
INCREMENTAL CLUSTERING FOR TRAJECTORIES

BY

ZHENHUI LI

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Professor Jiawei Han

Abstract

Trajectory clustering has played a crucial role in data analysis since it reveals underlying trends of

moving objects. Due to their sequential nature, trajectory data are often received incrementally,

e.g., continuous new points reported by GPS system. However, since existing trajectory clustering

algorithms are developed for static datasets, they are not suitable for incremental clustering with

the following two requirements. First, clustering should be processed efficiently since it can be

frequently requested. Second, huge amounts of trajectory data must be accommodated, as they

will accumulate constantly.

An incremental clustering framework for trajectories is proposed in this paper. It contains two

parts: online micro-cluster maintenance and offline macro-cluster creation. For online part, when

a new bunch of trajectories arrives, each trajectory is simplified into a set of directed line segments

in order to find clusters of trajectory subparts. Micro-clusters are used to store compact summaries

of similar trajectory line segments, which take much smaller space than raw trajectories. When

new data are added, micro-clusters are updated incrementally to reflect the changes. For offline

part, when a user requests to see current clustering result, macro-clustering is performed on the

set of micro-clusters rather than on all trajectories over the whole time span. Since the number of

micro-clusters is smaller than that of original trajectories, macro-clusters are generated efficiently

to show clustering result of trajectories. Experimental results on both synthetic and real data sets

show that our framework achieves high efficiency as well as high clustering quality.

ii

To my family for all their love.

iii

Acknowledgments

First, I would like to thank Professor Jiawei Han for his guidance and insightful comments for my

research work. Second, I would like to thank all the faculties and colleagues in DAIS (Data and

Information System) research group at the University of Illinois, Urbana-Champaign. Especially,

I thank Jae-Gil Lee and Xiaolei Li for their help throughout the writing of the thesis.

iv

Table of Contents

List of Figures . vi

Chapter 1 Introduction . 1

Chapter 2 General Framework . 4
2.1 Problem Statement . 4
2.2 TCMM Framework . 5

Chapter 3 Trajectory Clustering using Micro- and Macro-Clustering 6
3.1 Trajectory Micro-Clustering . 6

3.1.1 Micro-Cluster Definitions . 7
3.1.2 Creating and Updating Micro-Clusters . 8
3.1.3 Merging Micro-Clusters . 10

Chapter 4 Trajectory Macro-Clustering . 14

Chapter 5 Experiments . 15
5.1 Synthetic Data . 15
5.2 Real Animal Data in Free Space . 16
5.3 Real Traffic Data in Road Network . 17
5.4 Parameter Sensitivity . 18

Chapter 6 Related Work . 20

Chapter 7 Discussion . 22

Chapter 8 Conclusions . 23

References . 24

v

List of Figures

2.1 The Framework . 5

3.1 Representative Line Segment . 8
3.2 Line Segments Distance . 8
3.3 Merging micro-clusters . 10
3.4 Micro-Cluster Extent . 11
3.5 Line Segments Distance with Extent . 12

5.1 Micro-clusters from synthetic data . 15
5.2 Effectiveness Comparison (Deer) . 16
5.3 Efficiency Comparison (Deer) . 16
5.4 Taxi Experiment . 17
5.5 Effectiveness Comparison(Taxi) . 18
5.6 Efficiency Comparison(Taxi) . 18
5.7 Effectiveness with dmax . 18
5.8 Efficiency with dmax . 18

vi

Chapter 1

Introduction

In recent years, the collection of trajectory data has become increasingly common. GPS chips

implanted in animals have enabled scientists to track their study objects as they travel. RFID

technology installed in vehicles has enabled traffic officers to track road traffic in real-time. With

such data, trajectory clustering is a very useful task. It discovers movement patterns that help

analysts see overall trends in the trajectories. For example, analysis of bird feeding and nesting

habits is an important task. With the help of GPS, scientists can tag and track birds as they fly

around. Such tracking devices report the trajectories of animals on a continual basis (e.g., every

minute, every hour). With such data, scientists can study the movement habits (i.e., trajectory

clusters) of birds.

One important property with tracking application is the incremental nature of the data. The

data will grow to be in huge size as time goes by. Consider the following real case of moving vehicle

data which is used in experiment evaluation.

Example 1 A taxi tracking system tracks the real-time locations of more than 5,000 taxis in San

Francisco. With the sensor installed on each taxi, the system is able to receive information about

current location(longitude and latitude) of each taxi with a precise timestamp. The system accumu-

lates the updated data every minute. After a single day, the system will collect totally 7.2 million

points with 1,440 points for each taxi. After a week, the number of points will be accumulated to

50.4 million points.

For static data sets, there are many existing trajectory clustering algorithms developed. How-

ever, to the best of our knowledge, none of them targeted at solving clustering problem for in-

cremental huge trajectory data as pointed out in Example 1. Gaffney et al. [9, 8] proposed a

probabilistic clustering technique for trajectories. The problem with this statistical approach is

1

that it considers trajectories as a whole. But in the real cases, one trajectory can be very long and

complicated while subparts of different trajectories may share similar paths. These common paths

of sub-trajectories could be interesting trajectory clusters. Lee et al. [12] proposed a trajectory

clustering algorithm TRACLUS based on the partition-and-group framework. This is the first work

that mines clusters from a sequence of sub-trajectories. It first partitions trajectories into several

line segments with least information loss, then group them into clusters. The followed work of

Lee et al. [13, 11] on trajectory outliers detection and trajectory classification based on the idea of

sub-trajectories shows that it is necessary and important to mine interesting knowledge on partial

trajectories rather than on the whole trajectories. However, neither of these algorithms is able to

handle the case when the input data is continuously updated since they require the complete input

data be available. Facing continuous data, previous methods will take long time to retrieve all

the data and re-compute the trajectory cluster over the whole huge data set. If the users want to

track real-time clusters every hour, it is almost impossible to finish computation within the time

period threshold, especially considering the data size still keeps growing every minute. Therefore,

trajectory data must be accommodated incrementally.

A näıve solution to the incremental trajectory clustering problem is to re-compute the clusters

over the whole data set when a clustering request is evoked. But, it can become quite expensive

after huge data has accumulated. And in real world scenarios, the application will be running for a

long time (e.g., months or years), to efficiently compute trajectory clusters will be a major obstacle.

So it is desirable to adjust the clusters incrementally as new data coming in.

An important point to notice is that new data will only affect local shifts. It will not have big

influence on clusters in the areas which are far away from the local area of new data. So, a more

sensible approach to accommodate huge amount of data is to maintain and adjust micro-clusters

of the trajectory data. Micro-clusters are tight clusters over small local regions. Due to their small

sizes, they are more flexible to changes in the data source. Yet they still achieve the desired space

savings of clusters by summarizing extremely similar input trajectories. These properties make

them suitable for incremental clustering.

This work proposes an incremental Trajectory Clustering using Micro- and Macro-clustering

framework called TCMM. It makes the following contributions towards an incremental trajectory

2

clustering solution. First, trajectories are simplified by partitioning into line segments to find the

clusters of sub-trajectories. Second, micro-clusters of the partitioned trajectories are computed

and maintained incrementally. Micro-clusters hold and summarize similar trajectory partitions at

very fine granularity levels. They use very little space and can be updated efficiently. And finally,

micro-clusters are used to generate the macro-clusters(i.e., final trajectory clusters).

The TCMM framework is truly incremental in the sense that micro-clusters are incrementally

maintained as more and more data are received. Because their granularity level is low, they can

adjust to all types of change in the input data. The number of micro-clusters is much smaller

than that of the original input data. When the user wants to compute the full trajectory clusters,

micro-clusters are combined together to form the macro-clusters in higher granularity level.

The rest of this paper is organized as follows. Section 2 formally defines the problem and gives

an outline of the TCMM framework. Sections 3.1 and 4 discuss the micro-clusters and the macro-

clusters, respectively. Experiments are shown in Section 5. Related work is analyzed in Section 6.

Finally, the paper concludes in Section 8.

3

Chapter 2

General Framework

2.1 Problem Statement

The data to be studied in this work will be in the context of an incremental data source. That is,

new batches of trajectory data will continuously be fed into the clustering algorithm (e.g., from

new data recordings). The goal is to process such data and produce clusters incrementally and not

have to re-compute from scratch every time.

Let the input data be represented by a sequence of time-stamped trajectory data sets: 〈It1 , It2 , . . .〉

where each Iti is a set of trajectories being presented at time ti. Each Iti = {TR1, TR2, . . . , TRnTR
}

where each TRj is a trajectory. A single trajectory TRj is often represented as a polyline, which is

a sequence of connected line segments. It can be denoted as TRj = p1p2 . . . plenj
, where each point

pi is a time-stamped point. TRj can be further simplified to derive a new polyline with fewer points

while its deviation from the original polyline is below some threshold. The simplification techniques

have been studied extensively in previous work [12, 5] . In this paper, we use the simplification tech-

nique in our previous paper [12]. Simplified trajectory is represented as TRsimplified
j = L1L2 . . . Ln,

where Li and Li+1 are connected directed line segments (i.e., trajectory partitions).

Given such input data, the goal is to produce a set of clusters O = {C1, C2, . . . , CnC
}. A

cluster is a set of directed trajectory line segments Ci = {L1, L2, . . . , Lln}, where Lk is a directed

line segment from certain simplified trajectory TRsimplified
j at certain time stamp ti. Because we

do clustering on line segments rather than whole trajectories, the clusters we find are actually

sub-trajectory clusters, which are the popular paths visited by many moving objects.

4

2.2 TCMM Framework

Figure 2.1 shows the general data flow of TCMM. The x-axis represents the progress of time and

the y-axis shows the progress of data processing. As the figure illustrates, input data are received

continuously.

Time

Micro−
Clustering

Macro−
Clustering

Trajectories
Simplified

Data Flow

Figure 2.1: The Framework

The first step is micro-clustering. Because there is an infinite data source, it is impossible to

store all the preprocessed input data and compute clusters from them on request. To solve this

problem, this work introduces the concept of trajectory micro-clusters. The term “micro” refers to

the extreme tightness of the clusters. The idea is to only cluster at very fine granularity. Hence,

the number of micro-clusters is much larger than that of final trajectory clusters. Figure 2.1 shows

the micro-clusters in the second row. Section 3.1 will discuss them in detail.

The second step is macro-clustering, which will be discussed in detail in Section 4. Compared

to the micro-clustering step, which are updated constantly as new data is received, the macro-

clustering step is only evoked after receiving the user’s request of trajectory clusters. This step will

then use the micro-clusters as input.

5

Chapter 3

Trajectory Clustering using Micro-

and Macro-Clustering

3.1 Trajectory Micro-Clustering

As newly arrived trajectories will only affect local clustering result, trajectory micro-clusters (or just

micro-clusters) are introduced here to maintain a fine-granularity clustering. Micro-clusters (defined

in Section 3.1.1) are much more restrictive than the final clusters in the sense that each micro-

cluster is meant to only hold and summarize the information of local partitioned trajectories. Micro-

clustering will enable more efficient computation of final clusters comparing with computation from

original line segments.

Algorithm 1 Trajectory Micro-Clustering

1: Input:New trajectories Itcurrent = {TR1, TR2, · · · , TRnTR} and existing micro-clusters MC =
{MC1, MC2, . . . , MCnMC

}.
2: Parameter: dmax

3: Output: Updated MC with new trajectories inserted.
4: Algorithm:
5: for every TRi ∈ Itcurrent do
6: for every Lj ∈ TRi do
7: Find the closest MCk to line segment Lj /* Section 3.1.2 */
8: if distance(Lj , MCk) ≤ dmax then
9: Add Lj into MCk and update MCk accordingly

10: else
11: Create a new micro-cluster MCnew for Lj ;
12: if size of MC exceeds memory constraint then
13: Merge micro-clusters in MC /* Section 3.1.3 */
14: end if
15: end if
16: end for
17: end for

Algorithm 1 shows the general work flow of generating and maintaining micro-clusters. It

proceeds as follows. After a batch of new trajectories arrive, we compute the closest micro-cluster

6

MCk for each line segment Li in every trajectory. If the distance between Li and MCk is less than

a distance threshold (dmax), Li will be inserted into MCk. Otherwise, a new micro-cluster MCnew

will be created for Li. If the creation of the new micro-cluster results in the overload of the total

number of micro-clusters, some micro-clusters will be merged. The rest of this section discuss these

steps in detail.

3.1.1 Micro-Cluster Definitions

Each trajectory micro-cluster will hold and summarize a set of partitioned trajectories, which are

essentially line segments.

Definition 1 (Micro-Cluster) A trajectory micro-cluster (or micro-cluster) for a set of directed

line segments L1, L2, · · · , LN is defined as the tuple: (N , LScenter, LSθ, LSlength, SScenter, SSθ,

SSlength), where N is the number of line segments in the micro-cluster, LScenter, LSθ, and LSlength

are the linear sums of the line segments’ center points, angles and lengths respectively, SScenter,

SSθ, and SSlength are the squared sums of the line segments’ center points, angles and lengths

respectively.

The definition of trajectory micro-cluster is an extension of the cluster feature vector in BIRCH

[16]. The linear sum LS represents the basic summarized information of line segments(i.e., center

point, angle and length). The square sum SS will be used to calculate the tightness of micro-cluster

which will be discussed in Section 3.1.3. The additive nature of the definition makes it easy to add

new line segments into the micro-cluster and merge two micro-clusters. Meanwhile, the definition

is designed to be consistent with the distance measure of line segments in Section 3.1.2.

Also, every trajectory micro-cluster will have a representative line segment. As the name sug-

gests, this line segment is the representative line segment of the cluster. It is an “average” of

sorts.

Definition 2 (Representative Line Segment) The representative line segment of a micro-cluster

is represented by the starting point s and ending point e. s and e can be computed from the micro-

7

cluster features.

s = (centerx −
cos θ

2
len, centery −

sin θ

2
len)

e = (centerx +
cos θ

2
len, centery +

sin θ

2
len)

where centerx = LScenterx/N , centery = LScentery/N , len = LSlength/N , and θ = LSθ/N .

Input Line Segment
Representative Line Segment

Figure 3.1: Representative Line Segment
Figure 3.2: Line Segments Distance

Figure 3.1 shows an example. There are four line segments in the micro-cluster, which are

drawn in thin lines. The representative line segment of the micro-cluster is drawn in a thick line.

3.1.2 Creating and Updating Micro-Clusters

When a new line segment Li is received, the first task is to find the closest micro-cluster MCk that

can absorb Li (i.e., Line 7 in Algorithm 1). If the distance between Li and MCk is less than the

distance threshold dmax, Li is then added to MCk and MCk is updated accordingly; if not, a new

micro-cluster is created (i.e., Line 8 to 11 in Algorithm 1). This section will discuss how these steps

are performed in detail.

Before proceeding, the distance between a line segment and a micro-cluster is defined. Since a

micro-cluster has its representative line segment, the distance is in fact defined between two line

segments, which is composed of three components: the center point distance (dcenter), the angle

distance (dθ) and the parallel distance (d‖) . The distance is adapted from a similarity measure

used in the area of pattern recognition [10], which is a modified line segment Hausdorff distance.

The similar distance measure is also used in [12]. Different from [12], we use component dcenter

instead of d⊥. The reason to choose dcenter is because it is a more balanced measure between dθ

and d‖ and it is easier to adapt the concept of extent, which will be introduced in Section 3.1.3.

8

Let si and ei be the starting and ending points of Li; similarly for sj and ej with Lj . Without

loss of generality, the longer line segment is assigned to Li, and the shorter one to Lj . Figure 3.2

gives an intuitive illustration of the distance function.

Definition 3 The distance function is defined as the sum of three components:

dist(Li, Lj) = dcenter(Li, Lj) + dθ(Li, Lj) + d‖(Li, Lj)

The center distance:

dcenter(Li, Lj) =‖ centeri − centerj ‖ ,

where ‖ centeri − centerj ‖ is the Euclidean distance between center points of Li and Lj.

The angle distance:

dθ(Li, Lj) =

‖ Lj ‖ × sin(θ), 0o ≤ θ < 90o

‖ Lj ‖, 90o ≤ θ ≤ 180o

,

where ‖ Lj ‖ denote length of Lj, θ(0o ≤ θ ≤ 180o) denote the smaller intersecting angle between

Li and Lj. Note that the range of θ is not [0o, 360o) because θ is the value of smaller intersecting

angle without considering the direction.

The parallel distance:

d‖(Li, Lj) = min(l‖1, l‖2),

where l‖1 is the Euclidean distances of ps to si and l‖2 is that of pe to ei. ps and pe are the projection

points of the points sj and ej onto Li respectively.

After finding the closest micro-cluster MCk, if the distance from Li is less than dmax, Li is

inserted into it, and the linear and square sums in MCk are updated accordingly. Because they

are just sums, the additivity property applies and the update is efficient. If the distance between

the nearest micro-cluster and Li is bigger than dmax, a new micro-cluster will be created for Li.

The initial measures in the new micro-cluster is simply derived from line segment Li (i.e., center

point, theta, and length).

9

3.1.3 Merging Micro-Clusters

In real world applications, storage space is always a constraint. The TCMM framework faces this

problem with its micro-clusters as shown in Line 12 to 13 of Algorithm 1. If the total space

used by micro-clusters exceeds a given space constraint, some micro-clusters have to be merged

to satisfy the space constraint. Meanwhile, if the number of micro-clusters keeps increasing, it

will affect the efficiency of algorithm because the most time-consuming part is finding the nearest

micro-cluster. And what is most important, it may be unnecessary to keep all the micro-clusters

since some of the micro-clusters may become closer after several rounds of updates. Therefore, the

algorithm demands merging close micro-clusters when necessary to speed up efficiency and save

storage. Obviously, pairs of micro-clusters that contain similar line segments are better candidates

for merging because the merge results in less information loss.

One way to compute the similarity between two micro-clusters is to calculate the distance

between the representative line segments of the micro-clusters. Though intuitive, this method fails

to consider the tightness of the micro-clusters. Figure 3.3 shows an example that how tightness

Merge

Tight micro−cluster A

Tight micro−cluster B

(a) Merging tight micro-clusters

Loose micro−cluster D

Merge

Loose micro−cluster C

(b) Merging loose micro-clusters

Figure 3.3: Merging micro-clusters

might effect distance between two micro-clusters. Figure 3.3(a) shows two tight micro-clusters and

the micro-cluster after merging them. Figure 3.3(b) shows the case for two comparatively loose

micro-clusters. We can see that micro-cluster A and micro-cluster C have same representative line

segments, and so do micro-clusters B and D. Thus the distance between micro-cluster A and B

should be the same as that between micro-clusters C and D if we measure the distance only using

representative line segments. In this case, the chance to merge micro-clusters A and B is equal

to that of merging micro-clusters C and D. However, we actually prefer merging micro-clusters C

and D. There are two reasons: on one hand, if both micro-clusters are very tight, they may not be

10

good candidates for merging because it would break that tightness after the merge. On the other

hand, if they are both loose, it may not do much harm to merge them even if their representative

line segments are somewhat far apart. Hence, a better approach would be to consider the extent

of the micro-clusters and use that information in computing the distance between micro-cluster.

In the following parts, we will first introduce the way to compute micro-cluster extent, then give

definitions of the distance between micro-clusters with extent information. Lastly, we will discuss

how to merge two micro-clusters.

Micro-Cluster Extent The extent of a micro-cluster is an indication of its tightness. Recall

that micro-clusters are represented by tuples of the form: (N , LScenter, LSθ, LSlength, SScenter,

SSθ, SSlength), which maintain linear and square sums of center, angle and length. The extent

of the micro-cluster also includes three part extentcenter, extentθ and extentlength to measure the

tightness of three basic facts of a trajectory micro-cluster. The extents are the standard deviation

that calculated from its corresponding LS and SS. We have the following lemma from [16].

Lemma 1 Given a set of distance values, D = (d1, d2, ..., dn). Let LS =
∑

i=1..n di, and SS =

∑

i=1..n(di)
2. The standard deviation of the distances is σ =

√

n×SS−(LS)2

n2 .

Using Lemma 1, we give a formal definition for extent of a micro-cluster:

extentα =
√

(N × SSα − LS2
α)/N2

where symbol α represents center, θ, or length and N is the number of line segments in the

micro-cluster.

centerextentinput line segment
representative line segment

(a) Center extent

θextent

(b) θ extent

lenextent

(c) Length extent

Figure 3.4: Micro-Cluster Extent

To give an intuition of extent concept, Figure 3.4 shows an example of extentcenter, extentθ

and extentlength. Figure 3.4(a) states that “most” center points of the line segments stored in

11

this micro-cluster are within the circle of radius extentcenter. Figure 3.4(b) illustrates that “most”

angles vary within a range of extentθ and Figure 3.4(c) reflects the uncertainty of length.

Micro-Cluster Distance with Extent With the extents properly defined, we can now incorpo-

rate them into the distance function. Recall that the intention of extent was to adjust the distance

function based on the tightness of micro-clusters. For instance, let d1,2 be the distance between

micro-clusters MC1 and MC2 according to the distance function defined previously. If these two

micro-clusters are both “tight” (i.e., having zero or very small extent), then d1,2 indeed represents

the distance between them. However, if these two micro-clusters are both “loose” (i.e., having

large extent), then their “true” inter-cluster distance should actually be less than d1,2. This is

because the line segments at the borders of the two micro-clusters are likely to be much closer than

d1,2. With respect to merging micro-clusters, this allows loose micro-clusters to be more easily

merged and vice-versa. The adjustment of the distance function using extent is relatively simple.

Whenever possible, extent is used to reduce the distance between the representative line segments

of micro-clusters.

(a) Center distance with extent (b) Parallel distance with extent (c) Angle distance with extent

Figure 3.5: Line Segments Distance with Extent

To measure the distance between micro-cluster i and micro-cluster j, it is equivalent to measure

the distance d∗(L∗
i , L

∗
j) between the representative line segments L∗

i with extenti and L∗
j with

extentj . Figure 3.5 shows an intuitive example of distance measure with extent. For example, in

Figure 3.5(a), the distance between the centers is the distance between representative line segments

minus the center extents of two micro-clusters. The formal definition is given as follows based on

the modification of distance measure between line segments (i.e., Definition 3). To avoid the

redundancy in presentation, the symbols explained in Definition 3 are not repeated in Definition 4.

Definition 4 The distance between L∗
i and L∗

j contains three parts: center distance d∗center, angle

12

distance d∗θ and parallel distance d∗‖.

dist(L∗
i , L

∗
j) = dcenter(L

∗
i , L

∗
j) + dθ(L

∗
i , L

∗
j) + d‖(L

∗
i , L

∗
j)

The center distance:

d∗center(L
∗
i , L

∗
j) = max

(

0, ‖centeri − centerj‖ − extenticenter − extentjcenter

)

The angle distance:

θ∗ = θ − (extentiθ + extentjθ)

d∗θ(L
∗
i , L

∗
j) =

‖ L∗
j ‖ × sin(θ∗), 0o ≤ θ∗ < 90o

‖ L∗
j ‖, 90o ≤ θ∗ ≤ 180o

The parallel distance:

d∗‖(L
∗
i , L

∗
j) = max

(

0, min(l‖1, l‖2) − (extentilength + extentjlength)/2
)

,

where extentjlength is the projection of extentjlength onto L∗
i .

Note that the distances defined between two representative line segments with extent are smaller

than those defined between two original ones. And the distance may be equal to zero when there

is an overlap between representative line segments with extent.

Merging Algorithm The final algorithm of merging micro-clusters is as follows. Given M micro-

clusters, the distance between any two micro-clusters is calculated. They are then sorted from the

most similar to the least similar. The most similar pairs are the best candidate for merging since

merging them result in the least amount of information loss. They are merged until the number of

micro-clusters satisfy the given space constraints.

13

Chapter 4

Trajectory Macro-Clustering

The last step in the TCMM framework produces the overall trajectory clusters. While micro-

clustering is processed with a new batch of data comes in, macro-clustering is evoked only when it

is called upon by the user.

Since the distance between micro-clusters is defined in Definition 4, it is easy to adapt any

clustering method on spatial points. We simply need to replace the distancce between spatial points

with the distance between micro-clusters. In our framework, we use density-based clustering [7],

which is also used in TRACLUS [12]. The clustering technique in macro-clustering step is the

same as the clustering algorithm in TRACLUS. The only difference is that macro-clustering in

TCMM is performed on the set of micro-clusters rather than the set of trajectory partitions as in

TRACLUS. The micro-clusters are clustered through a density-based algorithm which discovers

maximally “density-connected” components, each of which forms a macro-cluster.

14

Chapter 5

Experiments

This section tests the efficiency and effectiveness of the proposed framework under a variety of

conditions with different datasets. The TCMM framework and the TRACLUS [12] framework are

both implemented using C++ and compiled with gcc. All tests were performed on a Intel 2.4GHz

PC with 2GB of RAM.

5.1 Synthetic Data

(a) Micro-clusters at snapshot 1 (b) Micro-clusters at snapshot 2

Figure 5.1: Micro-clusters from synthetic data

As a simple way to quickly test the “accuracy” of TCMM, synthetic trajectory data is generated.

Objects are generated to move along pre-determined paths with small perturbations (< 10% relative

distance from pre-determined points). 15% trajectories are random noises added to the data. Figure

5.1 shows the result of incremental micro-clustering at two different snapshots. Figure 5.1(a) shows

raw trajectories in gray; one can clearly see the trajectory clusters. The extracted micro-clusters are

drawn with red/bold lines; they match the intuitive clusters. Figure 5.1(b) shows the trajectories

and extraction results for a later snapshot. Again, they match the intuitive clusters.

15

5.2 Real Animal Data in Free Space

Next, clusters are computed from deer movement data 1 in Year 1995. This data set contains 32

trajectories with about 20, 000 points in total. The dataset size of animal is considerably small

due to the high expense and technological difficulties to track animals. But it is worth studying

animal data because the trajectories are in free space rather than on restricted road network. In

Section 5.3, a further evaluation on a much larger vehicle dataset containing over 7, 000 trajectories

will be conducted.

To the best of our knowledge, there is no any other incremental trajectory clustering algorithm.

So the results of TCMM will be compared with TRACLUS [12], which does trajectory clustering

over the whole data set. Since micro-clusters in TCMM summarize original line segments infor-

mation with some information loss, the clustering result on micro-clusters might not be as real as

TRACLUS. So the cluster result from TRACLUS is used as a standard to test the accuracy of

TCMM. Meanwhile, it is important to show the efficiency against TRACLUS while both results

are similar.

We adapt performance measure, sum of square distance (SSQ), from CluStream [1] to test

the quality of clustering results. Assume that there are a total of n line segments at the current

timestamp. For each line segment Li, we find the centroid (i.e., representative line segment) CLi

of its closest macro-cluster, and compute d(Li, CLi
) between Li and CLi

. The SSQ at timestamp

is equal to the sum of d2(Li, CLi
) and the average SSQ is SSQ/n.

 5000

 4000

 3000

 2000

 1000

 0
 20064 16029 11718 6900

A
ve

ra
ge

 S
S

Q

Number of Trajectory Points Loaded

TCMM
TRACLUS

Figure 5.2: Effectiveness Comparison (Deer)

 50

 10

 0.5

 0.1
 20064 16029 11718 6900

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Trajectory Points Loaded

TCMM
TRACLUS

Figure 5.3: Efficiency Comparison (Deer)

As shown in Algorithm 1, there is only one parameter dmax in micro-clustering step and we set

it to 10. The parameter sensitivity is analyzed and discussed in Section 5.4. For macro-clustering

and TRACLUS, they use the same parameters ε and MinLns. Here, ε is set to 50 and MinLns

1http://www.fs.fed.us/pnw/starkey/data/tables/

16

is set to 8.

Figure 5.2 shows the quality of clustering results. Comparing with TRACLUS, the average

SSQ of TCMM is slightly higher. In the worst case, the average SSQ of TCMM is 2% higher

than TRACLUS. But the processing time of TCMM is significantly faster than TRACLUS. To

process all the 20, 000 points, TCMM only takes 0.7 seconds while TRACLUS takes 43 seconds.

The reason is that it is much faster to do clustering over micro-clusters rather than over all the

trajectory partitions. With the deer dataset, at last, the number of trajectory partitions (3390) is

much more than the number of micro-clusters (324) in total.

5.3 Real Traffic Data in Road Network

Real world GPS recorded data from a taxi company in San Francisco is used to test the perfor-

mance of TCMM. The data set is huge and keeps growing as time goes by. It contains 7,727

trajectories(100, 000 points) of taxis as they travel around the city picking up and dropping off

passengers.

Micro Clusters

Macro Clusters

TRACLUS
Time 0 Time 1 Time 2

Figure 5.4: Taxi Experiment

Figure 5.4 shows the visual clustering result of taxi data. First row and second row show the

micro-clusters (dmax set to 800) and macro-clusters (ε set to 50 and MinLns set to 8). Last row

shows cluster result from TRACLUS. Time 0, 1, and 2 correspond to the timestamps respectively

when 52317, 74896, and 98002 trajectory points have been loaded. As we can see from Figure 5.4,

the results from TCMM and TRACLUS are similar except very few differences. The similar

17

 5000

 4000

 3000

 2000

 1000

 0
 98002 74896 52317 24210

A
ve

ra
ge

 S
S

Q

Number of Trajectory Points Loaded

TCMM
TRACLUS

Figure 5.5: Effectiveness Comparison(Taxi)

 10000

 1000

 100
 98002 74896 52317 24210

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Trajectory Points Loaded

TCMM
TRACLUS

Figure 5.6: Efficiency Comparison(Taxi)

clustering performance is further proved in Figure 5.5, where the average SSQ of TCMM is only

slightly higher than that of TRACLUS (2% higher in worst case and 1.4% higher on average).

Regarding to efficiency issue, Figure 5.6 shows the time needed to process the data in 4 incre-

ments with TCMM and TRACLUS. Compared to previous data sets, TRACLUS is substantially

slower this time due to the larger data set size. To process all the data, TRACLUS takes about 4.6

hours while TCMM only takes about 7 minutes to finish. This is because the number of trajectory

partitions (52,600) is much larger than the number of micro-clusters (2,013). It means that TCMM

is much more efficient than TRACLUS as data set is getting bigger, while at the same time, the

effectiveness remains the same as TRACLUS.

5.4 Parameter Sensitivity

 5000

 4000

 3000

 2000

 1000

 0
 98002 74896 52317 24210

A
ve

ra
ge

 S
S

Q

Number of Trajectory Points Loaded

TCMM(d_max=600)
TCMM(d_max=800)

TCMM(d_max=1000)
TRACLUS

Figure 5.7: Effectiveness with dmax

 10000

 1000

 100
 98002 74896 52317 24210

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Trajectory Points Loaded

TCMM(d_max = 600)
TCMM(d_max = 800)

TCMM(d_max = 1000)
TRACLUS

Figure 5.8: Efficiency with dmax

The micro-clustering step of TCMM has the nice property that it only requires one parameter:

dmax. A large dmax builds micro-clusters that are large in individual size but small in overall

quantity, whereas a small dmax has the opposite effect. If we set dmax = 0, TCMM is actually

TRACLUS because each line segment will form a micro-cluster itself. Then the macro-clustering

applied on micro-clusters is exactly the one applied on original line segments. Therefore, the smaller

18

the dmax is, the better the quality of clustering should be but the longer processing time is needed.

At the same time, if we set dmax larger, the algorithm runs faster but loses more information in

micro-clustering. Hence there is a trade-off between effectiveness and efficiency.

We use taxi datasets to study the parameter sensitivity of our algorithm. Figure 5.7 and

Figure 5.8 show the performance of TCMM with different dmax. We can see that when dmax = 600,

the average SSQ is closer to that of TRACLUS, which shows that it has more similar performance

as TRACLUS. But it also takes longer time to do clustering when dmax = 600. However, comparing

with TRACLUS, the time spent on incremental clustering is still significantly shorter.

19

Chapter 6

Related Work

Clustering has been studied extensively in machine learning and data mining. A number of ap-

proaches have been proposed to process point data in various conditions , such as k-means [14],

BIRCH [16, 3] and OPTICS [2]. The micro-clustering step in TCMM share the idea of micro-

clustering in BIRCH [16]. However, BIRCH [16] cannot handle trajectory clustering. The clustering

feature in TCMM has been extended to exactly describe a line-segment cluster by including three

kinds of information. The data bubble [3] is an extension of the BIRCH framework and introduces

the idea of the extent. TCMM also uses the extent in its micro-cluster, but the definition has been

changed to accommodate trajectories.

Trajectory clustering has been studied in various contexts. Gaffney et al. [9, 4, 8] proposes

several algorithms for model-based trajectory clustering. TRACLUS [12] is a trajectory clustering

algorithm which performs density-based clustering over the entire set of sub-trajectories. How-

ever, all of these algorithms cannot efficiently handle incremental data. They are not suitable for

incremental data since clusters are re-calculated from scratch every time.

CluStream [1] studies clustering dynamic data streams. Our method adapts its micro-/macro-

clustering framework for trajectory data. However, our method so far handles only incremental data

but not trajectory streams. This is because sub-trajectory micro-clustering has to wait for nontrivial

number of new points accumulated to form sub-trajectories, which needs addition buffer space

and waiting time. Moreover, the processing of sub-trajectories is more expensive and additional

processing power is needed for real time stream processing. Thus, the extension of our framework

for trajectory streaming left for future research.

Ester et al. [6] proposes the Incremental DBSCAN algorithm, which is an extension of DBSCAN

for incremental data. Here, the final clusters are directly updated based on new data. We believe

our two-step process is more flexible since any clustering algorithm can be employed for macro-

20

clustering, whereas IncrementalDBSCAN is dedicated to DBSCAN. More recently, Sacharidis et

al. [15] discusses the problem of online discovering hot motion. The basic idea is to delegate part

of the path extraction process to objects, by assigning to them adaptive lightweight filters that

dynamically suppress unnecessary location updates. Their problem is different from ours in two

ways: first, they are trying to find recent hot paths whereas our clusters target at whole time span;

and second, they require the objects in a moving cluster to be close enough to each other at any

time instant during a sliding window of W time units but we are more from geometric point of

view to measure the distance between trajectories.

21

Chapter 7

Discussion

The TCMM framework is general in the sense that it can accept many modifications to handle

different incremental data source. For example, when new batches of trajectory data received

during the time interval [ti−1, ti], i.e., Iti − Iti−1
, they are categorized into two types: (i) continuing

parts of existing trajectories and (ii) beginning parts of brand-new trajectories. Our framework

can handle both types of new data, but these types are not distinguished at first. Thus, the moving

objects’ identities are not included or required in the input data at this point.

Previously, micro-clusters stored line segments without remembering the corresponding trajec-

tories. It makes the micro-clusters incapable of linking existing trajectories to new ones. However,

if the micro-clusters remembered the IDs of the corresponding trajectories, it would be easy to

establish the links. The modification is as follows: in addition to the existing features in every

micro-cluster, the corresponding trajectory IDs of the line segments are also recorded. In other

words, each micro-cluster records which trajectories contribute to its being. During the macro-

clustering stage, these IDs are used to conditionally link micro-clusters. If two micro-clusters do

not share any IDs, then they will not be connected in the density clustering. It will have the effect

of creating new clusters for new trajectory beginnings.

Notice that these modifications comes with a cost. With regards to space, each micro-clusters

will have to hold a set of trajectory IDs. With regards to efficiency, set intersection operations will

have to be performed during macro-clustering. Both these costs are straightforward but nontrivial.

Some techniques such as bitmap index could be implemented to improve the performance.

22

Chapter 8

Conclusions

In this work, we have proposed the TCMM framework for incremental clustering of trajectory data.

It uses a two-step process to handle incremental datasets. The first step maintains a flexible set

of micro-clusters that is updated continuously with the input data. Micro-clusters compress the

infinite data source to a finite manageable size while still recording much of the trajectory infor-

mation. The second step, which is on-demand, produces the final macro-clusters of the trajectories

using the micro-clusters as input. Compared to previous static approaches, the TCMM framework

is much more flexible since it does not require all of the input data at once. The micro-clusters

provide a summary of the trajectory data that can be updated easily with any new information.

This makes it more suitable for many real world application scenarios.

23

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data
streams. In VLDB’03.

[2] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify
the clustering structure. In SIGMOD’99.

[3] M. M. Breunig, H.-P. Kriegel, P. Kröger, and J. Sander. Data bubbles: Quality preserving
performance boosting for hierarchical clustering. In SIGMOD’01.

[4] I. V. Cadez, S. Gaffney, and P. Smyth. A general probabilistic framework for clustering
individuals and objects. In KDD’00.

[5] D. Douglas and T. Peucker. Algorithms for the reduction of the number of points required to
represent a line or its character. In The Ameican Cartographer, 1973.

[6] M. Ester, H. P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining
in data warehousing environment. In VLDB’98.

[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases. In KDD’96.

[8] S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and M. Ghil. Probabilistic clustering of
extratropical cyclones using regression mixture models. In Technical Report UCI-ICS 06-02,
University of California, Irvine, Jan. 2006.

[9] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models. In KDD’99.

[10] M. K. Leung J. Chen and Y. Gao. Noisy logo recognition using line segment hausdorff distance.
In Pattern Recognition, 2002.

[11] X. Li J.-G. Lee, J. Han and H. Gonzalez. Traclass: Trajectory classification using hierarchical
region-based and trajectory-based clustering. In VLDB’08.

[12] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-and-group framework.
In SIGMOD’07.

[13] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. Trajectory outlier detection: A partition-and-detect
framework. In ICDE’08.

[14] J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc.
5th Berkeley Symp. Math. Statist, Prob., 1:281–297, 1967.

24

[15] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias, K. Mouratidis, and
T. Sellis. On-line discovery of hot motion paths. In EDBT ’08.

[16] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for
very large databases. In SIGMOD’96.

25

