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Abstract   The dynamics of complex, large-scale production networks present an 

important issue not only for the management of such networks but also for scien-

tific research. This problem is usually investigated either by numerical simulations 

or by mathematical analysis of the associated queueing model. One major property 

of stable production networks is the robustness of these networks with respect to 

perturbations of the arrival process of jobs from outside. Given a generic structure 

of the considered network with several production locations, different products 

and re-entrant material flows the determination of robustness is non trivial. In this 

paper we use a fluid model approach to analyse the robustness of queueing net-

works. First conditions for stability of a fluid network are introduced. These con-

ditions allow to assess the dynamic behaviour of the production network. Second 

the obtained results are investigated with the help of a simulation of the fluid and 

queueing network. Simulations of a test case scenario accompany the results of the 

theoretical analysis. 

1 Introduction 

Modern production networks often consist of production facilities which are 

geographically distributed around the globe [1]. The generic structure of these 

networks leads to an increased complexity, which together with the dynamics of 

modern production networks poses a unique challenge for management and re-

search [2]. In particular perturbations or uncertainties of the market requirements 

may lead to an unstable behaviour of a network [3] and the network may not be 

able to fulfil the customer demand. This raises the question, what type or size of 

perturbations is admissible without destroying the stability of a production net-

work? This question can be answered using the stability radius of a network, 
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which reflects the magnitude of the smallest possible perturbation that destabilizes 

the system [4].  

The dynamics of such complex production networks can be modelled by multi-

class queueing networks. In [5, 6] Dai presented a new approach to investigate the 

stability of such networks using a fluid model, which is an analogue deterministic 

continuous model of the discrete stochastic model. The stability of a correspond-

ing fluid limit model implies the stability of the original queueing network. In 

comparison to a queueing model the stability of a fluid model can be determined 

more easily. Based on the stability of a fluid model we present an approach to de-

termine the stability radius. The results of this approach are validated using simu-

lations of both the fluid model and the corresponding queueing network.  

The outline of the paper is as follows. Section 2 briefly introduces the notation 

of a fluid model and the necessary and sufficient conditions of stability. This in-

troduction is accompanied by the necessary adaptations for modelling a produc-

tion network as a fluid model. In order to illustrate the characteristic dynamic be-

haviour of a fluid and queueing network we introduce in section 3 a test scenario. 

This scenario is used in section 4 to investigate the robustness of the underlying 

production network. Section 5 closes with some conclusions and an outlook to fu-

ture research.  

2 Description of the fluid model 

We follow the model description from [7]. The considered network consists of 

locations  with  and different types of products  with 

. Every type of product is processed exclusively at one loca-

tion. So there is a many-to-one mapping . The 

mapping  generates the so called constituency matrix , with  if 

 or  otherwise. For every location the set 

 is assumed to be nonempty. Further every type of product  has an 

exogenous arrival rate  and a process rate  of products per time unit. After a 

product of type  was processed at location  it has the possibility either to 

leave the network or to become a product of type . The transition matrix  sets 

the proportion of processed products that either turn to their next location or leave 

the network. To be precise,  denotes the proportion of products of type  that 

become products of type  upon service completion. Hence  is the 

proportion that eventually leaves the network. It is assumed that the  matrix 

 has spectral radius strictly less than one, i.e. all products leave the network. The 

initial amount of products is represented through the  dimensional vector . 

The model of the network is given by  and . The performance is 

described by the  dimensional product level process  and the  

dimensional allocation process , where  denotes the amount 

of products  in the network at time  and  denotes the total amount of time 
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in the interval  that location  has devoted to processing products of 

type . For brevity we omit the calligraphic letters in the subscript. The next step 

is to fix a policy that predetermines the order in which the arriving products are 

processed at each location. We use the so called priority discipline, i.e. we con-

sider a permutation . Given two types of products  

and  that are processed at the same location , we say that  has 

higher priority than  if . So products of type  are not processed 

as long as there are products of type . For  the set  

 

denotes all products  that have a higher priority than . Finally the process of 

unused capacity  is introduced, where  denotes the cu-

mulative remaining capacity of location  for processing products of types 

that have strictly lower priority than products of type . The dynamics of the 

network under priority discipline are summarized as follows 

                                                     (1) 

                                                         (2) 

                                   (3) 

                                                                    (4) 

where  Equation  describes the work-conserving prop-

erty of the network and relation  is called the flow balance relation. The work-

conserving property means that the idle time for a product of type  increases if 

and only if , i.e. there is no product of type in the network waiting for 

being processed. The following Theorem [8] guarantees the existence of such a 

work-conserving allocation process. 

 

Theorem 1:  For any fluid network  with  there is at least one  

  work-conserving allocation . 

 

Let  denote the number of product types being processed at location . For 

 let the product type  have higher priority than . The alloca-

tion process  for the priority discipline is assumed to be non pre-emptive. 

That is, if products of type  are processed at a given time, then this production 

is completed regardless of the arrival of other types. Any pair  that 

satisfies  is called a fluid solution of the work-conserving fluid network. 

The set of all feasible fluid level processes is denoted as 

 

For we use . 

Definition 1:  A fluid network is said to be stable, if there exists a time   
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  such that  for any   with  

 

We cite the following necessary condition for the stability of a fluid network 

[8]. Here < has to be understood componentwise. 

 

Theorem 2:  If a fluid network   is stable, it holds that 

                                                                                 (5) 

where  

 

Remark 1:  Common notations in the literature are  and  

   which denote the total arrival rate and the nominal  

  workload. Hence the condition  can be stated as  for  

  all . 

 

Further in [8] there is also a sufficient condition for stability. Here a symmetric 

matrix  is called strictly copositive, if  for all with  and 

 only if . Here  

 

Theorem 3:  A fluid network is stable if there exists a   

symmetric strictly copositive matrix  such that, for  

 

where  
 

Adaption to production networks 

The fluid model introduced in Section 2 can be used to model and to analyse 

the dynamics of a production network. To this end the production facilities of sup-

pliers and OEM, warehouses and distribution centres are modelled as locations. 

These locations are numbered from 1 to J. The intermediate and final products of 

the network are classified into product types 1 to K that are processed or serviced 

by the locations. Thus the structure of the production network is given by the con-

stituency and the transition matrix. The external and internal dynamics of the con-

sidered network are captured by the inflow rates of the product types and the proc-

essing rates of the product types at the assigned locations. The transition matrix of 

the fluid model contains the fragmentation of the material flows within the pro-

duction network. The initial work in progress of the product types is given by 

. If a location serves more than on product type a priority rule for the service 

needs to be determined. 
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3 Test scenario 

In this paper we simulate a network with three types of products and two loca-

tions. The parameters for the test scenario are given below. 

 

 

A schematic illustration is given in Figure 1. 

 

Fig. 1: Fluid network with two locations processing three types of products. 

The priorities at the second location are chosen such that products of type 3 

have higher priority than the products of type 2, i.e. . Figure 2 

shows the behaviour of the work in progress (WIP) under non pre-emptive priority 

discipline, i.e. the WIP of type 2 products increases as long as the WIP of product 

type 3 has not reached zero. At the time  location 2 is processing type 2 

products until the WIP reaches zero. Meanwhile the WIP of type 3 products in-

creases again. Since the configuration is stable the repeated increase of the WIP of 

product types 2 and 3 becomes smaller and smaller and thus the frequency of the 

allocation changes at the second station is becoming higher. Consequently the 

WIP of all three product types reaches zero at some time and there is a time τ such 

that the WIP stay zero beyond τ. Figure 3 shows the WIP of the associated queue-

ing network. Since the fluid model is stable the WIP of the queueing network be-

comes zero from time to time. 
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Fig. 2: WIP of the fluid model for the production network. 

 

 

Fig. 3: WIP of the queueing model for the production network. 
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4 An approach to describe robustness of production networks 

In this section we focus on the question of quantifying the size of admissible 

perturbations of  the external arrival rate. The minimal size of a destabilizing per-

turbation will be called the stability radius of the network. If the condition  is 

violated Theorem 2 states that the network cannot be stable. The set of all feasible 

arrival rates, i.e. all  such that that condition  is satisfied, forms a poly-

hedron. So we increase the arrival rate by introducing a vector  and con-

sider a perturbation of the following form . Then we consider the 

fluid network  and use the following notation . 

The quantity of interest is the radius  of smallest ball such that stability will 

no longer hold. Thus we give the following Definition. 

 

Definition 2:  The stability radius of the network  is 

   

 

Remark 2:  By Theorem 2 an upper bound for the stability radius is given by 

 

 

     In the following we give a geometric interpretation of the previous remark. In 

Figure 4 the light grey area represents the set of all arrival rates that satisfy condi-

tion . Let  be an interior point. 

 

Fig. 4: Illustration of the stability radius in the case where the second arrival rate is not perturbed. 

The dark grey area is the largest open norm ball  around  that lies com-

pletely in the light grey domain. The upper bound for the stability radius is calcu-

lated as follows, where we use  to denote the scalar product of the -th row 

with .  
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In regard to the test scenario Figure 2 shows that the WIP of product type 1 

reaches and remains zero long before the WIP of products type 2 and 3 do. Intui-

tively, one might expect that the network is able to cope with an additional arrival 

rate of type 1 products. A calculation for the test scenario using Remark 2 leads to 

 and the corresponding vector of perturbation is 

 Since this is only an upper bound for the stability ra-

dius there may be arrival rates that are inside the dark grey area which lead to in-

stability. But this subset is very small as the following shows. For the perturbation 

 the matrix 

 

 

 

satisfies the sufficient condition of Theorem 3 and the network is stable. The cor-

responding perturbed arrival rate is  In order 

to present the product level process and the queue length process clearly the fol-

lowing figures are generated for the perturbed arrival rate 

  

 

Fig. 5: WIP of the fluid model with perturbed arrival rate . 
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Figures 5 and 6 show the WIP of the fluid and queueing model for the per-

turbed production network. Further the pictures show that the time until the WIP 

of all types of products reaches zero has increased enormously as well as that the 

amplitude of the WIP rises by a factor of ten. 

 

Fig. 6: WIP of the queueing network with perturbed arrival rate . 

5 Conclusions and outlook 

We have introduced a fluid model that can be applied to a generic structure of 

locations in a production network. In particular, a scenario for two locations proc-

essing three types of products has been concerned. The parameter setting was cho-

sen such that the fluid model is stable. Figure 3 illustrates the behaviour of the cor-

responding queueing network. In the subsequent section the stability radius has 

been defined, which gives an upper bound to the additional arrival rates δ such 

that the production network is still able to handle the arrival rate  Again Figure 

6 illustrates this for the arrival rate  From Section 4 it can be seen that for the 

queueing network model corresponding to  the amplitude of the queue length 

increases by a factor ten. 

In future research we will also consider perturbations of the production rates  

as well as perturbations of the transition matrix . Moreover it is aspired to obtain 

analytical estimations of the queue length compared to increasing arrival rates or 

decreasing production rates.  
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