 1: A generic ILP algorithm.

Input: B, E+, E−

Output: A definite program H such that H ∪B is
correct with respect to E+ and E−

Start with some initial (possibly empty) hypothesis H
repeat

if H ∪B is not consistent then specialize H
if H ∪B is not complete then generalize H

until H ∪B is correct with respect to E+ and E−

return H

A common instance is the covering algorithm (Algo. 2).
The individual clauses of a program are generated indepen-
dently one after the other. Hence, the problem space is not
the program space (sets of clauses) but the clause space (sin-
gle clauses). This leads to a more efficient search.

Algorithm 2: The covering (typically interpreted exten-
sionally) algorithm.

Input and Output as in Algorithm 1
Start with the empty hypothesis H = ∅
repeat

Add a clause C not covering any e ∈ E− to H
Remove all e ∈ E+ covered by C from E+

until E+ = ∅
return H

Entailment (|=) as well as θ-subsumption (Sec. 4.3.1) are
quasi-orders on sets of definite programs and clauses, resp.
We associate “more general” with “greater”. The operators
carrying out specialization and generalization are called re-
finement operators. They map clauses to sets of (refined)
clauses or programs to sets of (refined) programs. Most ILP
systems explore the problem space mainly in one direction,
either from general to specific (top-down) or the other way
round (bottom-up). The three well-known systems FOIL [32]
(top-down), GOLEM [27] (bottom-up), and PROGOL [25]
(mixed) are instantiations of the covering algorithm.

Example 7. For an example of the covering algorithm, letB
and E+ be as in Example 6 and E− all remaining instantia-
tions for the “inputs” [c], [b, c], [a, b, c], e.g., Init([b, c], [c]).
Let us assume that a (base-)clause Init([X], []) is al-
ready inferred and added and hence, the covered example
Init([c], []) is deleted from E+. Assume, our instantiation
of the covering algorithm is a top-down algorithm. This
means, each clause is found by starting with a (too) gen-
eral clause and successively specializing it until no nega-
tive examples are covered anymore. Let us start with the
clause Init([X|Xs],Ys) ←. It covers all remaining posi-
tive but also all corresponding negative examples; it is too
general. Applying the substitution {Ys ← [X|Ys]} spe-
cializes it to Init([X|Xs], [X|Ys]) ←. This excludes some

negative examples (e.g., Init([b, c], [c])). Adding the literal
Init(Xs,Ys) to the body again specializes the clause to
Init([X|Xs], [X|Ys]) ← Init(Xs,Ys). All remaining pos-
itive examples are still covered but no negative example is
covered anymore. Hence, the clause is added and the algo-
rithm returns the two inferred clauses as solution.

Both specializations were refinements under θ-subsumption
(Sec. 4.3.1, “Refinement Operators”).

4.3 Generality Models and Refinement Operators
Instead of entailment (|=), θ-subsumption is often used in
ILP as generality model. It is incomplete with respect to
|= but decidable, simple to implement, and efficiently com-
putable. If we have background knowledge B, then we are
not simply interested in whether a clause C is more general
than a clause D but in whether C together with B is more
general than D (together with B). This is captured by the
notions of relative (to background knowledge) entailment
respectively θ-subsumption.

4.3.1 Refinement under (Relative) θ-subsumption
Definition 5. LetC andD be clauses andB a set of clauses.
C θ-subsumes D, written C � D, iff there exists a

substitution θ such that Cθ ⊆ D.
C θ-subsumes D relative to B, written C �B D, if

B |= Cθ → D for a substitution θ.

A Horn clause language quasi-ordered by θ-subsumption
with an additional bottom element is a lattice. This does
not generally hold for relative subsumption. Least upper
bounds are called least general generalizations (lgg) [31].
Lggs and greatest lower bounds are computable and hence
may be used for generalization and specialization. though
they do not properly fit into our general notion of refinement
operators because they neither map single clauses to sets of
clauses nor single programs to sets of programs.

A useful restriction is to let background knowledge be a
finite set of ground literals. In this case, lggs exist under sub-
sumption relative to B and can be reduced to (non-relative)
lggs. The bottom-up system GOLEM uses this scenario.

In general, (relative) θ-subsumption is sound but not com-
plete. If C � D (C �B D) then C |= D (C ∪ B |= D) but
not vice versa. For a counter-example of completeness let
C = P (f(X)) ← P (X) and D = P (f(f(X))) ← P (X)
then C |= D4 but C 6� D. As the example indicates, the
incompleteness is due to recursive rules and therefore espe-
cially critical for program synthesis.

Refinement Operators. A specialization operator refines a
clause by

• applying a substitution for a single variable or
• adding one most general literal.

A generalization operator uses inverse operations.

4D is simply the result of self-resolving C.

Application of these operators is quite common in ILP,
e.g., in the systems MIS, FOIL, GOLEM, and PROGOL.

4.3.2 Refinement under (Relative) Entailment
Due to the incompleteness of θ-subsumption regarding re-
cursive clauses, refinement under (relative) entailment has
been studied. Relative entailment is defined as follows:

Definition 6. Let C and D be clauses and B a finite set of
clauses. Then C entails D relative to B, denoted C |=B D,
if {C} ∪B |= D.

Neither lggs nor greatest specializations exist in general
for Horn clause languages ordered by (relative) entailment.

Refinement Operators. Roughly speaking, entailment is
equivalent to resolution plus θ-subsumption. This leads to
specialization operators under (relative) entailment. Objects
of refinement under entailment are not single clauses but sets
of clauses, i.e., programs. A specialization operator under
entailment refines a definite program by

• Adding a resolvent of two clauses or
• adding the result of applying the θ-subsumption special-

ization operator to a clause or
• deleting a clause.

4.4 Automatic Programming Systems
The three general-purpose systems FOIL, GOLEM, PROGOL
are successful in learning non-recursive concepts from large
data sets, yet have problems to learn recursive programs:
Due to their use of the covering approach (extensional cov-
erage), they need complete example sets and background
knowledge to induce recursive programs. Since they (at least
FOIL and GOLEM) explore (i) only the θ-subsumption lat-
tice of clauses and (ii) do this greedily, correct clauses may
be passed. Finally, their objective functions in the search for
clauses is to cover as many as possible positive examples.
Yet base clauses typically cover only few examples such that
these systems often fail to induce correct base cases.

Hence ILP systems especially designed to learn recur-
sive programs have been developed. They address differ-
ent issues: Handling of random examples, predicate inven-
tion, usage of general programming knowledge, and usage
of problem-dependent knowledge of the user, which goes be-
yond examples. A comprehensive survey of automatic pro-
gramming ILP systems can be found in [8].

Inverting entailment by structural analysis. Several sys-
tems—CRUSTACEAN [1], CLAM [33], TIM [12], MRI [9]—
address the issue of inducing recursive programs from
random examples by inverting entailment based on struc-
tural analysis, similar to Sec. 3, instead of searching in the
θ-subsumption lattice. These systems also have similar re-
strictions regarding the general schema of learnable pro-
grams. However, some of them can use background knowl-
edge; MRI can find more than one recursive clause.

Top-down induction of recursive programs. Top-down
systems can principally—even if they explore the θ-sub-
sumption clause-lattice only—generate arbitrary (in partic-
ular all recursive) Horn clauses.5 Thus, if a top-down cov-
ering system would use intensional instead of extensional
coverage, it could principally induce recursive programs
from random examples. Certainly, this would require to find
clauses in a particular order—base clauses first, then recur-
sive clauses, only depending on base clauses and themselves,
then recursive clauses, only depending on base clauses, the
previously generated recursive clauses, and themselves, and
so on. This excludes programs with mutually interdepend-
ing clauses. The system SMART [24] is based on these ideas.
It induces programs consisting of one base clause and one
recursive clause. Several techniques to sensibly prune the
search space allows for a more exhaustive search than the
greedy search applied by FOIL, such that the incomplete-
ness issue of θ-subsumption-based search is weaken.

The system FILP [2] is a covering top-down system that
induces functional predicates only, i.e., predicates with dis-
tinguished input- and output parameters, such that for each
binding of the input parameters exactly one binding of the
output parameters exists. This makes negative examples un-
necessary. FILP can induce multiple interdependent predi-
cates/functions where each may consist of several base- and
recursive clauses. Hence, intensional coverage is not assured
to work. FILP starts with a few randomly chosen examples
and tries to use intensional covering as far as possible. If,
during the intensional proof of some example, an instance
of the input parameters of some predicate appears for which
an output is neither given by an example nor can be derived
intensionally, then FILP queries for this “missing” example
and thereby completes the example set as far as needed.

Using programming knowledge. Flener argued, in sev-
eral papers, for the use of program schemas that cap-
ture general program design knowledge like divide-and-
conquer, generate-and-test, global-search etc., and has im-
plemented this in several systems. He distinguishes between
schema-based systems inducing programs of a system-
inherent schema only and schema-guided systems, which
take schemas as dynamic, problem-dependent, additional
input and thus are more flexible. Flener’s DIALOGS [6] sys-
tem uses schemas and strong queries to restrict the search
space and thereby is able to efficiently induce comparatively
complex programs including predicate invention.

Jorge and Brazdil have—besides for clause structure
grammars defining a program class and thus similar to
schemas as dynamic language-bias—argued for so called al-
gorithm sketches. An algorithm sketch is problem-dependent

5 Hence, although θ-subsumption is incomplete with respect to entailment
due to recursive clauses, every clause, in particular the recursive clauses, can
be generated by refinement based on θ-subsumption—if one searches top-
down starting from the empty clause or some other clause general enough
to θ-subsume the desired clauses.

algorithm knowledge about the target function and provided
by the user in addition to examples. This idea is implemented
in their SKIL and SKILIT systems [13].

4.5 Discussion
Compared to the classical approaches in Sec.3 (except for
IGOR2), ILP has broadened the class of inducible relations
by allowing for background knowledge, using particular
search methods and other techniques (Sec. 4.4).

Shapiro [35] and Muggleton and De Raedt [26] argued for
clausal logic as universal language in favor to other univer-
sal formalisms such as Turing machines or LISP. Their argu-
ments are: (i) Syntax and semantics are closely and in a nat-
ural way related. Hence if a logic program makes errors, it is
possible to identify the erroneous clause. Furthermore, there
are simple and efficient operations to manipulate a logic pro-
gram with predictable semantic effects (cp. Sec. 4.3.1). Both
is not possible for, say, Turing machines. (ii) It suffices to
focus on the logic of the program, control is left to the inter-
preter. In particular, logic programs (and clauses) are sets of
clauses (and literals), order does not matter.

The first argument carries over to other declarative for-
malisms such as equational logic, term rewriting, and func-
tional logic programming (FLIP [5] is an IPS system in this
formalism). The second argument also carries over to some
extent, declarative programming all in all shifts the focus off
control and to logic. Yet in this generality it only holds for
non-recursive programs or ideal, non-practical, interpreters.
For the efficient interpretation of recursive programs how-
ever, order of clauses in a program and order of literals in
a clause matters. Hence we think that declarative, (clausal-
and/or equational-)logic-based formalisms are principally
equally well suited for IPS.

Logic programs represent general relations. (Partial)
functions are special relations—their domains are distin-
guished into source and target (or: a functional relation
has input and output parameters) and they are single-valued
(each instantiation of the input parameters implies a unique
instantiation of the output parameters). Regarding functional-
and logic programming, there is another difference: Func-
tional programs are typically typed, i.e., their domain is par-
titioned and inputs and outputs of each function must belong
to specified subsets, whereas logic programs are typically
untyped. Interestingly, all three “restrictions” of functions
compared to relations have been shown to be advantageous
from a learnable point of view in ILP. The general reason is
that they restrict the problem space such that search becomes
more efficient and fewer examples are needed to describe the
intended function. In particular, no negative examples are
needed since they are implicitly given by the positive ones.

ILP is built around the natural generality structure of the
problem space. Regarding functional relations, we observe
an “oddity” of this structure. For definite programs, “more
general”, with respect to the minimal Herbrand model,
means “more atoms”. If the relation is a function, an ad-

ditional ground atom must have a different instantiation of
the input parameters compared to all other included atoms.
Thus, “more general” in the case of definite programs rep-
resenting functions reduces to “greater domain”. In other
words: All functions with the same domain are incomparable
with respect to generality. Since most often one is interested
in total functions, generality actually provides no structure
at all of the space of possible solutions.

5. Functional Generate-and-Test Approaches
The functional IPS methods in this third block have in
common that their search is generate-and-test based. I/O-
examples are not used as a means to construct programs but
only to test generated programs.

5.1 Genetic Programming
Genetic programming (GP) [20], like other forms of evolu-
tionary algorithms is inspired by biological evolution. GP
systems maintain populations of candidate solutions, get
new ones by stochastical methods like reproduction, mu-
tation, recombination/crossover, and selection, and thereby
try to maximize fitness. Evolutionary search can be use-
ful when the problem space is too broad to conduct an ex-
haustive search and simultaneously nothing or few is known
about the fitness landscape, i.e., when it is not possible to
construct sensible heuristics. The randomness of the search
cares for a widespread exploration of the problem space
which is guided by the fitness measure. On the other side,
this “chaotic” search in a space with unknown properties
makes it difficult to give any guaranties regarding solutions
and leads to only approximated solutions. A GP problem is
specified by fitness cases (e.g., example inputs of the tar-
get function), a fitness function, and primitives to be used in
evolved expressions. There are no predefined goal criteria or
preference biases in GP systems. The search is completely
guided by the fitness function that is to be maximized.

Data structures and recursion do not play a predomi-
nant role in GP. A typical evolved program is an arithmetic
expression or a propositional formula. Koza and his col-
leagues [21] integrated recursion into GP. One of the ma-
jor issues is the handling of non-terminating programs. As
a generate-and-test approach, GP relies on testing evolved
candidate programs against the given examples. If non-
termination may appear then a runtime limit is applied.
This raises two problems if non-terminating programs are
frequently generated: (i) The difficulty of assigning a fit-
ness value to an aborted program and (ii) the runtime use-
lessly consumed by evaluating non-terminating programs.
Wong and Mun [38] deal with this problem by a meta-
learning approach to decrease the possibility of evolving
non-terminating programs.

Others try to avoid non-termination completely: In her
system POLYGP [39], Yu integrates implicit recursion through
the use of user-provided higher-order functions. Kahrs [15]

evolves primitive recursive functions over the natural num-
bers. Binard and Felty [4] evolve programs in SYSTEM F,
a typed lambda calculus where only total recursive func-
tions are expressible. The primitive recursive functions are
contained as proper subclass.

Hamel and Shen [10] have developed a method lying in
the intersection of ILP, GP and algebraic specification. They
evolve (recursive) algebraic specifications, i.e., equational
theories over many-sorted signatures, using GP search meth-
ods. Instead of providing a fitness function, a target theory is,
as in ILP, specified by positive and negative facts—ground
equations in this case. Additionally, a background theory
may be provided. The fitness function to be maximized is
derived from such a specification. Candidate theories satis-
fying more positive facts, excluding more negative facts, and
being of smaller syntactical complexity are preferred.

5.2 ADATE
The ADATE system [29], to our knowledge the most power-
ful inductive programming system regarding inducible pro-
grams, is an evolutionary system in that it maintains a popu-
lation of programs and performs a greedy search guided by
a fitness function. Yet unlike GP, it is especially designed
to evolve recursive programs and applies sophisticated pro-
gram transformation operators, search strategy, and program
evaluation functions to this end.

Programs are represented in ADATE-ML, a subset of
STANDARD ML. Programs are rated according to a user-
provided output evaluation function, user provided prefer-
ence biases, and syntactical and computational complexity.

5.3 Systematic Enumeration of Programs
Two further recent methods, MAGICHASKELLER [16] and
the software testing system G∀ST [19] essentially systemat-
ically enumerate programs of a certain class.

MAGICHASKELLER uses higher-order functions as back-
ground knowledge. Katayama argues that by using higher-
order functions, programs can be represented in a com-
pact form and by using strong typing, the problem space
is narrowed such that a simple brute-force enumeration
of programs could make sense. He furthermore considers
MAGICHASKELLER as a base-line which could be used to
evaluate the performance of more sophisticated methods. As
a first result, Katayama compares MAGICHASKELLER and
POLYGP for the problems Nth, Length , and Map, and states
that POLYGP, in contrast to MAGICHASKELLER, needs dif-
ferent higher-order functions for each of these problems,
needs several runs to find a solution, needs additional pa-
rameters to be set, and, nevertheless, consumes more time to
induce a solution.

5.4 Discussion
One general advantage of generate-and-test methods is their
greater flexibility, in at least to aspects: First regarding the
problem space—there are no principle difficulties in enu-

merating even very complex programs. Second regarding the
form of the incomplete specification. Whereas the search op-
erators of an analytical technique depend on the specification
(e.g., I/O-examples) such that different forms of specifica-
tion need different search operator techniques, the search is
more independent from the specification in generate-and-test
methods such that more expressive forms of specification
can easily be integrated. In particular, fitness functions in
GP or the objective function in ADATE are more expressive
than I/O-examples since no fixed outputs need to be provided
but general properties to be satisfied by computed outputs
can be specified.

The disadvantage of generate-and-test methods is that
they generally generate far more candidate programs until a
solution is found and hence need much more time than data-
driven methods to induce programs of equal size. Several an-
alytical and generate-and-test systems have been compared
empirically in [11]. A further problem is non-termination.
As generated programs need to be tested against the pro-
vided examples, non-termination is a serious issue. Higher-
order functions or formalisms that a-priori only include total
functions are helpful to circumvent this problem.

6. Conclusions and Further Research
In the previous sections, we described several approaches
and systems to the inductive synthesis of functional and
logic programs and discussed pros and cons and relations
between them.

One obvious dimension to classify them is the way of how
example data is used: As basis to construct candidate solu-
tions (Sec. 3) or to test and evaluate independently generated
candidates (Sec. 5). (In ILP, both approaches are found.) The
analytical approach tends to be faster because many repre-
sentable programs are a priori excluded from being gener-
ated. On the other side, since it strongly depends on the data
and the language bias, it is much less robust and flexible re-
garding the whole problem specification including types of
data, preference-, and language biases. Besides further de-
veloping both general approaches separately, we think that
examining ways to combine them could be useful to achieve
a satisfiable combination of robustness, flexibility, expres-
siveness, and efficiency. Our system IGOR2 and the well-
known ILP system PROGOL indicate the potential of such
an integration.

One important topic, that certainly has not received suffi-
cient attention in the context of inductive program synthesis,
is learning theory, including models of learning and criteria
to evaluate candidate programs. PAC-learning, the predom-
inant learning model in machine learning, is well-suited for
restricted representation languages and noisy data, hence ap-
proximate solutions. Yet in program synthesis, we have rich
representation languages, often assume error-free examples,
and want have programs that exactly compute an intended
function or relation. Moreover, efficiency, not only of the in-

duction process, but of the induced program, becomes an
important issue. Muggleton’s U-learning model6 captures
these needs and is probably a good model or initial point
to develop learning models for inductive program synthesis.

There has certainly been significant progress since the
beginnings in the seventies. Yet inductive program synthe-
sis still is not yet in a status to be applied to real problems.
We think that it is now time for a more target-oriented ap-
proach. This does not mean to replacing general approaches
by problem-dependent ad hoc techniques. We rather think
that identifying and promoting specific application fields and
domains could help to spark broader interest to the topic as
well as to sensibly identify strengths and weaknesses of ex-
isting methods, to extend them and to identify possibilities
to integrate them in a useful way.

In the context of software engineering, we think that
test-driven development (TDD) would be a good starting
point to bring IPS to application. The paradigm requires
preparing tests “(incompletely) defining” a function before
coding it. Hence, IPS could smoothly fit in here. Moreover,
TDD typically features a strong modularization such that
only small entities need to be synthesized.

Within algorithms research, one could try to find (classes)
of problems for which “better” than currently known algo-
rithms are expected to exist and to apply IPS methods to
them. One such domain are problems in artificial general
intelligence (AGI), a research field that again—after estab-
lished AI is nowadays narrowed to many different specific
problems—takes up the original goal of AI of creating artifi-
cial agents that reason and act human-like. There is a serious
interest in IP in the currently emerging AGI community.

References
[1] D. W. Aha, S. Lapointe, C. X. Ling, and S. Matwin. Inverting

implication with small training sets. In Proceedings of the Eu-
ropean Conference on Machine Learning (ECML’94), volume
784 of LNCS, pages 29–48. Springer-Verlag, 1994.

[2] F. Bergadano and D. Gunetti. Inductive Logic Programming:
From Machine Learning to Software Engineering. MIT Press,
Cambridge, MA, USA, 1995.

[3] A. W. Biermann. The inference of regular LISP programs
from examples. IEEE Transactions on Systems, Man and
Cybernetics, 8(8):585–600, 1978.

[4] F. Binard and A. Felty. Genetic programming with polymor-
phic types and higher-order functions. In Proceedings of the
10th annual Conference on Genetic and Evolutionary Compu-
tation (GECCO’08), pages 1187–1194, New York, NY, USA,
2008. ACM.

[5] C. Ferri-Ramı́rez, J. Hernández-Orallo, and M. Ramı́rez-
Quintana. Incremental learning of functional logic programs.
In Proceedings of the 5th International Symposium on Func-
tional and Logic Programming (FLOPS’01), volume 2024 of
LNCS, pages 233–247. Springer-Verlag, 2001.

6 The ’U’ stands for ’universal’.

[6] P. Flener. Inductive logic program synthesis with DIALOGS.
In S. Muggleton, editor, Selected Papers of the 6th Interna-
tional Workshop on Inductive Logic Programming, (ILP’96),
volume 1314 of LNCS, pages 175–198, 1997.

[7] P. Flener and D. Partridge. Inductive programming. Auto-
mated Software Engineering, 8(2):131–137, 2001.

[8] P. Flener and S. Yilmaz. Inductive synthesis of recursive logic
programs: Achievements and prospects. The Journal of Logic
Programming, 41(2-3):141–195, 1999.

[9] M. Furusawa, N. Inuzuka, H. Seki, and H. Itoh. Induction
of logic programs with more than one recursive clause by
analyzing saturations. In Proceedings of the 7th International
Workshop on Inductive Logic Programming (ILP’97), volume
1297 of LNCS, pages 165–172. Springer-Verlag, 1997.

[10] L. Hamel and C. Shen. An inductive programming approach
to algebraic specification. In Proceedings of the 2nd Workshop
on Approaches and Applications of Inductive Programming
(AAIP’07), pages 3–14, 2007.

[11] M. Hofmann, E. Kitzelmann, and U. Schmid. A unifying
framework for analysis and evaluation of inductive program-
ming systems. In Proceedings of the Second Conference on
Artificial General Intelligence, pages 55–60. Atlantis, 2009.

[12] P. Idestam-Almquist. Efficient induction of recursive defini-
tions by structural analysis of saturations. In Advances in In-
ductive Logic Programming. IOS Press, 1996.

[13] A. M. G. Jorge. Iterative Induction of Logic Programs. PhD
thesis, Departamento de Ciência de Computadores, Universi-
dade do Porto, 1998.

[14] J.-P. Jouannaud and Y. Kodratoff. Program synthesis from
examples of behavior. In A. W. Biermann and G. Guiho,
editors, Computer Program Synthesis Methodologies, pages
213–250. D. Reidel Publ. Co., 1983.

[15] S. Kahrs. Genetic programming with primitive recursion.
In Proceedings of the 8th annual Conference on Genetic
and Evolutionary Computation (GECCO’06), pages 941–942,
New York, NY, USA, 2006. ACM.

[16] S. Katayama. Systematic search for lambda expressions. In
M. C. J. D. van Eekelen, editor, Revised Selected Papers from
the Sixth Symposium on Trends in Functional Programming,
TFP 2005, volume 6, pages 111–126. Intellect, 2007.

[17] E. Kitzelmann. Analytical inductive functional programming.
In 18th International Symposium on Logic-Based Program
Synthesis and Transformation, Revised Selected Papers, vol-
ume 5438 of LNCS, pages 87–102. Springer-Verlag, 2009.

[18] E. Kitzelmann and U. Schmid. Inductive synthesis of func-
tional programs: An explanation based generalization ap-
proach. Journal of Machine Learning Research, 7:429–454,
2006.

[19] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer.
GAST: Generic automated software testing. In Implemen-
tation of Functional Languages (IFL’02), volume 2670 of
LNCS. Springer, 2003.

[20] J. R. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

[21] J. R. Koza, D. Andre, F. H. Bennett, and M. A. Keane. Genetic
Programming III: Darwinian Invention & Problem Solving.
Morgan Kaufmann, San Francisco, CA, USA, 1999.

[22] J. McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part i. Communications of the
ACM, 3(4):184–195, 1960.

[23] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[24] C. R. Mofizur and M. Numao. Top-down induction of re-
cursive programs from small number of sparse examples. In
Advances in Inductive Logic Programming. IOS Press, 1996.

[25] S. H. Muggleton. Inverse entailment and progol. New Gener-
ation Computing, 13:245–286, 1995.

[26] S. H. Muggleton and L. De Raedt. Inductive logic program-
ming: Theory and methods. Journal of Logic Programming,
19,20:629–679, 1994.

[27] S. H. Muggleton and C. Feng. Efficient induction of logic pro-
grams. In Proceedings of the First Conference on Algorithmic
Learning Theory, pages 368–381. Ohmsha, 1990.

[28] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of In-
ductive Logic Programming, volume 1228 of LNAI. Springer-
Verlag, 1997.

[29] J. R. Olsson. Inductive functional programming using in-
cremental program transformation. Artificial Intelligence,
74(1):55 – 83, 1995.

[30] D. Partridge. The case for inductive programming. Computer,
30(1):36–41, 1997.

[31] G. D. Plotkin. A note on inductive generalization. Machine
Intelligence, 5:153–163, 1970.

[32] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm re-
port. In Proceedings of the 6th European Conference on Ma-
chine Learning, LNCS, pages 3–20. Springer-Verlag, 1993.

[33] R. Rios and S. Matwin. Efficient induction of recursive prolog
definitions. In Proceedings of the 11th Conference of the
Canadian Society for Computational Studies of Intelligence,
volume 1081 of LNCS, pages 240–248. Springer, 1996.

[34] U. Schmid. Inductive Synthesis of Functional Programs:
Universal Planning, Folding of Finite Programs, and Schema
Abstraction by Analogical Reasoning, volume 2654 of LNAI.
Springer, Berlin; New York, 2003.

[35] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press,
1983.

[36] D. R. Smith. The synthesis of LISP programs from examples:
A survey. In A. Biermann, G. Guiho, and Y. Kodratoff, editors,
Automatic Program Construction Techniques, pages 307–324.
Macmillan, 1984.

[37] P. D. Summers. A methodology for LISP program construc-
tion from examples. Journal of the ACM, 24(1):161–175,
1977.

[38] M. Wong and T. Mun. Evolving recursive programs by us-
ing adaptive grammar based genetic programming. Genetic
Programming and Evolvable Machines, 6(4):421–455, 2005.

[39] T. Yu. Hierarchical processing for evolving recursive and
modular programs using higher-order functions and lambda
abstraction. Genetic Programming and Evolvable Machines,
2(4):345–380, 2001.

