
An Effective Object-level XML Keyword Search

Zhifeng Bao1, Jiaheng Lu2, Tok Wang Ling1, Liang Xu1, and Huayu Wu1

1 School of Computing, National University of Singapore
{baozhife, lingtw, xuliang, wuhuayu}@comp.nus.edu.sg

2 School of Information, Renmin University of China, jiahenglu@gmail.com

Abstract. Keyword search is widely recognized as a convenient way to
retrieve information from XML data. In order to precisely meet users’
search concerns, we study how to effectively return the targets that users
intend to search for. We model XML document as a set of intercon-
nected object-trees, where each object contains a subtree to represent a
concept in the real world. Based on this model, we propose object-level
matching semantics called Interested Single Object (ISO) and Interested
Related Object (IRO) to capture single object and multiple objects as
user’s search targets respectively, and design a novel relevance oriented
ranking framework for the matching results. We propose efficient algo-
rithms to compute and rank the query results in one phase. Finally,
comprehensive experiments show the efficiency and effectiveness of our
approach, and an online demo of our system on DBLP data is available
at http://xmldb.ddns.comp.nus.edu.sg.

1 Introduction

With the presence of clean and well organized knowledge domains such as
Wikipedia, World Factbook, IMDB etc, the future search technology should ap-
propriately help users precisely finding explicit objects of interest. For example,
when people search DBLP by a query “Jim Gray database”, they likely intend to
find the publications object about “database” written by the people object“Jim
Gray”. As XML is becoming a standard in data exchange and representation in
the internet, in order to achieve the goal of “finding only the meaningful and
relevant data fragments corresponding to the interested objects (that users re-
ally concern on)”, search techniques over XML document need to exploit the
matching semantics at object-level due to the following two reasons.

First, the information in XML document can be recognized as a set of real
world objects [16], each of which has attributes and interacts with other objects
through relationships. E.g. Course and Lecturer can be recognized as objects in
the XML data of Fig. 1. Second, whenever people issue a keyword query, they
would like to find information about specific objects of interest, along with their
relationships. E.g. when people search DBLP by a query “Codd relational model”,
they most likely intend to find the publications object about “relational model”
written by “Codd”. Therefore, it is desired that the search engine is able to find
and extract the data fragments corresponding to the real world objects.

1.1 Motivation
Early works on XML keyword search focus on LCA (which finds the Lowest
Common Ancestor nodes that contain all keywords) or SLCA (smallest LCA)

semantics, which solve the problem by examining the data set to find the small-
est common ancestors [16, 13, 9, 7, 20]. This method, while pioneering, has the
drawback that its result may not be meaningful in many cases. Ideally, a prac-
tical solution should satisfy two requirements: (1) it can return the meaningful
results, meaning that the result subtree describes the information at object-level;
and (2) the result is relevant to the query, meaning that it captures users’ search
concerns. Despite the bulk of XML keyword search literature (See Section 2),
the existing solutions violate at least one of the above requirements.

Dept

0

Courses

0.1

Lecturers

0.2

Course

0.1.0

Course

0.1.1

Course

0.1.2

... Lecturer

0.2.0

Lecturer

0.2.1

Lecturer

0.2.2

...

Title

0.1.0.1

“Advanced

Topics in AI”

...
Title

0.1.1.1
Title

0.1.2.1

“Database

Management”

“Advanced

Topics in

Database”

Prereq

0.1.2.2

Students

0.0

...

...

Name

0.2.0.1
Name

0.2.2.1

Name

0.2.1.1

“Smith” “Jones”“Lee”

Teaches

0.2.0.2

...

Teaches

0.2.2.2

Containment Edge

Reference Edge

ID

0.1.1.0

“CS202”

ID

0.1.0.0

“CS501”

ID

0.1.2.0

“CS502”

ID

0.2.1.0

...

ID

0.2.0.0

...

ID

0.2.2.0

...

Dname

0.3

...

Address

0.4

...

Fig. 1. Example XML data (with Dewey IDs)

Regarding to the meaningfulness, the query results should contain enough but
non-overwhelming information. i.e. it should be of the same granularity as user’s
search concern. Unfortunately, the matching semantics proposed so far cannot
achieve such goal. For example, for a query “Database” issued on Fig.1, both
LCA and SLCA return title:0.1.1.1 and title:0.1.2.1 as results, while the desired
result should be two subtrees rooted at Course:0.1.1 and Course:0.1.2, as they
encapsulate enough information about a “Database” course. The recent competi-
tors over SLCA include XSeek [18], CVLCA [13], MLCA [15] and MAXMATCH
[17]. While those approaches propose some promising and improved matching
semantics, the search target identification is still not clearly addressed. More
importantly, their inability to exploit ID references in XML data causes some
relevant results to be missed.

In order to complement the keyword search over tree model to find more
relevant results, ID references in XML data are captured and matching semantics
on digraph data model are designed. A widely adopted one is reduced subtree,
which is the minimal subgraph containing all keywords. However, it suffers the
same problem as those in tree model, as both of them exploit only the structure
of XML data. Even worse, the problem of finding the results by increasing the
sizes of reduced subtrees for keyword proximity is NP-hard [14], thus keyword
search in digraph data model is heuristics-based and intrinsically expensive.

Regarding to the relevance, the query results should be relevant to user’s
search intention. However, the existing ranking strategies in both tree model [7]
and digraph model [12, 8] are built at XML node level, which do not meet user’s
search concern at object level. Moreover, ranking functions in digraph model
even do not distinguish the containment edge and reference edge in XML data.

1.2 Our approach
In this paper, we propose to model XML document as a set of object trees, where
each real world object o (with its associated attributes) is encapsulated in an
object tree whose root node is a representative node of o; two object trees are
interconnected via a containment or reference edge in XML data. E.g. The part
enclosed by a dotted circle in Fig. 1 shows an object tree for Dept and Course.

We propose our object-level matching semantics based on an analysis of user’s
search concern, namely ISO (Interested Single Object) and IRO (Interested Re-
lated Object). ISO is defined to capture user’s concern on a single object that
contains all keywords, while IRO is defined to capture user’s concern on multiple
objects. Compared to previous works, our object-level matching semantics have
two main advantages. First, each object tree provides a more precise match with
user’s search concern, so that meaningless results (which even though contain
all keywords) are filtered. Second, it captures the reference edges missed in tree
model, and meanwhile achieves better efficiency than those solutions in digraph
model by distinguishing the reference and containment edge in XML.

We design a customized ranking scheme for ISO and IRO results. The rank-
ing function ISORank designed for ISO result not only considers the content of
result by extending the original TF*IDF [19] to object tree level, but also cap-
tures the keyword co-occurrence and specificity of the matching elements. The
IRORank designed for an IRO result considers both its self similarity score and
the “bonus” score contributed from its interconnected objects. We design effi-
cient algorithms and indices to dynamically compute and rank the matched ISO
results and IRO results in one phase. Finally, we experimentally compare ISO
and IRO algorithms to the best existing methods XSeek [16] and XReal [4] with
real and synthetic data sets. The results reveal that our approach outperforms
XReal by an order of magnitude in term of response time and is superior to
XSeek in term of recall ratio, well confirming the advantage of our novel seman-
tics and ranking strategies. A search engine prototype incorporating the above
proposed techniques is implemented, and a demo of the system on DBLP data
is available at http://xmldb.ddns.comp.nus.edu.sg [3].

2 Related Work

XML tree model In tree data model, LCA is first proposed to find the lowest
common ancestor containing all the keywords in their subtrees. SLCA [20] is
proposed to find the smallest LCA that doesn’t contain other LCA in its subtree.
XSEarch [6] is a variation of LCA, which claims two nodes n1 and n2 are related
if there is no two distinct nodes with same tag name on the paths from their LCA
to n1 and n2. [15] incorporates SLCA into XQuery and proposes a Schema-Free
XQuery where predicates in XQuery can be specified through SLCA concept.
XSeek [16] studies how to infer the semantics of the search and identify the return
nodes by recognizing possible entities and attributes inherently represented in
XML data. The purpose of our research is also to maximize the possibility to
understand user’s search semantics, while we take a novel perspective by studying
new semantics based on ID reference and designing effective ranking strategy.

XML graph model The major matching semantics is to find a set of re-
duced subtree G′ of database graph G, s.t. each G′ is the smallest subgraph
containing all keywords. However, the cost of finding all such G′ ranked by size
is intrinsically expensive due to its NP-hard nature[14]. Bidirectional expansion
is proposed to find ranked reduced subtrees[12], but it requires the entire visited
graph in memory, and suffers an inefficiency. BLINKS[8] improves it by designing
a bi-level index for result pruning, with the tradeoffs in index size and mainte-
nance cost. XKeyword[11] uses schema information to reduce search space, but
its query evaluation is based on the method of DISCOVER [10] built on RDBMS,
which cannot distinguish the containment and reference edges to further reduce
search space. [5] builds a tree+IDRef model to capture ID references by avoid-
ing the NP-hard complexity. However, this compromise may affect the results’
meaningfulness and relevance, which are carefully investigated in this paper.
Results ranking In IR field, TF*IDF similarity [19] is designed to measure
the relevance of the keywords and the documents in keyword search over flat
documents. XReal [4] addresses the keyword ambiguity problem by designing an
XML TF*IDF on tree model, which takes the structural information of XML into
account. XRANK [7] generalizes PageRank to XML element and rank among
LCA results, where the rank of each element is computed statically in data
preprocessing. In contrast, the ranking functions in this paper are designed to
rank on the object trees and are computed dynamically during query processing.

3 Data Model
Definition 1 (Object Tree) An object tree t in D is a subtree of the XML
document, where its root node r is a representative node to denote a real world
object o, and each attribute of o is represented as a child node of r.

In an XML document D, a real-world object o is stored in form of a subtree
due to its hierarchical inherency. How to identify the object trees is orthogonal
to this paper; here, we adopt the inference rules in XSeek [16] to help identify the
object trees, as clarified in Definition 1. As we can see from Fig. 1, there are 7
object trees (3 Course, 3 Lecturer and 1 Dept), and the part enclosed by a dotted
circle is an object tree for Course:0.1.0 and Dept:0 respectively. Note that nodes
Students, Courses and Lecturers of Dept:0 are connection nodes, which connect
the object “Dept” and multiple objects “Student” (“Course” and “Lecturer”).
Conceptual connection reflects the relationship among object trees, which is
either a reference-connection or containment-connection defined as below.
Definition 2 (Reference-connection) Two object trees u and v in an XML
document D have a reference-connection (or are reference-connected) if there is
an ID reference relationship between u and v in D.
Definition 3 (Containment-connection) Two object trees u and v in an
XML document D have a containment-connection if there is a P-C relationship
between the root node of u and v in D, regardless of the connection node.
Definition 4 (Interconnected object-trees model) models an XML docu-
ment D as a set of object trees, D=(T ,C), where T is a set of object trees in D,
and C is a set of conceptual connections between the object trees.

In contrast to the model in XSeek [16], ID references in XML data is con-
sidered in our model to find more meaningful results. From Fig. 1, we can find
Dept:0 and Course:0.1.0 are interconnected via a containment connection, and
Lecturer:0.2.0 and Course:0.1.2 are reference-connected.

4 Object Level Matching Semantics
When a user issues a keyword query, his/her concern is either on a single object,
or a pair (or group) of objects connected via somehow meaningful relationships.
Therefore, we propose Interested Single Object (ISO) and Interested Related Ob-
ject (IRO) to capture the above types of users’ search concerns.

4.1 ISO Matching Semantics
Definition 5 (ISO) Given a keyword query Q, an object tree o is the Interested
Single Object (ISO) of Q, if o covers all keywords in Q.

ISO can be viewed as an extension of LCA, which is designed to capture user’s
interest on a single object. E.g. for a query “database, management” issued on
Fig. 1, LCA returns two subtrees rooted at Title:0.1.1.1 and Courses:0.1, neither
of which is an object tree; while ISO returns an object tree rooted at Course:0.1.1.

4.2 IRO Matching Semantics
Consider a query “CS502, lecturer” issued on Fig. 1. ISO cannot find any quali-
fied answer as there is no single object qualified while user’s search concern is on
multiple objects. However, there is a Lecturer:0.2.0 called “Smith” who teaches
Course “CS502” (via a reference connection), which should be a relevant result.
This motivates us to design IRO (Interested Related Object).

As a first step to define IRO pair and IRO group, we give a formal definition
on the connections among these multiple objects.

Definition 6 (n-hop-meaningful-connection) Two object trees u and v in
an XML document have a n-hop-meaningful-connection (or are n-hop-meaningfully-
connected) if there are n− 1 distinct intermediate object trees t1, ...tn−1, s.t.
1. there is either a reference connection or a containment connection between

each pair of adjacent objects;
2. no two objects are connected via a common-ancestor relationship.

Definition 7 (IRO pair) For a given keyword query Q, two object trees u and
v form an IRO pair w.r.t. Q if the following two properties hold:
1. Each of u and v covers some, and u and v together cover all keywords in Q.
2. u and v are n-hop-meaningfully-connected (with an upper limit L for n).

IRO pair is designed to capture user’s concern on two objects that have
a direct or indirect conceptual connection. E.g. for query “Smith, Advanced,
Database”, two object trees Lecturer:0.2.0 and Course:0.1.2 form an IRO pair, as
there is a reference connection between them. Intuitively, the larger the upper
limit L is, more results can be found, but the relevance of those results decay
accordingly. Lastly, IRO group is introduced to capture the relationships among
three or more connected objects.

Definition 8 (IRO group) For a given keyword query Q, a group G of object
trees forms an IRO group if:

1. All the object trees in G collectively cover all keywords in Q.
2. There is an object tree h∈G (playing a role of hub) connecting all other object

trees in G by a n-hop-meaningful-connection (with an upper limit L′ for n).
3. Each object tree in G is compulsory in the sense that, the removal of any

object tree causes property (1) or (2) not to hold any more.
As an example, for query “Jones, Smith, Database” issued on Fig. 1, four

objects Course:0.1.1, Course:0.1.2, Lecturer:0.2.0 and Lecturer:0.2.2 form an IRO
group (with L′ = 2), where both Course:0.1.1 and Course:0.1.2 can be the hub.
The connection is: Lecturer:0.2.2 “Jones” teaches Course:0.1.1, which is a pre-
requisite of a “Database” Course:0.1.2 taught by Lecturer:0.2.0 “Smith”.

An object involved in IRO semantics is called the IRO object ; an ISO object
o can form an IRO pair (or group) with an IRO object o′, but o is not double
counted as an IRO object.

4.3 Separation of ISO & IRO results display
As ISO and IRO correspond to different user search concerns, we separate the
results of ISO and IRO in our online demo? [3], which is convenient for user to
quickly recognize which category of results meet their search concern, thus a lot
of user efforts are saved in result consumption.

5 Relevance Oriented Result Ranking
As another equally important part of this paper, a relevance oriented ranking
scheme is designed. Since ISO and IRO reflect different user search concerns,
customized ranking functions are designed for ISO and IRO results respectively.

5.1 Ranking for ISO
In this section, we first outline the desired properties in ISO result ranking; then
we design the corresponding ranking factors; lastly we present the ISORank
formula which takes both the content and structure of the result into account.

Object-level TF*IOF similarity (ρ(o,Q)) Inspired by the extreme suc-
cess of IR style keyword search over flat documents, we extend the traditional
TF*IDF (Term frequency*Inverse document frequency) similarity [19] to our
object-level XML data model, where flat document becomes the object tree. We
call it as TF*IOF (Term frequency*Inverse object frequency) similarity. Such
extension is adoptable since the object tree is an appropriate granularity for
both query processing and result display in XML. Since TF*IDF only takes the
content of results into account, but cannot capture XML’s hierarchical structure
we enforce the structure information for ranking in the following three factors.

F1. Weight of matching elements in object tree The elements directly
nested in an object may have different weights related to the object. So we
provide an optional weight factor for advanced user to specify, where the default
weight is 1. Thus, the TF*IOF similarity ρ(o, Q) of object o to query Q is:

ρ(o,Q) =

∑
∀k∈o∩Q WQ,k ∗Wo,k

WQ ∗Wo
, WQ,k =

N

1 + fk
, Wo,k =

∑

∀e∈attr(o,k)

tfe,k∗We (1)

? Note: in our previous demo, ISO was named as ICA, while IRO was named as IRA.

where k∈o∩Q means keyword k appears in both o and Q. WQ,k represents
the weight of keyword k in query Q, playing a role of inverse object frequency
(IOF); N is the total number of objects in xml document, and fk is number of
objects containing k. Wo,k represents the weight of k in object o, counting the
term frequency (TF) of k in o. attr(o, k) denotes a set of attributes of o that
directly contain k; tfe,k represents the frequency of k in attribute e, and We is
the adjustable weight of matching element e in o, whose value is no less than 1,
and We is set to 1 for all the experiments conducted in section 8.

Normalization factor of TF*IOF should be designed in the way that: on one
hand the relevance of an object tree o containing the query-relevant child nodes
should not be affected too much by other query-irrelevant child nodes; on the
other hand, it should not favor the object tree of large size (as the larger the
size of the object tree is, the larger chance that it contains more keywords).
Therefore, in order to achieve such goals, two normalization factors Wo and WQ

are designed: Wo is set as the number of query-relevant child nodes of object o,
i.e. |attr(o, k)|, and WQ is set to be proportional to the size of Q, i.e. |Q|.
F2. Keyword co-occurrence (c(o,Q)) Intuitively, the less number of elements
(nested in an object tree o) containing all keywords in Q is, o is likely to be more
relevant, as keywords co-occur more closely. E.g. when finding papers in DBLP
by a query “XML, database”, a paper whose title contains all keywords should
be ranked higher than another paper in “database” conference with title “XML”.

Based on the above intuition, we present c(o, Q) in Equation 2 (denomina-
tor part), which is modeled as inversely proportional to the minimal number of
attributes that are nested in o and together contain all keywords in Q. Since this
metric favors the single-keyword query, we put the number of query keywords
(i.e. |Q| in nominator part) as a normalization factor.

c(o,Q) =
|Q|

min(|{E|E = attrSet(o) and (∀k ∈ Q,∃e ∈ E s.t. e.contain(k))}|) (2)

F3. Specificity of matching elements (s(o,Q)) An attribute a of an object
is fully (perfectly) specified by a keyword query Q if a only contains the keywords
in Q (no matter whether all keywords are covered or not). Intuitively, an object
o with such fully specified attributes should be ranked higher; and the larger the
number of such attribute is, the higher rank o is given.

Example 1. When searching for a person by a query “David, Lee”, a person p1

with the exact name should be ranked higher than a person p2 named “David
Lee Ming”, as p1’s name fully specifies the keywords in query, while p2 doesn’t.¤

Thus, we model the specificity by measuring the number of elements in the
object tree that fully specify all query keywords, namely s(o,Q).

Note that s(o,Q) is similar to TF*IDF at attribute level. However, we enforce
the importance of full-specificity by modeling it as a boolean function; thus
partial specificity is not considered, while it is considered in original TF*IDF.

So far, we have exploited both the structure (i.e. factors F1,F2,F3) and con-
tent (TF*IOF similarity) of an object tree o for our ranking design. Since there

is no obvious comparability between structure score and content score, we use
product instead of summation to combine them. Finally, the ISORank(o,Q) is:

ISORank(o,Q) = ρ(o,Q) ∗ (c(o,Q) + s(o,Q)) (3)

5.2 Ranking for IRO
IRO semantics is useful to find a pair or group of objects conceptually connected.
As an IRO object does not contain all keywords, the relevance of an IRO object o,
namely IRORank, should consist of two parts: its self TF*IOF similarity score,
and the bonus score contributed from its IRO counterparts (i.e. the objects that
form IRO pair/group with o). The overall formula is:

IRORank(o, Q) = ρ(o,Q) + Bonus(o,Q) (4)

where ρ(o,Q) is the TF*IOF similarity of object o to Q (Equation 1). Bonus(o,Q)
is the extra contribution to o from all its IRO pair/group’s counterparts for Q,
which can be used as a relative relevance metric for IRO objects to Q, especially
when they have a comparable TF*IOF similarity value. Regarding to the design
of Bonus score to an IRO object o for Q, we present three guidelines first.
Guideline 1: IRO Connection Count. Intuitively, the more the IRO pair/group
that connect with an IRO object o is, the more likely that o is relevant to Q;
and the closer the connections to o are, the more relevant o is. ♣

For example, consider a query “interest, painting, sculpture” issued on XMark
[2]. Suppose two persons Alice and Bob have interest in “painting”; Alice has
conceptual connections to many persons about “sculpture” (indicated by attend-
ing the same auction), while Bob has connections to only a few of such auctions.
Thus, Alice is most likely to be more relevant to the query than Bob.
Guideline 2: Distinction of different matching semantics. The IRO con-
nection count contributed from the IRO objects under different matching se-
mantics should be distinguished from each other. ♣

Since IRO pair reflects a tighter relationship than IRO group, thus for a
certain IRO object o, the connection count from its IRO pair’s counterpart should
have a larger importance than that from its IRO group’s counterpart.

Example 2. Consider a query “XML, twig, query, processing” issued on DBLP.
Suppose a paper p0 contains “XML” and “twig”; p1 contains “query” and “pro-
cessing” and is cited by p0; p2 contains the same keywords as p1; p3 contains no
keyword, but cites p0 and p2; p4 contains “query” and p5 contains “processing”,
and both cite p0. By Definition 7-8, p1 forms an IRO pair with p0; p2, p3 and p0

form an IRO group; p0, p4 and p5 form an IRO group. Therefore, in computing
the rank of p0, the influence from p1 should be greater than that of p2 and p3,
and further greater than p4 and p5. ¤

According to the above two guidelines, the Bonus score to an IRO object
o is presented in Equation 5. Bonus(o, Q) consists of the weighted connection
counts from its IRO pair and group respectively, which manifests Guideline 1.
w1 and w2 are designed to reflect the weights of the counterparts of o’s IRO pair
and group respectively, where w1>w2, which manifests Guideline 2.

Bonus(o,Q) = w1 ∗BSIRO P (o,Q) + w2 ∗BSIRO G(o,Q) (5)

Guideline 3: Distinction of different connected object types. The con-
nection count coming from different conceptually related objects (under each
matching semantics) should be distinguished from each other. ♣
Example 3. Consider a query Q “XML, query, processing” issued on DBLP.
The bonus score to a “query processing” paper from a related “XML” conference
inproceedings should be distinguished from the bonus score coming from a related
book whose title contains “XML”, regardless of the self-similarity difference of
this inproceedings and book. ¤

Although the distinction of contributions from different object types under a
certain matching semantics helps distinguish the IRORank of an IRO object, it
is preferable that we can distinguish the precise connection types to o to achieve
a more exact Bonus score. However, it depends on a deeper analysis of the
relationships among objects and more manual efforts. Therefore, in this paper
we only enforce Guideline 1 and Guideline 2. As a result, the IRO bonus from
the counterparts of o’s IRO pair and IRO group is presented in Equation 6-7:

BSIRO P (o,Q) =
∑

∀o′|(o,o′)∈IROPair(Q,L)

ρ(o′, Q) (6)

BSIRO G(o,Q) =

∑
∀g∈IROGroup(Q,L′)|o∈g BF (o,Q, g)

|IRO Group(o,Q)| (7)

In Equation 6, ρ(o′, Q) is the TF*IOF similarity of o′ w.r.t. Q, which is
adopted as the contribution from o′ to o. Such adoption is based on the intuition
that, if an object tree o1 connects to o′1 s.t. o′1 is closely relevant to Q, whereas
object tree o2 connects to o′2 which is not as closely relevant to Q as o′1, then it is
likely that o1 is more relevant to Q than o2. In Equation 7, BF (o,Q, g) can be set
as the self similarity of the object in g containing the most number of keywords.
As it is infeasible to design a one-fit-all bonus function, other alternatives may
be adopted according to different application needs. L (in Equation 6) and L′

(in Equation 7) is the upper limit of n in definition of IRO pair and IRO group.

6 Index Construction
As we model the XML document as the interconnected object-trees, the first
index built is the keyword inverted list. An object tree o is in the corresponding
list of a keyword k if o contains K. Each element in the list is in form of a tuple
(Oid, DL, wo,k), where Oid is the id of the object tree containing k (here we
use the dewey label of the root node of object tree o as its oid, as it serves the
purpose of unique identification) ; DL is a list of pairs containing the dewey
labels of the exact locations of k and the associated attribute name; wo,k is the
term frequency in o (see Equation 1). c(o,Q) (in Equation 2) can be computed by
investigating the list DL; s(o,Q) is omitted in index building, algorithm design
and experimental study later due to the high complexity to collect. Therefore,
the ISORank of an object tree can be efficiently computed. A B+ tree index is
built on top of each inverted list to facilitate fast probing of an object in the list.

The second index built is connection table CT , where for each object c,
it maintains a list of objects that have direct conceptual connection to c in
document order. B+ tree is built on top of object id for efficient probes. Since

it is similar to the adjacency list representation of graph, the task of finding the
n-hop-meaningfully-connected objects of c (with an upper limit L for connection
chain length) can be achieved through a depth limited (to L) search from c in
CT . The worst case size is O(|id|2) if no restriction is enforced on L, where |id| is
number of object trees in database. However, we argue that in practice the size
is much smaller as an object may not connect to every other object in database.

7 Algorithms
In this section, we present algorithms to compute and rank the ISO and IRO
results.
Algorithm 1: KWSearch

Input: Keywords: KW [m]; Keyword Inverted List: IL[m]; Connection
Table: CT ; upper limit: L, L′ for IRO pair and group

Output: Ranked object list: RL
1 let RL = ISO Result = IRO Result = {};
2 let HT be a hash table from object to its rank;
3 let ILs be the shortest inverted list in IL[m];
4 for each object o ∈ ILs do
5 let Ko = getKeywords(IL, o);
6 if (Ko == KW) /* o is an ISO object */
7 initRank(o,Ko,KW ,HT); ISO Result.add(o);
8 else if (Ko 6= ∅)
9 IRO Pair = getIROPairs(IL, o, o, CT, L) /* Algorithm 2 */
9 IRO Group = getIROGroups(IL, o, o, CT, L′, Ko) /* Algorithm 3 */

10 RL = ISO Result ∪ IRO Pair ∪ IRO Group;

Function initRank(o, Ko, KW, HT)
1 if (o not in HT)
2 HT.put(o.id, computeISORank(o,Q,KW));

Function computeRank(o, oList)
1 foreach object o′ ∈ oList
2 Ko′ = getKeywords(IL, o′) ;
3 if (Ko′ == KW) /* o′ is an ISO object */
4 initRank(o′,Ko,KW ,HT); ISO Result.add(o′);
5 else if(Ko′ 6= ∅ AND (Ko′ ∪Ko == KW)) /* o′ is IRO object */

6 initRank(o′,K′
o,KW ,HT);

7 IRO Pair.add(o,o′);
8 initRank(o,Ko,KW ,HT); /* o is an IRO object also */
9 updateIRORank(o, o′,oList, HT);

Function updateIRORank (o, o′, oList, HT)
1 update the IRORank of o based on Equation 5−7;
2 put the updated (o, IRORank) into HT ;

The backbone workflow is in Algorithm 1. Its main idea is to scan the shortest
keyword inverted list ILs, check the objects in the list and their connected
objects, then compute and rank the ISO and IRO results. The details are: for
each object tree o in ILs, we find the keywords contained in o by calling function
getKeywords()(line 5). If o contains all query keywords, then o is an ISO object,
and we compute the ISORank for o by calling initRank(), then store o together

with its rank into hash table HT (line 6-7). If o contains some keywords, then o
is an IRO object, and all its IRO pairs and groups are found by calling functions
getIROPairs() (Algorithm 2) and getIROGroups (Algorithm 3) (line 8-10).

Function computeRank() is used to compute/update the ranks of objects o′

in oList, each forming an IRO pair with o. For each such o′, it probes all inverted
lists with o′ to check three cases (line 1-2): (1) if o′ is an ISO object containing all
query keywords, then its ISORank is computed and it is added into ISO Result
(line 3-4). (2) if both o and o′ are IRO objects, their TF*IOF similarity are
initialized (if not yet), and their IRORanks are updated accordingly (line 5-
9). Function initRank() computes the ISORank by Equation 3 if o is an ISO
object, otherwise computes its TF*IOF similarity by Equation 1.

Algorithm 2 shows how to find all objects that form IRO pair with an IRO
object src. It works in a recursive way, where input o is the current object visited,
whose initial value is src. Since two objects are connected via either a reference
or containment connection, line 2-3 deal with the counterparts of o via reference
connection by calling getConnectedList(); line 4-7 deal with containment con-
nection. Then it recursively finds such counterparts connecting to src indirectly
in a depth limited search(line 8-10). getIROGroups() in Algorithm 3 works in
a similar way, the detail isn’t shown due to space limit.

Algorithm 2: getIROPairs (IL[m], src, o,
CT , L)

/* find all counterparts of o captured

by IRO pair */

1 if L == 0 then return ;
2 let oList = getConnectedList(o,CT) ;
3 computeRank(o, oList) ;
4 let ancList = getParent(o) ;
5 computeRank(o, ancList) ;
6 let desList = getChildren(o) ;
7 computeRank(o, desList(o)) ;
8 L = L - 1 ;
9 foreach o′ ∈ (oList ∪ ancList ∪ desList)

s.t. o′ is not IRO object yet
10 getIROPairs(IL, src, o′, CT, L) ;

Algorithm 3: getIROGroups (IL[m], o,
CT , L′, Ko)

/* find all counterparts of o captured

by IRO group */

1 let KS = ∅; count = 0;
2 cList = getConnectedList(o, CT, L′);
3 for n= 1 to L′ do
4 foreach o′ ∈ cList do
5 KS = getKeywords(IL, o′) ∪ KS;
6 if (KS⊂KW) then
7 count++; continue;
8 elseif (count>2) then
9 initialize group g containing such o and

o′;
10 IRO Group.add(o,g);

The time complexity of KWSearch algorithm is composed of three parts: (1)
the cost of finding all IRO pairs is: O(

∑
o∈Ls

∑L
i=1 |cListi(o)| ∗

∑k
j=1 log |Lj |),

where Ls, o, |cListi(o)|, k and |Lj | represent the shortest inverted list of query
keywords, an object ID in Ls, length of the list of objects forming an IRO pair
with o with chain length = i (limited to L), the number of query keywords, and
the length of the jth keyword’s inverted list respectively. (2) the cost of finding
all IRO groups is: O(

∑
o∈Ls

∑L′

i=1 |QL′ | ∗
∑k

j=1 log |Lj |), where the meaning of
each parameter is same as part (1), and |QL′ | denotes the maximal number of
object trees reached from o by depth limited search with chain length limit to L′.
(3) the cost of finding all ISO objects is: O(

∑
o∈Ls

∑k−1
j=1 log |Lj |). The formation

of each cost can be easily derived by tracing Algorithm 1-3.

8 Experimental Evaluation
Experiments run on a PC with Core2Duo 2.33GHz CPU and 3GB memory,
and all codes are implemented in Java. Both real dataset DBLP(420 MB) and
synthetic dataset XMark(115 MB) [2] are used in experiments. The inverted lists
and connection table are created and stored in the disk with Berkeley DB [1] B+
trees. An online demo [3] of our system on DBLP, namely ICRA, is available at
http://xmldb.ddns.comp.nus.edu.sg.

8.1 Effectiveness of ISO and IRO Matching Semantics

In order to evaluate the quality of our proposed ISO and IRO semantics, we inves-
tigate the overall recall of ISO, ISO+IRO with XSeek [16], XReal [4] and SLCA
[20] on both DBLP and XMark. 20 queries are randomly generated for each
dataset, and the result relevance is judged by five researchers in our database
group. From the average recall shown in Table 1, we find: (1) ISO performs as
well as XReal and XSeek, and is much better than SLCA. It is consistent with our
conjecture that the search target of a user query is usually an object of interest,
because the concept of object indeed is implicitly considered in the design of ISO,
XReal and XSeek. (2) ISO+IRO has a higher recall than ISO alone, especially
for queries on XMark, as there are more ID references in XMark that bring more
relevant IRO results. In general, IRO semantics do help find more user-desired
results while the other semantics designed for tree data model cannot.

Data SLCA XSeek XReal ISO ISO+IRO
DBLP 75% 82.5% 84.1% 84.1% 90.5%
XMark 55.6% 63.8% 60.4% 62.2% 80.7%

Table 1. Recall Comparison

Data R-rank MAP
XReal ISO IRO XReal ISO IRO

DBLP 0.872 0.877 0.883 0.864 0.865 0.623
XMark 0.751 0.751 0.900 0.708 0.706 0.705

Table 2. Ranking Performance Comparison

101

102

103

104

105

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

 (
Lo

g-
sc

al
ed

)

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

Bidir first-30
XReal

(a) Execution time

 0

 20

 40

 60

 80

 100

 120

 140

2 3 4 5

A
ve

ra
ge

 R
es

ul
t N

um
be

r

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

XReal

(b) Total result number
Fig. 2. Efficiency and scalability tests on DBLP

id Query
Q1 David Giora
Q2 Dan Suciu semistructured
Q3 Jennifer Widom OLAP
Q4 Jim Gray transaction
Q5 VLDB Jim Gray
Q6 conceptual design

relational database
Q7 join optimization parallel

distributed environment

Fig. 3. Sample
queries on DBLP

8.2 Efficiency & Scalability test

Next, we compare the efficiency of our approach with SLCA and XReal [4] in
tree model, and Bidirectional expansion [12] (Bidir for short) in digraph model.
For each dataset, 40 random queries whose lengths vary from 2 to 5 words are
generated, with 10 queries for each query size. The upper limit of connection
chain length is set to 2 for IRO pair and 1 for IRO group, and accordingly we
modify Bidir to not expand to a node of more than 2-hops away from a keyword
node for a fair comparison. Besides, since Bidir searches as small portion of a
graph as possible and generates the result during expansion, we only measure

its time to find the first 30 results. The average response time on cold cache and
the number of results returned by each approach are recorded in Fig. 2 and 4.

The log-scaled response time on DBLP is shown in Fig. 2(a), and we find:
(1) Both SLCA and ISO+IRO are about one order of magnitude faster than
XReal and Bidir for queries of all sizes. SLCA is twice faster than ISO+IRO,
but considering the fact that ISO+IRO captures much more relevant results than
SLCA (as evident from Table 1), such extra cost is worthwhile and ignorable.
(2) ISO+IRO scales as well as SLCA w.r.t the number of query keywords, and
ISO alone even has a better scalability than SLCA.

From Fig. 2(b), we find the result number of ISO is a bit smaller than that of
SLCA, as ISO defines qualified result on (more restrictive) object level. Besides,
ISO+IRO finds more results than SLCA and XReal, because many results that
are connected by ID references can be identified by IRO. The result for XMark
(see Fig. 4) is similar to DBLP, and the discussion is omitted due to space limit.

101

102

103

104

105

2 3 4 5

E
xe

cu
tio

n
T

im
e

(m
s)

 (
Lo

g-
sc

al
ed

)

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

Bidir first-30
XReal

(a) Execution time

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 3 4 5

A
ve

ra
ge

 R
es

ul
t N

um
be

r

Number of keywords

SLCA
ISO

IRO pair
IRO group
ISO+IRO

XReal

(b) Total result number
Fig. 4. Efficiency and scalability tests on XMark

Query ISO result IRO Result
Q1 16 42
Q2 14 58
Q3 1 56
Q4 14 230
Q5 8 1238
Q6 3 739
Q7 0 93

Table 3. sample
query result number

8.3 Effectiveness of the Ranking Schemes

To evaluate the effectiveness of our ranking scheme on ISO and IRO results,
we use two widely adopted metrics in IR: (1)Reciprocal rank (R-rank), which
is 1 divided by the rank at which the first relevant result is returned. (2) Mean
Average Precision (MAP). A precision is computed after each relevant one is
identified when checking the ranked query results, and MAP is the average value
of such precisions. R-Rank measures how good a search engine returns the first
relevant result, while MAP measures the overall effectiveness for top-k results.

Here, we compute the R-rank and MAP for top-30 results returned by ISO,
IRO and XReal, by issuing the same 20 random queries as describe in section 8.1
for each dataset. Specificity factor s(o,Q) is ignored in computing ISORank; in
computing the IRORank, w1 = 1 and w2 = 0.7 are chosen as the weights in
Equation 5. The result is shown in Table 2. As ISO and XReal do not take into
account the reference connection in XML data, it is fair to compare ISO with
XReal. We find ISO is as good as XReal in term of both R-rank and MAP, and
even better on DBLP’s testing. The ranking strategy for IRO result also works
very well, whose average R-rank is over 0.88.

Besides the random queries, we choose 7 typical sample queries as shown in
Fig. 3: Q2-Q4 intend to find publications on a certain topic by a certain author;
Q5 intends to find publications of a particular author on a certain conference.

In particular, we compare our system [3] with some academic search engines
such as Bidir in digraph model [12], XKSearch employing SLCA [20] in tree
model, with commercial search engines, i.e. Google Scholar and Libra†. Since
both Scholar and Libra can utilize abundant of web data to find more results
than ours whose data source only comes from DBLP, it is infeasible and unfair
to compare the total number of relevant results. Therefore, we only measure the
number of top-k relevant results, where k=10, 20 and 30.

 0

 2

 4

 6

 8

 10

 12

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Bidir
XKSearch
ISO+IRO

Scholar
Libra

(a) Top-10 Results

 0

 5

 10

 15

 20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Bidir
XKSearch
ISO+IRO

Scholar
Libra

(b) Top-20 Results

 0

 5

 10

 15

 20

 25

 30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

el
ev

an
t r

es
ul

ts

Bidir
XKSearch
ISO+IRO

Scholar
Libra

(c) Top-30 Results

Fig. 5. Result quality comparison

Since our system separates ISO results and IRO results (as mentioned in
section 4.3), top-k results are collected in the way that, all ISO results are ordered
before the IRO results. The total number of ISO results and IRO results are
shown in Table 3, and the comparison for the top-30 results is shown in Fig. 5.

First, we compare ISO+IRO with Bidir and XKSearch. For queries that have
both ISO and IRO results (e.g. Q1-Q6), our approach can find more relevant
results, and rank them in most of the top-30 results. There is no ISO result for
Q7, XKSearch also returns nothing; but 26 IRO results are actually relevant.

Second, we compare ISO+IRO with Libra and Scholar. From Fig. 5, we find
our approach is comparable with Scholar and Libra for all sample queries. In
particular, ISO+IRO is able to rank the most relevant ones in top-10 results for
most queries, because its top-10 precision is nearly 100% for most queries, as
evident in Figure 5(a). In addition, as Libra only supports keyword conjunction
(similar to our ISO semantics), it does not work well for Q3 and Q7, as there
is only 1 and 0 result containing all keywords for Q3 and Q7. As shown in Fig.
5(a), Scholar only finds 3 relevant results for Q5 in its top-10 answers, probably
because keywords “Jim” and “Gray” appear in many web pages causes many
results that don’t contain “VLDB” to still have a high rank, which is undesired.

Thirdly, as shown in Fig. 5, the average recall for each query generated by
our ISO+IRO is above 80% at each of the three top-k levels, which confirms its
advantage over any other approach.

9 Conclusion and Future Work
In this paper, we build a preliminary framework for object-level keyword search
over XML data. In particular, we model XML data as the interconnected object-
trees, based on which we propose two main matching semantics, namely ISO

† Google Scholar: http://scholar.google.com. Microsoft Libra: http://libra.msra.cn

(Interested Single Object) and IRO (Interested Related Object), to capture dif-
ferent user search concerns. A customized ranking scheme is proposed by taking
both the structure and content of the results into account. Efficient algorithms
are designed to compute and rank the query results in one phase, and extensive
experiments have been conducted to show the effectiveness and efficiency of our
approach. In future, we plan to investigate how to distinguish the relationship
types among objects and utilize them to define more precise matching semantics.

10 Acknowledgement
Jiaheng Lu was partially supported by 863 National High-Tech Research Plan
of China (No: 2009AA01Z133, 2009AA01Z149), National Science Foundation of
China (NSFC) (No.60903056, 60773217), Key Project in Ministry of Education
(No: 109004) and SRFDP Fund for the Doctoral Program(No.20090004120002).

References

1. Berkeley DB. http://www.sleepycat.com/.
2. http://www.xml-benchmark.org/.
3. Z. Bao, B. Chen, T. W. Ling, and J. Lu. Demonstrating effective ranked xml

keyword search with meaningful result display. In DASFAA, 2009.
4. Z. Bao, T. Ling, B. Chen, and J. Lu. Effective xml keyword search with relevance

oriented ranking. In ICDE, 2009.
5. B. Chen, J. Lu, and T. Ling. Exploiting id references for effective keyword search

in xml documents. In DASFAA, 2008.
6. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic search engine

for XML. In VLDB, 2003.
7. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:ranked keyword

search over XML documents. In SIGMOD, 2003.
8. H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches on graphs.

In SIGMOD, 2007.
9. V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword prox-

imity search in XML trees. In TKDE, pages 525–539, 2006.
10. V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational

databases. In VLDB, 2002.
11. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on

XML graphs. In ICDE, 2003.
12. V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, and R. Desai. Bidirectional

expansion for keyword search on graph databases. In VLDB, 2005.
13. G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for valuable lcas

over xml documents. In CIKM, 2007.
14. W. Li, K. Candan, Q. Vu, and D. Agrawal. Retrieving and organizing web pages

by information unit. In WWW, 2001.
15. Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery. In VLDB, 2004.
16. Z. Liu and Y. Chen. Identifying meaningful return information for xml keyword

search. In SIGMOD, 2007.
17. Z. Liu and Y. Chen. Reasoning and identifying relevant matches for xml keyword

search. volume 1, pages 921–932, 2008.
18. Z. Liu, P. Sun, Y. Huang, Y. Cai, and Y. Chen. Challenges, techniques and direc-

tions in building xseek: an xml search engine. volume 32, pages 36–43, 2009.
19. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
20. Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in

XML databases. In SIGMOD, 2005.

