Automated Method Induction
Functional Goes Object Oriented

Thomas Hieber, Martin Hofmann

University Bamberg - Cognitive Systems Group

thomas-wolfgang.hieber@stud.uni-bamberg.de, martin.hofmann@uni-bamberg.de

Abstract

The development of software engineering has had a great
deal of benefits for the development of software. Along with
it came a whole new paradigm of the way software is de-
signed and implemented - object orientation. Today it is
a standard to have UML diagrams automatically translated
into program code wherever possible. However, as few tools
really go beyond this we demonstrate a simple functional
representation for objects, methods and variables. In addi-
tion we show how our inductive programming system Igor
can not only understand those basic notions like referencing
methods within objects or using a simple protocol like some-
thing we called message-passing, but how it can even learn
them by a given specification - which is the major feature of
this paper.

Keywords Inductive Programming, Object Oriented Pro-
gramming, Igor, Maude, Java, Recursion

1. Introduction

Since mainstream software for business use is commonly not
created with functional programming languages it is about
time to raise the question whether it is possible to adapt
object oriented language features to a functional setting. Igor
is a system for synthesizing recursive functional programs,
which learns recursive functions solely from input/output
(I/0) examples, and will henceforth be our system of choice
concerning program induction. Since Igor is naturally based
on functional programming, the main focus of this paper
lies on finding a way to use Igor for program inference in
an object oriented background. This requires us to express
the behavior of objects and method calls by I/O examples.
In order to do so, it is necessary to find a way to express
object oriented programs in a functional way. The main part
of this paper will be concerned with this task on a very
general scale. It is not meant to be a complete approach but
an analysis of what is possible and what is not.

At the same time, it is necessary to enable an object ori-
ented programmer to provide input to the synthesis system
as unobtrusive as possible. For this purpose, we have devised
an interface for Eclipse which will allow a programmer to
use annotations in order to provide input for our induction

process, thus seamlessly integrating with software engineer-
ing tools like Rational Software Architect (RSA). Since it is
not the focus of this paper to explain the functionality of this
prototype we only mention it for the sake of completeness -
more on this subject is to be found in [Hieber 2008].

In section 2 we start off with a short survey of current
and past research in the field of functional programming and
object orientation. Section 3 is a short roundup about /nduc-
tive Programming (IP) and Igor while section 4 focuses on
how we represent object orientation to /gor and how it can
even learn all of the concepts created. The prototype plug
in for Eclipse, which is a further result of our research, will
then be described very shortly in section 5 before we finally
conclude in section 6.

2. The Status Quo

In the past 30 years, many different inductive programming
(IP) systems have been developed, many of them sharing a
functional approach. The extraction of programs from in-
put/output examples started in the the seventies and has
been greatly influenced by Summers’ [Summers 1977] pa-
per on the induction of LISP programs. After the great suc-
cess of Inductive Logical Programming (ILP) on classifica-
tion learning in the nineties, the research focus shifted more
to this area. Prominent ILP systems for IP are for example
FOIL [Quinlan and Cameron-Jones 1993], GOLEM [Mug-
gleton and Feng 1990] or PROGOL [Muggleton 1995] - sys-
tems which make use of Prolog and predicate logic.

Later, the functional approach was taken up again by the
analytical approaches Igor! [Kitzelmann and Schmid 2006],
and /gor2[Kitzelmann 2007] and by the evolutionary/generate-
and-test based approaches Adate[Olsson 1995] and
MagicHaskeller|[Katayama 2007].

All in all you can subsume the concern of Inductive Pro-
gramming as the search for algorithms which use as little
additional information as possible to generate correct com-
puter programs from a given minimal specification consist-
ing of input/output examples.

At the same time functional languages have had to face
the development in programming paradigms which led to
many approaches to support object orientation. Established

functional languages have their own object oriented exten-
sions like OCaml [Remy and Vouillon 1998] or OOHaskell
([Kiselyov and Laemmel 2005]). Additionally there are var-
ious approaches to include an object system into a functional
language without changing the type system or the compiler
(see e.g. [Kiselyov and Laemmel 2005] for a Haskell related
overview).

For our purpose we do not need such sophisticated tech-
niques (yet), therefore we content ourselves with taking on a
quite naive and very simplified perspective, though sufficient
for our case, and treat objects merely as tuples.

On the other hand there are some very powerful tools
for object oriented programmers which support automated
code-generation to a certain extent and the community for
Automated Software Engineering is very productive to take
this even further. In this context it is inevitable to have a look
at program synthesis since we ideally do not want to stop at
automatically generating class files from UML diagrams like
IBM’s RSA, or generate a GUI by “WYSIWYG* editors such
as NetBeans or Visual Studio.

3. Inductive Programming & IGOR

Summers’ theories have been taken up again in [Schmid
2003], where the Igor system was put into existence. The
basic idea is to generate a set of (recursive) equations from
a specification consisting of input/output examples. Its first
system was written in LISP and it was closely connected to
Summers’ suggestions. A few years later a newer version
of Igor was created and it extended the prior version by a
number of improvements. In [Kitzelmann 2008] you find
a more detailed description of Igor2 as a system which
now employed mechanics such as anti-unification of the
initial input/output examples and a best-first search over
succeeding sets of equations which are to be formed by
term-rewriting. Since this shift in the way programs were
now processed did not play to the strengths of LISP like
the former version, Igor2 was written in the reflective term-
rewriting language Maude.!

In order to understand how the system works before we
go ahead and use it, let us consider the following example of
the list-operator length.

Listing 1: Input/Output Examples for Igor

length ([]) = 0
length ([y]) = succ(0)
length ([y,x]) = succ(succ(0))
length ([y,x,z]) = succ(succ(succ(0)))
Given those examples, Igor correctly identifies the fol-
lowing recursive program:

Listing 2: Recursive Program for length

length (sub2 (cons(x0,x1)))
x1

subl (cons (x0,x1))
sub2 (cons (x0,x1))
length[] = 0

length (cons(x0,x1)) = succ(subl(cons(x0,x1)))

'see http://maude.cs.uiuc.edu/

This is what Igor produces from our specification (we
have only adjusted the syntax to increase readability), es-
pecially the two functions subl and sub2 have been auto-
matically introduced by the system. The succ operator is the
well known successor in order to define the natural numbers
as peano numbers. Evidently this system’s output is purely
functional so we are going to be concerned with finding out
how to bring this closer to an object oriented context.

4. Igor and Object Orientation

As already mentioned, Igor is firmly based within the func-
tional paradigm along with all its strengths and weaknesses.
Nevertheless it is going to be subject of our concern in which
way it could be possible to represent an object-oriented spec-
ification with Maude and feed it to Igor. For this we are go-
ing to put together some example specifications, have them
synthesized and evaluate the output. In order to do so it is
important to understand how we could possibly map the way
object-oriented programs are presented to a functional nota-
tion. We are going to deal with this problem’s theory first
and then try and find out how Igor will react to our input.
When we are dealing with Maude specifications in the
following chapters, let the following notation be established:

[object].[datatype]

This is the way data types are represented by Maude
and we will stick to it for the sake of transparency. For the
Maude results we will also establish a notation since the
code generated is not quite readable. So the way results will
be displayed like this:

ResultRule/Pattern(EquationLHS) =
(EquationRHS)

4.1 Representing the Object

In this attempt we will try and keep it simple, as we are
only exploring so the motto is to start small. When thinking
about objects we can agree that they basically consist of
an identifier, a set of (member) variables > and a set of
methods. So it seems quite advisable to represent any object
like this:

identifier.String X variables.List X methods.List —
Object

Let us for now just take variables and methods as black
boxes, we will deal with them after this. Apart from the elab-
oration on those, there are only two things left in order to get
a basic quasi object-oriented system: calls and exceptions.
The former is the basic notion of a messages sent between
objects in our system. The latter are a vital part of any high
level programming language and, more importantly, we are
going to need them in order to correctly specify some of our
components. Since error handling is not the major part of our

2 a k.a. properties - see section 4.4

concern, let it just be introduced as black box - we are not
going to analyse it any further.
Messages shall be defined like this:

ParamList X Object — Message

So a message consists of a number of arguments (Param-
List) and an object which in case of a function call can carry
the return value back to the sender, which leaves us with the
following definition of the object in the Maude specification:

Listing 3: Object Constructor

op --- : Identifier VarList MethodList — Object [ctor] .

Note the ___ as the constructor’s name - it is Maude
syntax for n-ary operators with blanks as constructors (three
underscores — three parameters). The constructor uses an
identifier, a set of variables and a list of methods in order
to create a new object. Now that we have an idea of how to
represent an object, let us try and find out how we can do the
same thing on methods.

4.2 Representing the Method

Before going on we have to bear in mind that - for now -
we are dealing with methods only on a syntactic level. We
only want to find out how to represent them in the context
of an object. We are not concerned with the procedures
within the method’s body nor with how they are used. All
we need to know for now is what information we need about
a method on the object level in order to keep it as abstract as
possible. Remember that we want to have this representation
to be kept within the MethodList in our newly defined object.
Right now we can say that a representation of a method must
contain the following information:

e Method Name
e Return Value

e Argument Specification

When we formally put this together it ends up looking
like this:

identifier.String X
arguments.List — Method

return_value. DType X

The DType is again to be taken as black box here since
we are not interested in type inference or casting, so to
understand that it is necessary information for any object
calling the method is enough in this context.

This leaves us with the definition in Maude as follows:

Listing 4: Method Constructor

op met : Identifier DType ParamList —> Method [ctor].

As we have seen before, this is basic Maude notation for
defining an operator called met. It takes three parameters
(Identifier, DType and ParamList) and produces a Method.
Since this is a classical constructor the [cfor] command is
used at the end of the definition.

4.3 Representing the Method Call

Before we can actually call a method we have to resolve the
identifier within the object which supposedly encapsulates
it. In order not to become too confusing we are going to step
away from objects for one moment and just focus on the
way you might find a method within an object. For this let
us assume that there exists a method list as depicted in 4.1
and an object trying to call a method by an identifier. The
idea is to get a matching process like:

Identifier X MethodList — Method

By now we have introduced a few basic notations in ob-
ject orientation. They all share the tuple-structure which is
important in order to build the bridge to functional program-
ming. As a consequence, these concepts can now be mod-
elled in Maude (see section A.1) making it easy for us to
construct simple examples in order to demonstrate how Igor
responds to them. As a start we have picked the ‘identifier-
match® which is the mapping procedure we have just in-
troduced. The full Maude specification is to be found in
listing16 in this section we will only display short snippets
in order to illustrate.

Listing 5: Identifier Match

sorts List Method Identifier DType ParamList NPException

subsort Method < NPException .

In the first part there are some sort definitions which
are quite obvious and should be familiar by now. The only
slightly strange thing is the second line. Here we basically
bring in the exception since we want a NPException (=
Null Pointer Exception) to be thrown in case an identifier
is not found within the method list. The exception is here
derived from Method which is obviously not very elegant or
- strictly spoken - even wrong. But since we have not yet
constructed a well defined object framework we can forsake
the strict rules which would come along with it and just
have the exception be the subclass of Method. This gives us
the chance to explain another concept in Maude - sorts and
subsorts. You can see that there is a number of sorts defined,
was well as a relation between Method and NPException.
The operator used here is < which can be seen like an arrow
pointing from the specific to the more general sort.

The next part of the specification (listing 6) gives us some
constructors and variables before we can go ahead and define
our input examples.

Listing 6: Identifier Match - Constructors and Variables

op [] : = List [ctor]

op cons : Method List —> List [ctor]

op mm : Identifier DType ParamList —> Method [ctor]
ops idl id2 id3 : — Identifier

op parlist : —> ParamList [ctor]

op exc : —> NPException .

op dt : —> DType .

op match : Identifier List —> Method [metadata “induce”]

vars ml m2 m3 : Method .

Here we find a basic procedure of constructing a list (11
1,2), a method (mm operator), some random identifiers, ar-
guments, an exception as well as a datatype. Note that identi-
fiers, arguments, exception and datatype are just instantiated
without any concrete data attached but for the current level
of abstraction it is not necessary to do so. The operator match
now is the method to be induced by Igor and after declaring
a few variables as methods all there is left to do is to assert
our input/output examples.

Listing 7: Identifier Match - Input/Output Examples
eq match(idl, []) = exc .
eq match(id2, []) = exc .

eq match(idl, cons(mm(idl, dt, parlist) ,[])) =
mm(idl, dt, parlist) .

eq match(idl, cons(mm(id2, dt, parlist), [])) = exc .
eq match(id2, cons(mm(idl, dt, parlist) ,[])) = exc .
eq match(id2, cons(mm(id2, dt, parlist), [])) =

mm(id2, dt, parlist) .
[...]

The equations in listing 7 are used to give Igor some basic
examples in the problem domain. Here we bring together
what we have defined earlier (Listings 5 and 6). The first
two are quite obvious and finally explain why we insisted
on exceptions earlier. Of course there could just be an empty
method as a return value, but since we are trying to conquer
the object oriented world with Igor, it feels more natural to
express it this way. All the other examples (see complete
listing 16) are summarised quite quickly - every time the
method called is contained in the method list it is returned.

If this is now fed to Igor, one of the resulting hypotheses
(translated into a little more readable syntax) returned is a
set of equations. X1 and X2 are identifiers, X3 is a list, dt
a datatype and parlist a list of parameters:

1. match(X1,[]) = exc

2. Subl(X1, cons(mm(X2,dt,parlist), X3)) =
case (X1 == X2)of False — X1

. Sub2(X1, cons(mm(X2,dt, parlist), X3)) =
case (X1 == X2)of True — X3

. match(X1, cons(mm(X2,dt, parlist), X3)) =
case (X1 == X2)of False —
match(Subl(X1, cons(mm(X2,dt, parlist),
case (X1 == X2)of True —
mm(X1,dt, parlist)

w2

N

From this simple example we can already see how Igor
tackles this problem. The base case is the first equation.
Equations 2 to 4 ensure that the number of methods in the
list is gradually decreased every time the first method in the
list does not correspond to the one called. So at the end the

list of methods becomes either void (— equation 1) or the
method is found at the head of the current method list (—
equation 5).

Already we can observe how Igor tries to find a recur-
sive solution to this problem, which may seem a little com-
plicated for this purpose, but it is exactly what we wanted
to achieve and so we can go on at this point knowing that
Maude and Igor can handle what we outlined earlier.

4.4 Concerning Variables

Before going on it is necessary to point out that when we
talk about variables in this paper we mean actually member
variables (properties), so from now on these two concepts
will be used synonymously. For our purpose, variables are
very similar to methods. They just happen to be much more
simple since there is no need for a list of arguments to be
carried around. This comes all down to this simple line in
our object specification in Maude:

Listing 8: Variable Constructor

op var : Identifier DType —> Variable [ctor].

The way a variable is referenced is exactly the same as
we have just done it with methods just that our MethodList
would now be a VariableList - so there is no point in repeat-
ing the procedure all over.

4.5 Messages

As already mentioned, we are going to relate every action
within our system to messages. In 4.1 we have defined the
specification of them and this is how they look in Maude:

Listing 9: Message Constructor

op msg : ParamList Object —> Message [ctor]

We have seen how the matching of identifiers works,
so let us now find out about messages sent between two
imaginary objects. Since we are now only concerned with
the way data is wrapped within them we drop overhead
like identifiers and the like for now and focus on the core
procedure which takes a message and its arguments and
returns an object as result value.

We are going to test this with an example problem - the
even operation which determines if a number is even or not.
As before, we first have to define a couple of sorts.

Listing 10: Identifier Match Sorts

sorts InVec Object .

sorts Message ParamList .
sorts Nat Bool Param .
subsorts Param < Nat Bool .
subsorts Object < Nat Bool .

As we want to compute some real data this time, we have
to refer Param and Object to real values as we do here.

Listing 11: Identifier Match Constructors
op <> : —> ParamList [ctor]

op msg : ParamList Object —> Message [ctor]
op null : — Object [ctor]

op 0 : — Nat [ctor]

op s : Nat — Nat [ctor]

op t : = Bool [ctor]

op f : = Bool [ctor]

op cpar : Param ParamList — ParamList [ctor]

op method : Message —> Message [metadata “induce”]

Next to the already known definitions of message and
the usual list operations there are some more definitions. In
addition to the successor operator (we call it just s this time)
we need the boolean values true (t) and false (f). What we
want for Igor to do now is to unwrap a message, take the
argument list as input and put the result back into a message.
Formulated with input/output examples this is what we get:

Listing 12: Identifier Match Input/Output Examples
eq method(msg(cpar(0, <>), null)) =
msg(<> ,t) .

eq method(msg(cpar(s(0), <>), null)) =
msg(<> , f) .

eq method(msg(cpar(s(s(0)), <>), null)) =
msg(<> , t) .

eq method(msg(cpar(s(s(s(0))), <>), null)) =
msg(<> , f) .

eq method(msg(cpar(s(s(s(s(0)))), <>), null)) =
msg(<> , t) .

So we assume that Igor simulates an object getting a
message with a natural number as parameter, returning a
message containing a boolean. Now we will once again run
this through the system and get the following set of equations
(with X1 being a natural number):

. method(msg(cpar(0, <>),null)) = msg(<>,t)

. method(msg(cpar(s(0), <>),null)) = msg(<>, f)

. method(msg(cpar(s(s(X1)), <>),null)) =
method(Subl9(msg(cpar(s(s(X1)), <>), null)))

AW =

On the level of semantics this looks just like what we
wanted. On every left hand side there is a message with
arguments and the right hand side contains messages with
return value. So Igor has learnt the concept of message-
passing, but since we provided a real problem specification
encapsulated within the message this time, we will have to
evaluate the resulting program for functional validity also.
For this it seems appropriate to take off the wrapping from
the synthesised equations and just show the important bits.

. Subl9(s(s(X1))) = X1

. method(0) =t

. method(s(0)) = f

. method(s(s(X1))) = method(Subl9(s(s(X1))))

N N

Now this looks just like what we intended. Equations 2
and 3 are the base cases, 4 and 1 make sure that any number
bigger than 1 will gradually be reduced by two until one of
the base-cases is reached. Then the result value is ultimately
returned.

. Subl9(msg(cpar(s(s(X1)), <>),null)) =msg(cpar(X1, <>), null)

4.6 Back Into Perspective

Before we try and draw a conclusion out of the results
learned let us quickly summarize what we have gained so
far. We have modelled a simple object-oriented protocol
consisting of Objects, Variables, Methods and Message-
Calls. Modelling those concepts in a functional way has
brought our program synthesis system - /gor - to understand
and even ‘learn‘ simple routines like ‘identifier-matching’
and ‘message-passing‘. Now for a final test let us have a
look how it can handle some of the syntactic sugar which
is widespread in object oriented programming languages - a
simple iteration over a collection. The task is to take a set of
abstract objects and apply a method to every object within
the set (which is actually a list). In listing 13 (proper Maude
example in listing 20) we take one collection of objects and
as we iterate over them we apply a method to them and put
the results into a new collection. The results are represented
in listing 21.

Listing 13: Iterate Collection Input/Output Examples

eq iterate ([]) = {} .

eq iterate(put(Y,[])) = put2(met(Y), {}) .

eq iterate(put(X,put(Y,[]))) = put2(met(X), put2(met(
) {H) .

[...]

As you can see from the equations in listing 13 we employ
two different collections and along with it two different
constructors put and put2, which are like a cons operator.
This is not necessary but in order to illustrate that we are
actually removing the objects from one to another collection
it seems to be more appropriate.

In our second example in listing 22 we go the same
way we already did with methods and objects. We expand
our simple iteration example by enhancing the method call
itself. Another layer of abstraction is added or, if you will,
some more object oriented ‘overhead‘ by adding more detail
into the method call like identifier and the parent object the
method is to be invoked on. Now it is not just met(Y) but a
method call specified like this:

object.Object X identifier.String X return-value. DT ype
Xarguments.ParamList — Method

The result (listing 21) shows that, like before, all the addi-
tional information is just wrapped around the detected proce-
dure which still does nothing else than moving objects from
one collection to another. The following equations display
the result in a more readable notation. Note that X1 is an
Object, X2 a Collection, 1d1 an Identifier, dt1 a DType and
pp a ParamlList.

. Subl(push(X1, X2)) = call(X1,1idl, dt1, pp)
. Sub2(push(X1, X2)) =it-apply(Subb(push(X1, X2))))
. Subb(push(X1,X2)) = X2
- atapply([]) =[]
. it_apply(push(X1, X2)) =
push(Subl(push(X1, X2)), Sub2(push(X1, X2)))

L S S

Not only have we modeled primitive object-oriented con-
cepts - we have had Igor synthesize them on its own just by
providing some generic input/output examples. After that we
went one step further trying to model some object-oriented
procedures like iteration or the ‘foreach‘ loop just by using
those primitives. It turned out that /gor does not appear to be
struggling with the example specification - even though we
have wrapped them in quite a complex model - especially
in the ‘foreach® example. We have constructed some more
examples to show that we can now use our primitive objects
to build a more complex model consisting solely of the con-
cepts illustrated in this section. This means that it is possi-
ble to take this further, modeling a complete object-oriented
model just with a functional programming language. At the
same time it has to be said that we did indeed skip quite a lot
of things as type-inference, inheritance, references (pointers)
or exceptions, to name but a few. Since it has been pointed
out that the model constructed in this paper does not claim
to be a full scale approach we cannot conclude that a serious
foundation has been created to build on.

But we have demonstrated that it is basically possible to
model parts of an object oriented system functionally, which
is quite an interesting observation and is definitely worth a
more thorough approach.

In the next chapter we have a glance at autoJAVA, a plug-
in for eclipse which was designed to integrate Igor into the
eclipse workbench together with a simple way to provide
input/output specifications to our system. The output of the
system uses our simple protocol to generate ‘quasi-object-
oriented* notation.

5. AutoJava

Since this paper’s focus is clearly on the theoretical part of
how to design an object oriented program with a functional
programming language it seems quite obvious not to get
too much involved into the practical part of devising an
application for this. However, AutoJava is a plug in for
eclipse which basically provides a functionality to use Igor
in an object oriented environment and as the focus of this
paper is not on this prototype we are just going to have a
short look at how a java file in this tool would look like:

Listing 14: Automated Solution of Last

/% %

*@JIgorMETA (

* methodName = "last”.
* retValue "Object”.
* params "List”.
*);

*@JIgorEQ(

* equations = {
"([x])=x".
(x,yl)=y”.
“([x,y.z])=z".

* "([x,z,c,n])=n".

* }

*);

*@Method(last);

*/

public void last (){

* * %

VAETS

/% The following code has automatically been generated
by AutoJava

/% according to the user specification in the
annotations above

/% the result is printed below

K% k/

// hypo(true, 2, eq ’'Subl[’cons[’XI:Object, cons[’X2:

Object ,

// 'X3:List]]] = ’cons[’X2:0bject, X3:List] [none] .

//eq ’last[’ cons[’XI:Object,’ ‘[‘].List]] = 'XI:0bject [
none] .

//eq ’last[’cons[’XI1:Object, cons[’X2:0bject, X3:List
J1] = ’last[’Subl[’ cons|[

// 'X1:0bject, cons[’X2:O0bject,’ X3:List]]]] [none]

)

In this example we can see that java annotations * con-

tain the specification which is considerably simplified from
what we have seen so far. The most important parts are Ig-
orMETA which contains method name, return value and in-
put arguments of the method to infer. In the second bit Ig-
orEQ, the input/output can be specified.

6. Conclusion

By now we have shown that it is possible to successfully
model objects, methods, variables and messages in our sim-
ple protocol, moreover, we had igor synthesize all of them.
So machine learning approaches have been used in order to
have a system learn how to describe generic processes within
programming languages. We provided a showcase of how
functional programming can be combined with object orien-
tation. The running plug in should prove this to be true and
opens up many paths for future expansion.

A rather interesting point is the integration of the specifi-
cation within the annotations which creates an entry point for
large-scale applications such as IBMs RSA. As the developer
can annotate his UML diagrams and have those annotations
transferred into the auto-generated code you could think of
a use case like Igor using the specification during the code
generation filling in the method implementation.

All in all there has to be said that even though the results
presented in this paper do not seem very novel or breathtak-
ing. But they nevertheless show that by enabling functional
programs to deal with object orientation we can play to the
strengths of both paradigms. Even though it has been men-
tioned that our model does not claim to be complete or even
fully correct - it feels like that we have created an inspira-
tion for some next steps which might gradually improve the
methodology and finally result in a larger scale prototype
which actually produces Java code instead of functional pro-
grams.

3see http://java.sun.com/j2se/1.5.0/docs/guide/language/

annotations.html

A. Complete Listings
A.1 Maude Specifications and some Results

Note: Igor frequently produces more than one output hy-
pothesis - for the sake of transparency only one of them is
listed in our results sections.

Listing 15: Object

fmod OBIJECT is

eq mcall((oid [] cons(met(id3, dt), cons(met(id2, dt
), cons(met(idl, dt), [])))), idl) =
met(idl, dt)

endfm

Listing 16: Identifier-Match

fmod IDENTIFIER—MATCH is

%% Knowledge about how methods are called by providing

%% Knowledge about how objects wrap variables and
methods

%% Uses ’IDENTIFYER—MATCH’ in the way methods are
called on an object

%% The same goes for variable extraction

sorts InVec Object Var Method VarList MethodList List
ListEl NPException
subsorts Method < NPException
subsorts Var < NPException .
subsorts List < VarList MethodList
subsorts ListEl < Var Method
sorts Identifier DType
sort MyBool

%% DT definitions

%% list to store any value

op [] : = List [ctor]

%% object constructor , taking a list of variables & a
list of methods together with an

#+% identifier for the object

op --- Identifier VarList MethodList — Object [ctor]
op met : Identifier DType —> Method [ctor].

op var Identifier DType —> Var

ops idl id2 id3 : —> Identifier

op dt : — DType

op exc : —> NPException

%% standard operations
op cons ListEl List — List [ctor]

%% defined function names (to be induced, preds, bk)

Kook

op mcall Object Identifier —> Method [metadata ”
induce”]

var oid Identifier

eq mcall((oid [] []), idl)
eq mcall((oid [] []), id2)

eq mcall((oid [] cons(met(idl, dt), [])), idl) = met
(id1, dt) .
eq mcall((oid [] cons(met(id2, dt), [])), idl) = exc

eq mceill((oid [] coms(met(idl, dt), [])), id2) = exc

eq mcz;ll((oid [] coms(met(id2, dt), [])), id2) = met
(id2, dt)

eq mcall((oid [] cons(met(idl, dt), cons(met(id2, dt
), [1))), idl) = met(idl, dt)

eq mcall((oid [] cons(met(id2, dt), cons(met(idl, dt
), [1))), idl) = met(idl, dt)

eq mcall((oid [] cons(met(id2, dt), cons(met(idl, dt
), [1))), id2) = met(id2, dt)

eq mcall((oid [] cons(met(idl, dt), cons(met(id2, dt
), cons(met(id3, dt), [])))), idl) =
met(idl, dt)

eq mcall((oid [] cons(met(id3, dt), coms(met(idl, dt
), cons(met(id2, dt), [])))), idl) =
met(idl , dt)

ok

SO

an identifyer sk
* If a list of methods contains the called identifyer
, the method is returned xxx

rts InVec List Method Identifier DType ParamList
NPException
subsort Method < NPException

op [] : = List [ctor]
op cons : Method List — List [ctor]
op mm : Identifier DType ParamList — Method [ctor]

op
op
op
op

op

vars ml m2 m3

eq
eq

eq

eq

eq

eq

eq

eq

eq

eq

s idl id2 id3 : —> Identifier
parlist : — ParamList [ctor]
exc : —> NPException

dt : — DType

match Identifier List —> Method [metadata “induce”

1
Method

match(idl, []) = exc

match(id2, []) = exc

match (idl, cons(mm(idl, dt, parlist) ,[]))= mm(idl,
dt, parlist)

match(idl, cons(mm(id2, dt, parlist), [])) exc

match(id2, cons(mm(idl, dt, parlist) ,[])) exc .

match(id2, cons(mm(id2, dt, parlist), [])) = mm(id2
, dt, parlist)

match(idl, cons(mm(idl, dt, parlist), cons(mm(id2,
dt, parlist), []))) = mm(idl, dt, parlist)

match(idl, cons(mm(id2, dt, parlist), cons(mm(idl,
dt, parlist), []))) = mm(idl, dt, parlist)

match(id2, cons(mm(id2, dt, parlist), cons(mm(idl,
dt, parlist), []))) = mm(id2, dt, parlist)

match (idl , cons(mm(idl, dt, parlist), cons(mm(id2,
dt, parlist), cons(mm(id3, dt, parlist), []))))

mm(idl, dt, parlist)

eq

eq

match(idl, cons(mm(id3, dt, parlist), cons(mm(idl,
dt, parlist), cons(mm(id2, dt, parlist), []))))
mm(idl, dt, parlist)

match(idl, cons(mm(id3, dt, parlist), cons(mm(id2,
dt, parlist), cons(mm(idl, dt, parlist), [])))) =
mm(idl, dt, parlist)

endfm

eq:

Listing 17: Identifier-Match Result
match (X1,()) = exc;

ceq: Subl(XI,cons(mm(X2,dt, parlist),X3)) = X1 if == (XI,
X2) = false;

ceq: Sub2(Xl,cons(mm(X2,dt, parlist),X3)) = X3 if == (X1,
X2) = false;

ceq: match (X1, cons(mm(X2,dt, parlist),X3)) = match(Subl (Xl
,cons (mm(X2,dt, parlist) ,X3)),Sub2 (X1, cons (mm(X2, dt,
parlist),X3))) if == (X1,X2) = false;

ceq: match (X1, cons(mm(X2,dt, parlist) ,X3)) = mm(X1,dt,

parlist) if == (X1,X2) = true;

Listing 18: OO-Call

fmod OO—CALL is

sorts InVec Object

sorts Message ParamList

sorts Nat Bool Param Res
subsorts Param < Nat Bool
subsorts Res < Nat Bool
subsorts Object < Nat Bool

%% DT definitions

op * : —> Object [ctor]

op <> : —> ParamList [ctor] .

op msg : ParamList Object —> Message [ctor]
op null : — Object [ctor]

op 0 : — Nat [ctor]

op s : Nat — Nat [ctor]

op t : — Bool [ctor]

op f : — Bool [ctor]

#+% Standard Operators sk

#x*% op call : Message —> Message [metadata “pred.
nomatch”™] . s

op cpar : Param ParamList —> ParamList [ctor]

%% defined function names (to be induced, preds, bk)
Hokok
op method : Message —> Message [metadata “induce”]

%% input encapsulation xx
op in : Message — InVec [ctor]

vars pl : ParamList
vars n : Nat

%% input output examples for “even” xxx

eq method(msg(cpar(0, <>), null)) = msg(<> ,t)

eq method(msg(cpar(s(0), <>), null)) = msg(<> , f
) .

eq method(msg(cpar(s(s(0)), <>), null)) = msg(< ,
t) .

eq method(msg(cpar(s(s(s(0))), <>), null)) = msg(<>

)

eq melilod(m'sg(cpar(S(s(s(s(0)))), <>), null)) = msg(
<, t)

endfm

Listing 19: OO-Call Result

eq: method(msg(cpar (X1,<>),null)
(0)) = true AND == (X1,s(0)
= true;

ceq: method(msg(cpar(X1,<>),null)) = msg(<>,f) if == (X1,
s(s(s(0)))) = true AND == (X1,s(s(s(0)))) = true AND
== (X1,s(s(s(0)))) = true AND == (X1,s(s(s(0)))) =
true AND == (X1,s(s(s(0)))) = true;

ceq: method(msg(cpar(X1,<>),null)) = msg(<>,t) if == (XI,
s(s(s(0)))) = false;

msg(<>,f) if == (X1,s

) =
) = true AND == (X1,s(0))

Listing 20: Iterate-Collection
fmod ITERATE—COLLECTION is

sorts Object Collection ResultCollection Method Result
InVec

%% DT definitions (constructors)

op [] : = Collection [ctor]

op {} : = ResultCollection [ctor]

op put : Object Collection —> Collection [ctor]

op put2 : Result ResultCollection — ResultCollection [
ctor] .

op met : Object — Result

en

eq:

eq:
eq:
eq:

%% defined function names (to be induced, preds, bk)

op iterate : Collection — ResultCollection [metadata ”
induce”]

%% input encapsulation

op in : Collection — InVec [ctor]

vars UVWXY Z F : Object

eq iterate ([]) = {} .

eq iterate(put(Y,[])) = put2(met(Y), {}) .

eq iterate(put(X,put(Y,[]))) = put2(met(X), put2(
met(Y) .{}))

eq iterate (put(Y,put(X,put(Z,[1)))) = put2(met(Y),
put2(met(X), put2(met(Z),{})))

dfm

Listing 21: Iterate-Collection Result

Subl (put(X1,X2)) = met(X1);
Sub2 (put(X1,X2)) = iterate (SubS(put(X1,X2)));

SubS5S (put(X1,X2)) X2,

iterate (()) = {};

iterate (put(X1,X2)) = put2(Subl(put(X1,X2)),Sub2(put(
X1,X2)));

Listing 22: Foreach-Do

fmod FOREACH—DO is

sorts InVec Object Var Method VarList MethodList List
ListEl ParamList Collection
subsorts List < VarList MethodList
subsorts ListEl < Var Method
subsorts Object < Method
sorts Identifier DType

sx*% DT definitions (constructors) s
op [] : = Collection [ctor]
op pp : —> ParamList

#+% STANDARD OPERATORS 3
op push : Object Collection —> Collection [ctor]

sxx METHOD DECLARATION s

op call : Object Identifier DType ParamList — Method [
ctor |].

op idl : — Identifier [ctor]

op dtl : — DType [ctor]

%% defined function names (to be induced, preds, bk)
*ok K

op it_apply : Collection —> Collection [metadata
induce”]

”»

#%% input encapsulation xxx
op in : Collection — InVec [ctor]

skx VARIABLES s
vars a b ¢ : Object

sx% ITERATION SPECIFICATION sk
eq it_apply ([1) = []

eq it_apply (push(a, [])) = push(call(a, idl, dtl, pp
). 1)

eq it_apply (push(a, push(b, []))) =
push(call(a, idl, dtl, pp), push(call(b, idl, dtl,
pp), [)

eq it_apply (push(a, push(b, push(c, [])))) =
push(call(a, idl, dtl, pp), push(call(b, idl, dtl,
pp). push(call(c. idl, dtl. pp). [1)))

endfm

References

Thomas Hieber. Transportation of the JEdit plug-in ProXSLbE to
eclipse. Technical report, Otto Friedrich University of Bamberg,
2008. URL http://www.cogsys.wiai.uni-bamberg.
de/effalip/data/programs/autoXSL/ausarbeitung/
projektbericht.pdf.

Susumu Katayama. Systematic search for lambda expressions.
In Marko C. J. D. van Eekelen, editor, Revised Selected Pa-
pers from the Sixth Symposium on Trends in Functional Pro-
gramming, TFP 2005, volume 6, pages 111-126. Intellect,
2007. URL http://www.cs.ioc.ee/tfp-icfp-gpce05/
tfp-proc/14num. pdf.

Oleg Kiselyov and Ralf Laemmel. Haskell’s overlooked
object system. CoRR, abs/cs/0509027, 2005. URL
http://dblp.uni-trier.de/db/journals/corr/
corr0509.html#abs-cs-0509027. informal publication.

Emanuel Kitzelmann. Data-driven induction of recursive func-
tions from I/O-examples. In Emanuel Kitzelmann and Ute
Schmid, editors, Proceedings of the ECML/PKDD 2007 Work-
shop on Approaches and Applications of Inductive Programming
(AAIP’07), pages 15-26, 2007.

Emanuel Kitzelmann. Analytical inductive functional program-
ming. In Pre-Proceedings of the 18th International Symposium
on Logic-Based Program Synthesis and Transformation (LOP-
STR 2008). Michael Hanus, 2008.

Emanuel Kitzelmann and Ute Schmid. Inductive synthesis of func-
tional programs: An explanation based generalization approach.
Journal of Machine Learning Research, 7:429-454,2006. ISSN
1533-7928.

Stephen Muggleton. Inverse entailment and Progol. New Gen-
eration Computing, Special issue on Inductive Logic Program-
ming, 13(3-4):245-286, 1995. URL citeseer.ist.psu.edu/
muggleton95inverse.html.

Stephen Muggleton and Cao Feng. Efficient induction of

logic programs. In Proceedings of the Ist Conference
on Algorithmic Learning Theory, pages 368-381. Ohmsma,
Tokyo, Japan, 1990. URL citeseer.ist.psu.edu/

muggleton90efficient.html.

Roland J. Olsson. Inductive functional programming using incre-
mental program transformation. Artificial Intelligence, 74(1):
55-83, 1995.

J. Ross Quinlan and R. Mike Cameron-Jones. FOIL: A midterm
report. In Machine Learning: ECML-93, European Confer-
ence on Machine Learning, Proceedings, volume 667, pages 3—
20. Springer-Verlag, 1993. URL citeseer.ist.psu.edu/
quinlan93foil.html.

Didier Remy and Jrme Vouillon. Objective ML: An effective
object-oriented extension to ML, 1998.
Ute Schmid. Inductive Synthesis of Functional Programs — Learn-

ing Domain-Specific Control Rules and Abstract Schemes. Num-
ber 2654. Springer, 2003.

P. D. Summers. A methodology for LISP program construction
from examples. Journal of the ACM, 24(1):161-175, 1977.

