Skip to main content

Firefly Flashing Synchronization as Inspiration for Self-synchronization of Walking Robot Gait Patterns Using a Decentralized Robot Control Architecture

  • Conference paper
Architecture of Computing Systems - ARCS 2010 (ARCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5974))

Included in the following conference series:

Abstract

In this paper we introduce and elaborate a biologically inspired methodology for robot walking gait pattern self-synchronization using ORCA (Organic Robot Control Architecture). The firefly based pulse coupled biological oscillator concept has been successfully applied for achieving self-organized synchronization of walking robot gait patterns by dynamically prolonging and shortening of robot’s legs stance and swing phases. The results from the experiments done on our hexapod robot demonstrator show the practical usefulness of this biologically inspired approach for run-time self-synchronizing of walking robot gait pattern parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Han, B., Luo, Q., Wang, Q., Zhao, X.: A Research on Hexapod Walking Bio-robot’s Working Space and Flexibility. In: IEEE International Conference on Robotics and Biomimetics, pp. 813–817 (2006)

    Google Scholar 

  2. Cifuentes, N.J.R., Porras, J.H.G.: Modeling of legged robot based on Colombian insect observations. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 506–511 (2007)

    Google Scholar 

  3. German Science Foundation (DFG) Priority Program SPP 1183, Organic Computing (2004), http://www.organiccomputing.de/spp

  4. Müller-Schloer, C.: Organic Computing – On the Feasibility of Controlled Emergence. In: Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 2–5 (2004)

    Google Scholar 

  5. Suzuki, H., Nishi, H., Aburadani, A., Inoue, S.: Animal Gait Generation for Quadrupedal Robot. Second International Conference on Innovative Computing, Information and Control (ICICIC), pp.20 (2007)

    Google Scholar 

  6. Delcomyn, F.: Neural basis for rhythmic behaviour in animals. Science 210, 492–498 (1980)

    Article  Google Scholar 

  7. Barnes, D.: Hexapodal robot locomotion over uneven terrain. In: Proceedings of the 1998 IEEE International Conference on Control Application, vol. 1, pp. 441–445 (1998)

    Google Scholar 

  8. He, J., Lu, C., Yin, S.: The Design of CPG Control Module of the Bionic Mechanical Crab. In: Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China (2006)

    Google Scholar 

  9. Billard, A., Ijspeert, A. J.: Biologically inspired neural controllers for motor control in a quadruped robot. In: IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), vol. 6, pp. 6637(2000)

    Google Scholar 

  10. Heinen, M.R., Osório, F.S.: Applying Neural Networks to Control Gait of Simulated Robots. In: 10th Brazilian Symposium on Neural Networks, pp. 39–44 (2008)

    Google Scholar 

  11. Manoonpong, P., Wörgötter, F.: Neural Control and Learning for Versatile, Adaptive, Autonomous Behavior of Walking Machines. In: International Conference on Advanced Computer Theory and Engineering, pp. 24–28 (2008)

    Google Scholar 

  12. Valsalam, V.K., Miikkulainen, R.: Modular Neuroevolution for Multilegged Locomotion. In: GECCO 2008, pp. 265–272 (2008)

    Google Scholar 

  13. Heinen, M.R., Osório, F.S.: Morphology and Gait Control Evolution of Legged Robots. In: IEEE Latin American Robotic Symposium, pp. 111–116 (2008)

    Google Scholar 

  14. Brockmann, W., Maehle, E., Mösch, F.: Organic Fault-Tolerant Control Architecture for Robotic Applications. In: 4th IARP/IEEE-RAS/EURON Workshop on Dependable Robots in Human Environments, Nagoya University, Japan (2005)

    Google Scholar 

  15. Serra, R., Zanarini, G.: Complex Systems and Cognitive Processes. Springer, New York (1990)

    Google Scholar 

  16. As, G.C., Odell, J.: Agents and Emergence. ACM, Distributed Computing (1998)

    Google Scholar 

  17. Mainzer, K.: Self-Organization and Emergence in Complex Dynamical Systems, pp. 590–594. GI Jahrestagung (2004)

    Google Scholar 

  18. Randles, M., Lamb, D., Taleb-Bendiab, A.: Engineering Autonomic Systems Self-Organisation. In: Fifth IEEE Workshop on Engineering of Autonomic and Autonomous Systems, pp. 107–118 (2008)

    Google Scholar 

  19. Zheng, Z., Hu, G., Hu, B.: Phase Slips and Phase Synchronization of Coupled Oscillators. Physical Review Letters 81 (1998)

    Google Scholar 

  20. Buck, J.: Synchronous rhythmic flashing of fireflies, II. Quart. Rev. Biol. 63, 265–289 (1988)

    Article  Google Scholar 

  21. Bottani, S.: Pulse-Coupled Relaxation Oscillators: From Biological Synchronization to Self-Organized Criticality. Phy. Rev. Lett. 74(21)

    Google Scholar 

  22. Case, J.F., Strause, L.G.: Neurally controlled luminescent systems. In: Herring, P.J. (ed.) Bioluminiscence in Action, pp. 331–366 (1978)

    Google Scholar 

  23. Buonomicini, M., Magni, F.: Nervous control flashing in the firefly Luciola italica L. Archives italiennes de Biologie, 323–338 (1967)

    Google Scholar 

  24. Buck, J.: Studies on firefly: I. The effects of light and other agents on flashing in Photinus pyralis, with special reference and diurnal rhythm. Physiological Zoology, 45–58 (1937)

    Google Scholar 

  25. Magni, F.: Central and peripheral mechanisms in the modulation of flashing in the firefly Luciola italica L. Archives italiennes de Biologie, 339–360 (1967)

    Google Scholar 

  26. Hanson, F.E., Case, J.F., Buck, E., Buck, J.: Synchrony and flash entrainment in a New Guinea firefly. Science 174, 161–164 (1971)

    Article  Google Scholar 

  27. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. Journal of Insect Physiology 15, 597–610 (1967)

    Google Scholar 

  28. Buck, J., Buck, E.: Synchronous fireflies. Scientific American 234, 74–85 (1976)

    Article  Google Scholar 

  29. Babaoglu, O., Binci, T., Jelasity, M., Montresor, A.: Firefly-inspired Heartbeat Synchronization in Overlay Networks. In: First International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2007, pp. 77–86 (2007)

    Google Scholar 

  30. Lessons in Implementing Bio-inspired Algorithms on Wireless Sensor Networks. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 271–276 (2008)

    Google Scholar 

  31. Self-Organized Synchronization in Wireless Network. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 329–338 (2008)

    Google Scholar 

  32. Wischmann, S., Hülse, M., Knabe, J., Pasemann, F.: Synchronization of internal neural rhythms in multi-robotic systems. Adaptive Behavior 14, 117–127 (2006)

    Article  Google Scholar 

  33. El Sayed Auf, A., Mösch, F., Litza, M.: How the six-legged walking machine OSCAR handles leg amputations. In: Workshop on Bio-inspired Cooperative and Adaptive Behaviours in Robots, Rome, Italy (2006)

    Google Scholar 

  34. Jakimovski, B., Litza, M., Mösch, F., El, S.A.: Development of an organic computing architecture for robot control. In: Informatik 2006 Workshop on Organic Computing - Status and Outlook, Dresden (2006)

    Google Scholar 

  35. Ferrell, C.: A Comparison of Three Insect Inspired Locomotion Controllers. Robotics and Autonomous Systems (RAS) 16, 135–159 (1995)

    Article  Google Scholar 

  36. Beer, R.D., Quinn, R.D., Chiel, H.J., Ritzmann, R.E.: Biologically inspired approaches to robotics what can we learn from insects. Communications of the ACM 40(3), 30–38 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jakimovski, B., Meyer, B., Maehle, E. (2010). Firefly Flashing Synchronization as Inspiration for Self-synchronization of Walking Robot Gait Patterns Using a Decentralized Robot Control Architecture. In: Müller-Schloer, C., Karl, W., Yehia, S. (eds) Architecture of Computing Systems - ARCS 2010. ARCS 2010. Lecture Notes in Computer Science, vol 5974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11950-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11950-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11949-1

  • Online ISBN: 978-3-642-11950-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics