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PIL: A Platform Independent Language for
Retargetable DSLs

Zef Hemel, Eelco Visser

Software Engineering Research Group, Delft University of Technology,
The Netherlands, Z.Hemel@tudelft.nl, visser@acm.org

Abstract. Intermediate languages are used in compiler construction to simplify
retargeting compilers to multiple machine architectures. In the implementation
of domain-specific languages (DSLs), compilers typically generate high-level
source code, rather than low-level machine instructions. DSL compilers target a
software platform, i.e. a programming language with a set of libraries, deployable
on one or more operating systems. DSLs enable targeting multiple software plat-
forms if its abstractions are platform independent. While transformations from
DSL to each targeted platform are often conceptually very similar, there is little
reuse between transformations due to syntactic and API differences of the target
platforms, making supporting multiple platforms expensive. In this paper, we dis-
cuss the design and implementation of PIL, a Platform Independent Language, an
intermediate language providing a layer of abstraction between DSL and target
platform code, abstracting from syntactic and API differences between platforms,
thereby removing the need for platform-specific transformations. We discuss the
use of PIL in an implemementation of WebDSL, a DSL for building web appli-
cations.

1 Introduction

Intermediate languages have been used in compiler construction since the 1960s [24] to
improve the retargetability of compilers. Rather than generating machine architecture
specific instructions directly, compilers emit machine-independent instructions written
in a low-level intermediate language, which is subsequently translated into machine-
specific instructions by machine-specific compiler back-ends.

In the context of model-driven engineering, research has been focusing on the devel-
opment of compilers for domain-specific languages. Domain-specific languages (DSLs)
raise the level of abstraction in software development by providing constructs to ex-
press high-level concepts from which lower-level implementations are generated. Ide-
ally, compilers that implement the DSL are reused to develop multiple applications
for multiple customers. Rather than generating executable machine code, DSL com-
pilers typically generate source code written in languages such as Java or Python. By
generating source code rather than machine instructions, DSL compilers abstract from
the low-level machine instructions that compilers typically produce. In addition, source
code is much simpler to generate and DSL compilers can therefore be developed much
more efficiently.
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Generating source code instead of machine instructions poses a new retargetabil-
ity challenge at the level of software platforms. A software platform consists of one
or more programming languages with a set of libraries and frameworks, deployable
on one or more operating systems. Dozens of software platforms compete and compa-
nies typically standardize on a single one (e.g. Sun’s Java, Microsoft .NET or LAMP1).
Consequently, DSL vendors have to choose whether to generate code for a single soft-
ware platform, or multiple software platforms. Ideally, a DSL compiler targets many
platforms, to maximize its potential customer base. Whereas encoding implementation
knowledge of domain-specific concepts in a compiler enables the reuse of this knowl-
edge between applications, there is little reuse between the different back-ends of such
a compiler, due to language and library discrepancies between platforms. This lack of
reuse causes significant maintenance problems. For instance, the ANTLR parser gener-
ator [19] has code generator back-ends for over a dozen platforms. However, many of
them are not up-to-date with the latest ANTLR release. Similarly, WebDSL [30], a DSL
for data-intensive web applications, has back-ends for Java and Python, but whenever
a new feature is added to WebDSL, it needs to be implemented and maintained in each
back-end individually, in practice leading to incompatible platform back-ends.

Back-end maintenance is an even more prominent issue when back-ends heavily
rely on the target platform’s syntactic sugar and platform-specific frameworks and li-
braries. Such platform features are designed to enable developers to be productive cod-
ing on that platform. When code is generated, however, such productivity features are of
less value. Specifically, these features complicate the implementation of multiple back-
ends with consistent behavior, due to incompatible semantics across platforms. Thus, to
fully control the behavior of generated code, and consequently the behavior of the DSL,
lower-level code is generated using only a subset of the target platform. Conversely, fea-
tures that are beneficial to code generators are often lacking in programming languages.
Therefore, generating monolithic code artifacts, such as complex classes, can result in
large and complex code generation rules. Such large rules can be circumvented by ex-
tending the target language with code compositionality features such as partial classes
and methods enabling small code generation rules that emit smaller artifacts. Similarly,
code generation features such as identifier concatenation and expression blocks sub-
stantially reduce the size of generation rules.

The lack of reuse between compiler back-ends could be circumvented by perform-
ing automatic language translation, e.g. translating generated Java code to Python, but
this translation is expensive because of the complexity of the Java language and its li-
braries. Efforts to port dynamic languages, specifically Ruby and Python, to the CLR [1,
2] and JVM [3, 4] so that software written in these languages is portable to these plat-
forms, are also very complex, often incomplete and have performance issues.

In this paper we introduce the intermediate language PIL, a Platform Independent
Language providing a level of abstraction between DSL and software platforms, ab-
stracting from discrepancies between platforms, thereby removing the need for platform-
specific back-ends. In contrast to intermediate languages in traditional compiler con-
struction, PIL operates on a higher level of abstraction and has a concrete syntax, based
on a subset of Java, leveraging the productivity advantages of generating source code

1 Linux, Apache, MySQL and Perl/Python/PHP
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over generating machine instructions. PIL is designed as a small intermediate language,
capturing only essential object-oriented constructs and is therefore easier to port to mul-
tiple platforms than Java, for instance. In addition, the design of a language specifically
targeted at code generators enables the development of code-generation specific lan-
guage features. PIL/G, a thin layer of abstraction on top of PIL, provides some of such
code generation such as partial classes, partial methods, identifier concatenation and
expression blocks. In the future we also see opportunities to integrate DSL debugging
support as part of PIL/G. We realized an implementation of the Java and Python back-
ends of the WebDSL compiler using PIL, reducing the maintenance effort of these
back-ends.

The contributions of this paper are as follows: (1) The design of the PIL language,
an intermediate language at the source code level aimed at DSL compilers. (2) PIL/G,
a collection of code generation-specific abstractions built on PIL. (3) An evaluation of
our approach by implementing a Java and Python back-end for WebDSL through the
use of PIL.

Outline In the next section we describe the typical architecture of a DSL generator with
a single back-end. In Section 3 we discuss several approaches to extend this architecture
to generate code for multiple platforms. Section 4 describes PIL and its design and
features. In Section 5 we discuss how PIL interacts with platform-specific code. In
Section 6 the applicability of PIL, future work and related work is discussed.

2 Code Generator Architecture

In this section we describe the general architecture of a code generator generating code
for a single platform. We examine how to cater for multiple platforms in the next sec-
tion. The initial single back-end generator architecture is depicted in Fig. 1. It is com-
posed of two parts: the front-end, which parses, checks and desugars models described
in the DSL, and the back-end, which generates code from the model. We first give a
brief overview of the operation of the generator front-end, followed by a discussion of
generator back-ends.

The generator front-end The front-end of the generator is responsible for parsing,
checking and transforming a model to a simplified representation from which a back-
end produces executable code. Based on the grammar of a DSL (which also defines
the DSL’s meta-model), the parser produces an abstract syntax tree (AST). The AST is
subsequently checked for inconsistencies, such as type errors and other deficiencies.

A set of model-to-model transformations, also known as desugarings, transform
the AST to a simplified, core DSL model. Normalizing transformations perform model
simplification, such as adding default values for omitted optional information. More
complex transformations transform higher-level constructs to a reduced set of lower-
level constructs. For example, in WebDSL, access control [14] and workflow [16] are
implemented as abstractions on top of the user interface, data model and action sub-
languages, implemented through a number of model-to-model transformations. The re-
sult of the front-end transformations is a fully checked, normalized model represented
in a reduced set of core DSL constructs.

3
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Fig. 1. Code generator ar-
chitecture

The generator back-end A generator back-end gener-
ates code from a core DSL model produced by the front-
end. Intuitively, generating code that uses a high-level
framework seems an attractive, productive option [23,
28]. However, in the long term, frameworks often become
too restrictive when more control is required over the ex-
act execution of the generated application [13]. Initially,
the WebDSL compiler generated code for the JBoss Seam
framework, a high-level Java framework utilizing Enter-
prise Java Beans (EJBs) for the business logic, Hibernate
for models and JSF (Java Server Faces) for constructing
views. As the WebDSL language evolved, JSF in partic-
ular, became too restrictive. The WebDSL view models
no longer were a good match for JSF. Consequently, JSF
and EJBs were replaced by plain Java servlets that contain
println statements printing HTML code.

There is mismatch in platform requirements between
developers and code generators. Many modern software
platforms (e.g. Java, .NET, Ruby, Python and PHP) are
object-oriented at their core. Platforms typically try to dif-
ferentiate by adding features on top of that core (Fig. 2),
to improve the expressivity for developers, e.g. syntactic
sugar and high-level frameworks. While improving devel-
oper productivity, these features limit flexibility, because
they are only optimized for common use cases. By gen-
erating lower-level code, the execution of the generated
application can be more effectively and flexibly controlled. In addition, because the
object-oriented core of these platforms is similar, generating code at this level also sig-
nificantly improves portability, which is discussed extensively in section 3. Although
lower-level code is more verbose, the code is not intended to be read or modified, so
this is not an issue.

Conversely, platform features that enable clean and concise code generation rules
are often absent from platforms. Generation rules that generate large code artifacts,
typically become very long and complex. Such “God rules” dispatch a large number of
smaller generation rules to generate a monolithic target artifact (e.g., a Java class). “God
rules”, similar to “God classes” in object-oriented programming, are an anti-pattern

Fig. 2. Platforms and their features
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@Partial

public class SomeClass {

private int a;

@Partial

public void init() {

a = 10;

}

}

// ...

@Partial

public class SomeClass {

private int b;

@Partial

public void init() {

b = 8;

}

}

Fig. 3. Partial classes and
methods added to Java

and can be avoided by the use of code compositional-
ity features, specifically partial classes and methods.

Partial classes are class fragments that are
combined at compile time by merging their con-
tents. Similarly, partial methods enable fragments
of a method to be distributed over multiple partial
classes. Partial methods are also merged at compile-
time. Some languages support partial classes, e.g.
Smalltalk, Objective-C, C# 2.0, Common LISP
(CLOS) and Ruby, but many other languages do not
support this feature, e.g. Java and PHP. Partial meth-
ods are less common. C# 3.0’s partial method sup-
port is different than the partial methods just de-
scribed; partial methods in C# are an optimization
feature for providing hooks into generated code. Par-
tial classes in C#, typically generated by a code gen-
erator, can declare the signature of a method as par-
tial, meaning that if the method is implemented in
another partial class with the same name, typically
defined by a programmer, it operates as a regular
method. However, if the method is not implemented
in another partial class, all calls to the partial method are removed.

define page blogEntry(e : BlogEntry) {

section {

header { outputString(e.title) }

outputText(e.content)

}

}

Fig. 4. A simple page definition in WebDSL

In previous work we presented
the code generation by model trans-
formation approach [15]. The key
idea of this approach is to rep-
resent code as a model, enabling
further transformation of generated
code. Compositionality features such
as partial classes and methods can be
implemented by extending the target language. Fig. 3 shows an example of Java/G,
Java extended with partial classes and methods, marked with @Partial annotations (in
Fig. 1 the generalized form of this language is referred to as Platform/G). The com-
piler’s transformation rules emit fragments of Java/G code, which are subsequently
merged and written to files.

As an example of a code generation rule, we illustrate how Java code is generated
from WebDSL page definitions using the Stratego/XT transformation toolset. WebDSL
is a domain-specific language for data-intensive web applications [30]. It has sub-
languages for the definition of data models, user interfaces, access control, workflow
and business logic. The WebDSL page definition in Fig. 4 defines a page blogEntry
with an argument of type BlogEntry. The view of the page defines a section, consist-
ing of a header with the title of the blog entry and its content. Fig. 5 defines a Strat-
ego/XT rewrite rule page-to-java, which transforms a WebDSL page to a Java class.
When the left-hand side of the rule (before ->) is matched its meta variables x page,
farg*, elem* are bound to their corresponding values. The right-hand side of the rule

5
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page-to-java :

|[ define page x_page (farg* ) { elem* } ]| ->

|[ package pages;

import javax.servlet.http.*;

import java.io.*;

@Partial

public class x_page extends Page {

public void renderPage(Request req, Response res) {

PrintWriter out = res.getWriter();

out.print("<html><head><title>"+getPageTitle()+"</title></head>");

out.print("<body>");

stat_elem*

out.print("</body></html>");

}

}

]|

where stat_elem* := <map(elem-to-java)> elem*

Fig. 5. Rewrite rule that transforms pages to Java classes

defines the generated Java/G code. In the where condition, individual page elements
are mapped to Java statements using the elem-to-java rule. The code pattern in the
left and right-hand side of the rule use the concrete syntax [9] of the source and target
languages, respectively. Code enclosed in |[ and ]| quotations is internally parsed by
Stratego and turned into its AST representation. Consequently, the page-to-java rule
matches an AST representation of a page definition and produces a Java/G AST, rather
than textual code.

3 Retargeting a DSL Generator

In this section, we evaluate three approaches to extend the single platform compiler
architecture to support an additional platform. The first approach is copying the existing
back-end and porting the transformations to the new target platform. A second approach
is translating code generated by the already present back-end to a new platform. As a
third aproach, we argue that high-level intermediate languages provide a better approach
to supporting multiple platforms in a DSL generator.

3.1 Adding a Backend to a Generator

Fig. 6. Adding a backend to a
generator

The most intuitive approach to support an additional
target platform in a DSL implementation is copy-
ing an existing back-end and porting it to gener-
ate code for the new platform (Fig. 6). Generaliz-
ing this approach, supporting N platforms requires
N back-end implementations. Fig. 7 shows how the
page-to-java rule (Fig. 5) has been ported to gen-
erate Python code. A comparison of the Java and
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page-to-python :

|[ define page x_page (farg* ) { elem* } ]| ->

|[ @partial

class x_page (Page):

def renderPage(self, req, res):

out = res.writer

out.print("<html><head><title>"+pageTitle()+"</title></head>")

out.print("<body>")

stat_elem*

out.print("</body></html>") ]|

where stat_elem := <map(elem-to-python)> elem*

Fig. 7. A Python version of the page-to-java rules (Fig. 5)

Python back-ends suggest an additional advantage of generating low-level code: the
syntax and low-level APIs do not differ that much between platforms. The main changes
that have to be made to port a back-end are syntactic and relate to minor API differences.
Although there is conceptual reuse between back-end generation rules, there is no code
reuse between them, resulting in large-scale code duplication. In addition, code dupli-
cation also occurs in the reimplementation of code compositionality features for each
back-end. Code duplication gives rise to maintenance problems. For instance, when the
DSL is changed, modifications have to be propagated to all back-ends.

3.2 Language Translation

Fig. 8. Language translation

Efforts to translate dynamic languages, specifically
Ruby and Python, to the CLR [1, 2] and JVM [4,
3] bytecode and Microsoft’s Java Language Conver-
sion Assistant to translate Java to C# code appear
an attractive option to build retargetable software.
Since only one transformation from the DSL to one
of these platforms needs to be defined, this approach
would solve the code duplication issue in generator
back-ends. Fig. 8 depicts this scenario. Transforma-
tions that port code from one platform to another are
reusable in multiple generators. In addition, code compositionality language extensions
have to be implemented only once and need not be ported. However, language ports
are problematic due to sheer language complexity, performance issues and the fact that
these languages and their platform libraries are not designed to be portable across plat-
forms. Consequently, this approach does not scale well.

7

SERG PIL

TUD-SERG-2009-025 7



3.3 High-Level Intermediate Languages

Fig. 9. High-level interme-
diate language

Although not feasible in the general case, porting a
language (such as Java, Ruby or Python in the previ-
ous section) to multiple platforms is attractive, because
multiple similar back-ends need no longer be main-
tained. When generating code, only a low-level subset
of the platform is used. Software platforms, at this level,
are very similar. Therefore, only a port of a subset of the
platform is sufficient to retarget a DSL.

One approach is to generate code for an existing
platform, e.g. Java, and by convention only use a sub-
set of that platform. Translations to other platforms are
defined only for this subset. The problem with this ap-
proach is the difficulty to enforce it. In addition, as pro-
gramming languages are typically not designed to be easily translatable to other lan-
guages, there may be hurdles to do so. An example of this is Java’s . (dot) operator,
whose meaning at the syntactic level is ambiguous and therefore requires type analysis
to disambiguate, requiring language translators to perform such analysis. An alternative
approach is to formalize a high-level intermediate language. Naturally, this intermediate
language can be based on the subset of an existing language, but it can also be further
simplified and extended with code generation features.

Typically, the most expensive transformation in a DSL compiler is the transforma-
tion from the DSL to target platform code. This transformation is expensive because
of the large semantic gap between DSL and platform code. Thus, the number of times
that this transformation needs to be implemented should be limited as much as possi-
ble. A well-known technique in compiler construction is the use of intermediate lan-
guages [24, 25]. By using an intermediate language, the maintenance of the compiler
is much improved, since only one complex transformation from the DSL to the inter-
mediate language needs to be implemented and maintained. Furthermore, the semantic
gap between the intermediate language and the platform is very small, enabling imple-
mentations of the intermediate language for new platforms to be developed with little
effort. Such intermediate language implementations are reusable in multiple DSL gen-
erators. Code compositionality features, as well as other features convenient for code
generation can be implemented as an abstraction on top of the intermediate language,
implemented as a transformation. The architecture of this scenario is depicted in Fig. 9.

3.4 Evaluation

Fig. 10 compares the costs of the three approaches to construct retargetable DSLs. As
the transformation from the DSL to platform code is expensive, the first approach,
where N supported platforms require N back-end implementations, is not a desirable
solution. In the second approach, language translation, only one DSL to code trans-
formation needs to be implemented. However, the language translation C, although
reusable in multiple compilers, is very expensive to implement due to the high cost
of implementing full language translations. Using an intermediate language requires

8
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Fig. 10. The scenarios and costs of transformation options

only one transformation from the DSL to code written in the intermediate language.
Implementing translations from the intermediate language to Platform 1 and 2 (A′ and
B′) is cheap because of the small size of the intermediate language. In addition, these
translations only need to be implemented once and are reusable in multiple compil-
ers. Therefore, a future DSL compiler is only required to implement the transformation
from the DSL to the intermediate language.

4 PIL: A Platform Independent Language

Fig. 11. The PIL architecture

We have developed PIL, a Platform Indepen-
dent Language designed for code generation,
abstracting from syntactic differences between
object-oriented languages, slight mismatches
between common data types, and providing in-
frastructure to interact with underlying plat-
forms. In contrast to traditional intermedi-
ate languages as used in compiler construc-
tion, PIL is used at a higher level of abstrac-
tion and has a convenient concrete syntax en-
abling source code generation through the use
of code generation rules. Compared to typical
programmer-oriented software platforms, PIL is slightly lower level and simpler, mak-
ing the language easier to port. The concrete syntax of PIL is derived from Java and
therefore familiar to Java developers. PIL/G adds a collection of code generation spe-
cific abstractions to the small PIL base language, such as code compositionality fea-
tures.

By generating PIL code, rather than e.g. Java or Python code, the cost of targeting
multiple platforms is greatly reduced. Any code generation toolset can be used to gen-
erate textual PIL code, which is subsequently translated to either Java or Python code
by the PIL compiler (Fig. 11). PIL can also be linked to the generator directly as a li-
brary. Currently the PIL compiler library can be linked into Stratego/XT programs, but
we are working to enable usage of the PIL library from other tools. The advantage of
using PIL as a library is that the overhead of parsing, pretty-printing and I/O can be

9
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eliminated by handing an AST to the PIL library rather than a textual representation
of the PIL program. While the PIL compiler currently generates Java and Python code,
more platforms can be added. Adding a new PIL target platform is cheap.

4.1 PIL: Object-Oriented Programming Essentials

Instead of providing a high-level platform targeted at developers, PIL provides a rel-
atively low-level language with a limited set of easy to port built-in data types. At
their core, the platforms many DSL generators target are based on the object-oriented
paradigm. PIL captures essential object-oriented features and maps them to their spe-
cific incarnations on each platform. The concrete syntax and semantics of PIL are based
on Java, because it is well known and statically typed. A dynamically typed interme-
diate language would complicate the mapping to statically typed languages, whereas
mapping a statically typed language to a dynamically typed language is simple.

Since PIL is a language aimed at code generators rather than developers, Java fea-
tures not useful from a code generation perspective are discarded, thereby reducing the
size of the language and lowering the effort of porting the language to new platforms.

From the Java language the following features are omitted:

– Visibility modifiers for classes, fields and methods (e.g. public, private, protected):
information hiding features serve no purpose in generated code.

– Interface and abstract classes: can be replaced with classes with dummy implemen-
tations of interface methods.

– Inner and anonymous classes: can be implemented as regular classes.
– Imports: are syntactic sugar for the use of fully qualified class names.
– Checked exceptions: are not supported by most other platforms
– Distinction between primitive and object types: in PIL everything is an object. Nev-

ertheless, the Java implementation of PIL does use primitive types and boxes and
unboxes as required.

– Type coercion (e.g. from int to long): can be made explicit by a code generator.
– Enums: can be implemented using e.g. integers.
– Array syntax, e.g. byte[] a and new byte[] { ... }. In PIL an array is a reg-

ular generic type: Array<Byte> and can be instantiated with
new Array<Byte>(...).

– The one public class per file restriction. This feature is of no use the context of code
generation.

The Java syntax had to be slightly adjusted to make the language context free.
Java’s . (dot) operator, which is used in package names, static member access, as well
as instance member access requires type analysis to disambiguate. In PIL the dot opera-
tor is only used for instance member access. In the context of package names, PIL uses
::. PIL has no static member support. Each language requires at least a minimal set of
built-in data types, such as integers, strings, characters, arrays and maps. PIL implemen-
tations map each of these types to platform-specific implementations. Platform-specific
APIs not part of the built-in data types can be accessed through external class declara-
tions, which are further discussed in Section 5.

10
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@partial

class page::SomePage extends Page {

Int inputCounter;

@partial void init() {

inputCounter = 0;

}

}

@partial

class page::SomePage extends Page {

String pageTitle;

@partial void init() {

pageTitle = "welcome";

}

}

Fig. 12. Partial classes and methods

4.2 PIL/G: Compositionality of Code Generation

PIL is a small, easy to port language, but it lacks some features that greatly simplify
code generation. In section 2 we discussed that most general purpose programming
languages lack compositionality features such as partial classes and methods, which
enable concise and modular code generation rules. PIL/G adds such compositionality
features to PIL. Through a number of model-to-model transformations the PIL/G model
is normalized to regular PIL and then mapped to platform code. In addition to partial
classes and methods, PIL/G also adds identifier concatenation and expression blocks.

Partial classes and methods Partial classes and methods enable small code generation
rules to emit pieces of code that together define a larger artefact. Fig. 12 shows two
examples of PIL/G code that use partial classes and methods. Normalization of PIL/G
to PIL results in a single SomePage class containing two fields (inputCounter and
pageTitle) and one init() method in which inputCounter and pageTitle are
set. The order in which partial methods’ code bodies are concatenated is not defined.

var be : BlogEntry :=

BlogEntry { blog := b }

⇓
BlogEntry be =

{| BlogEntry e0 = new BlogEntry();

e0.setBlog(b);

| e0 |}

⇓
BlogEntry be = exprBlock0(b);

...

BlogEntry exprBlock0(Blog b) {

BlogEntry e0 = new BlogEntry();

e0.setBlog(b);

return e0;

}

Fig. 13. Transformation from WebDSL en-
tity constructor expressions to PIL imple-
mentation

Identifier concatenation A common pat-
tern in transformations is composing two
or more identifiers into one. For instance,
generating getters and setters for a class
property (Fig. 14) requires repetitive in-
vocation of helper rules to render proper
names for the getter and setter method.
PIL/G adds a special # identifier concate-
nation operator to achieve the same re-
sult in a more concise manner, as demon-
strated in Fig. 15. The operator adheres to
the Java naming convention meaning that
the concatenation of get and name results
in getName.

Expression blocks DSL constructs typi-
cally have a higher expressivity than the
target platform language that implements
them. Therefore, it is common that an ex-
pression in the DSL requires multiple statements of implementation code. In WebDSL
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page-farg-to-pil :

|[ x_prop : srt ]| ->

|[ t x_prop ;

t x_get () {

return x_prop ;

}

void x_set (t value) {

this.x_prop = value;

}]|

where x_get := <gen-getter> x_prop

; x_set := <gen-setter> x_prop

...

Fig. 14. Transformation without identifier
concatenation

page-farg-to-pil :

|[ x_prop : srt ]| ->

|[ t x_prop ;

t get#x_prop () {

return x_prop ;

}

void set#x_prop (t value) {

this.x_prop = value;

}]|

where ...

Fig. 15. Transformation with identifier con-
catenation

this problem occurs while transforming entity constructor expressions to PIL expres-
sions. Fig. 13 shows the transformation steps required to implement a simple example,
in which an instance of the BlogEntry entity is created, initializing its blog prop-
erty with blog b, assigning the result to a new variable be. The implementation of this
example in PIL requires a variable declaration statement with an initialization expres-
sion derived from the entity constructor expression. In order to realize the entity con-
struction, two PIL statements are required: one statement to create an instance of the
BlogEntry class, and a second to set the blog property. Implementing such a trans-
formation is complex, requiring statement lifting. To simplify this type of transforma-
tion, PIL/G provides expression block syntax [8]: {| stat* | returnvalue |}, as
demonstrated in the second transformation step in Fig. 13. During the PIL/G to PIL nor-
malization, expression blocks are lifted to separate methods, receiving closure variables
as arguments.

4.3 Developing PIL Back-Ends

PIL back-ends can be developed for any language in which it is possible to implement
basic OOP features such as objects, classes with single inheritance, virtual method dis-
patch and garbage collection. Consequently many advanced object-oriented features of
the targeted languages remain unused, but this is not an issue as long as the features
that PIL requires of a language are a subset of the features offered by the targeted lan-
guage. Although PIL assumes its target platform to provide garbage collection, it has no
assumptions on how this is implemented. Therefore, it is possible to implement a sim-
ple garbage collector as part of the back-end transformation. For instance, a language
such as Objective-C already provides reference counting using a retain and release
mechanism. The sequence of retain and releases can be derived from the PIL code
based on scopes and data flow analysis. Depending on the targeted platform, imple-
menting new PIL back-ends is relatively cheap. A back-end implementation requires a
grammar of the target language specified in SDF and around 1200 lines of Stratego/XT
code, much of which can be based on existing back-ends.
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external class webdsl::Request {
webdsl::Session getSession();
String getParameter(String name);

}

external class webdsl::Response {
webdsl::util::StringWriter getWriter();
void redirect(String url);
void setContentType(String ct);

}

Fig. 16. Web request and response interface in
PIL

package webdsl;

import javax.servlet.http.*;

public class Response {
private HttpServletResponse r;
public Response(HttpServletResponse r) {

this.r = r;
}
public String getParameter(String name) {

return r.getParameter(name);
}
// ...

}

Fig. 17. Part of Java wrapper of Request inter-
face

5 PIL/Platform Interaction

PIL has a number of built-in data types such as integers, strings, lists and maps. Any in-
teraction with the platform beyond those is performed through external class interfaces.
For example, code generated from WebDSL models accesses web request information
provided by the web request API. Similarly, code generated by a parser generator uses
IO libraries to read a file to be parsed. For data persistence, generated code often inter-
acts with an object-relational mapper framework such as Hibernate or SQLAlchemy.

Generated platform-specific code typically interacts directly with platform-specific
APIs. In contrast, when using PIL to target multiple platforms, direct interaction with
platform-specific APIs is not an option. The interfaces of APIs of each supported plat-
form need to be wrapped behind a single consistent PIL interface with consistent be-
havior across platforms. This section discusses three scenarios that demonstrate how
platform interaction can be achieved in a platform-independent manner. The section
ends with an example of glue code that is often required to combine pieces of platform-
specific code with generated code in order to build a runnable application.

5.1 API Wrapping

APIs such as I/O, threading and networking libraries are typically available and similar
across platforms. For instance, the API to handle HTTP requests looks slightly different
on each platform, but behaves the same. On each platform there is a method to retrieve
a GET or POST parameter, get or set a cookie and get access to sessions. Thus, these
APIs can be wrapped behind an interface, such as depicted in Fig. 16 which shows PIL
external class declarations for a simple Web API. On the Java platform, this inter-
face is implemented using the Java Servlet APIs (Fig. 17) and on the Python platform
it is implemented wrapping its CGI module. The external class declaration as seen
in Fig. 16 exposes these classes to PIL code. After the code is generated, the defined
wrapper APIs and generated code are combined and compiled by the platform compiler,
or interpreted by a platform interpreter.
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5.2 Missing API on Some Platforms

It can occur that a particular API is not available on one or more platforms. In this
scenario there are two options. The first is to simply not support the part of the DSL
that relies on the particular API on every platform. The second option is to port an
implementation of the API to the platforms where it is not already available. The latter
can be achieved in two ways, either by porting the API to other platforms directly,
or porting the framework to PIL and generating platform implementations from that.
Although PIL is intended to be used as a code generation language, it can be used as a
language to port an API to as well. The advantage of using PIL over building custom
ports for each language, again, is that PIL implementations are portable.

Fig. 18. ORM implemented in PIL.

Because we could not find a suitable
object-relational mapper for Python that is
compatible with Hibernate, and because Hi-
bernate did not suit our needs entirely any-
way, we implemented a simple ORM frame-
work in PIL (Fig. 18). Although Hibernate’s
implementation is substantial, WebDSL only
requires a fraction of its features. A signifi-
cant part of Hibernate’s implementation is ded-
icated to framework usability, such as its ex-
tensive configuration and annotation support.
Such features are of little value when code is generated. Therefore, the ORM library we
implemented in PIL, provides only the features and behavior that WebDSL requires.
PIL makes the ORM framework very portable, because each platform only requires the
wrapping of a low-level database API, enabling the execution of SQL queries (Fig. 19).

external class pil::db::Database {

new(String hostName, String username, String password, String database);

pil::db::Connection getConnection();

...

}

external class pil::db::Connection {

List<Result> query(String query, Array<Object> args);

void updateQuery(String query, Array<Object> args);

...

}

external class pil::db::Result {

Int getInt(Int index);

String getString(Int index);

Object getObject(Int index);

...

}

Fig. 19. Low-level interface to database
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5.3 Semantic Mismatches

Behavior of platform APIs sometimes differs slightly. In the case of an object-relational
mapping framework, for instance, the persist operation may have slightly different
behavior in one framework than it has in another. Framework A may persist the object
and all of the objects it references, while framework B only persists the object itself.
It is sometimes possible to hide these differences in behavior in the API wrapper. In
this particular case the wrapper of the framework B can traverse the object graph to
explicitly persist each object, emulating the behavior of framework A.

If changing semantics in the wrapper is not feasible, adapting the framework could
be an option. However, this requires a fork of the framework and the maintenance effort
that comes with it. Another solution in this case is to reimplement the incompatible
frameworks, either in PIL or in a platform-specific manner, as described in Section 5.2.

5.4 Platform-Specific Glue

Code generated from a DSL often does not implement the entire application. The canon-
ical example of this are parser generators which only generate parsers that are subse-
quently invoked from code written specifically for the platform, or code generated from
another DSL. Similarly, WebDSL generated code is not invoked directly either, but
compiled in conjunction with web application glue code. WebDSL pages are translated
to Page classes as illustrated in Fig. 5. Additional code is emitted that registers the
page class in a global map during application initialization (Fig. 20). For each web ap-
plication a singleton WebApp class is generated, whose initPages method is extended
for each page. Glue code, specific for each platform, instantiates the generated WebApp
class and retrieves the classes to instantiate based on the request. An example of such
glue code for Java is shown in Fig. 21.

page-to-register-pil :

|[ define page x_page (farg* ) { elem* } ]| ->

<emit-pil> |[

@partial class WebApp {

@partial void initPages() {

allPages.put("x_page ", page::x_page.class);

}

} ]|

Fig. 20. Transformation that emits a partial function registering the page class

6 Discussion

Applicability PIL is based on the assumption that the target platforms of a DSL are
based on an object-oriented language with little dependency on unique platform-specific
features. While not the case for every DSL, there are many DSLs, other than WebDSL,
for which this is true. Parser generators such as ANTLR and SDF and model transfor-
mation languages such as Stratego/XT, ATL or QVT, are examples of these.

15

SERG PIL

TUD-SERG-2009-025 15



public class DispatchServlet extends HttpServlet {

WebApp webApp = new WebApp();

public void doGet(HttpServletRequest request, HttpServletResponse response) {

webApp.initPages();

Class pc = webApp.allPages.get(Utils.getPageName(request));

Page page = (Page)pc.newInstance();

page.renderPage(new webdsl.Request(request), new webdsl.Response(response));

}

}

Fig. 21. Instantiating PIL-generated Page objects from Java

Costs of an intermediate language The use of an intermediate language always comes
at a price. In the compiler, more transformation steps are required to produce platform
code, although this overhead is limited because of the simplicity of the transforma-
tion. Flexibility in target platforms is limited by PIL’s assumption that target platforms
are based on the object-oriented paradigm. Targeting C would therefore be difficult.
Platform-specific performance tuning can be implemented by tuning translations from
PIL to platform code or by moving performance critical code, code for which efficient
implementations depend highly on the platform, to an external API that is called from
PIL code. In our implementation of back-ends for WebDSL using PIL, such platform-
specific optimizations were not required, however. Another type of overhead occurs
when experimenting with new language features. When adding language features that
require additions to the compiler back-end, the solution domain is first explored by
manually writing platform code. Once the code works, it is generalized and ported to
the compiler. However, when PIL is used platform code cannot be moved to the com-
piler as-is, it first needs to be translated to PIL. An alternative option is to explore the
solution domain by writing PIL code, rather than platform code. Once the PIL code
works, it can be ported to the compiler.

6.1 Future Work

PIL has currently two platform back-ends: Java and Python. In the future we intend
to add more, such as C#/.NET, PHP and Objective-C back-ends. We used PIL to im-
plement back-ends for WebDSL, but in the future we intend to use it to implement
back-ends for other DSLs as well. PIL has been developed using Stratego/XT, a DSL
for program transformation, which we also want to port to other platforms. Currently
there is a C and a partial Java back-end, PIL could greatly simplify maintaining such
back-ends. We intend to also investigate if it is feasible to port the SGLR [29] parser
implementation to PIL.

A problem with source code generation as implemented by many DSL compilers is
that debugging is very difficult, because the structure and line numbers of the resulting
source code are typically very different than the original DSL source. Techniques such
as origin tracking [27] can be used to keep track of position information during trans-
formations. Wu et al. [31] describe a technique in which position information mappings
between source and target code are used by a wrapper around an already existing de-
bugger for the target language. Another approach is by instrumenting generated code
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that communicates with an external generic debugger. TIDE [26] takes this approach
to simplify the process of defining debuggers for languages built using ASF+SDF. This
approach also seems well-suited when implementing debugging support for multiple
platforms, since a consistent debugging interface can be implemented for all platforms
and no platform-supplied debugging support is required. Using the TIDE approach,
code needs to be instrumented with step calls that send events to an external debug-
ger with position information and the current environment. We see an opportunity for
PIL/G to simplify adding debugging support in this manner, for instance by adding a
step abstraction to the language that can easily be enabled or disabled.

6.2 Related Work

Intermediate languages Reusable intermediate languages for the purpose of retargetabil-
ity are not a new idea. In compiler construction they appeared as early as 1960. UN-
COL [24], the Universal Computer Oriented Language, was developed in response to
the increasing number of programming languages required to target an increasing num-
ber of machine architectures. M languages and N machines require M ∗N compilers,
whereas with an UNCOL only M +N generators and translators are required. Unfortu-
nately, no truly universal UNCOL emerged to handle all languages and machines, likely
due to the large size of the instruction set required to generate efficient machine code.
Other proposed intermediate languages include BCPL’s O-code [21], P-code [25] and
C-- [20]. C-- is a more recent attempt to simplify machine code generation for multiple
machine architectures. Rather than a byte-code representation of the intermediate lan-
guage, C-- has a concrete syntax similar to C. Similar to PIL, C-- is designed as a code
generation language. Its focus is much more low-level, however. It addresses a number
of problematic areas of C, such as the lack of garbage collection and the difficulty of
implementing tail calls. Retargetability is achieved by plugging in one or more machine
code generation back-ends, e.g. gcc, VPO [6] or MLRISC [12]. The mentioned interme-
diate languages all operate at the abstraction level of machine architecture instructions.
PIL by contrast is a much higher level language. It unifies object oriented programming
languages and their platforms rather than machine architectures. What PIL adds on top
of the mentioned approaches is code generation specific features such as partial classes,
partial methods, identifier concatenation and expression blocks.

Union and intersection machines [11] represent fictional machines with features
roughly equivalent to the union or the intersection of features offered by typical tar-
get machines. They are used as a basis from which intermediate language are derived.
Union intermediate languages are good for generating efficient machine code, whereas
the small size of intersection intermediate languages, such as PIL, are easier to port.

Basil is a high-level intermediate language with two use cases: (1) a target language
for compilers for high-level languages and (2) a language to develop run-time libraries
to be used by generated code [22]. PIL, too, is targeted at code generation and can be
used to develop run-time libraries as well. Basil can translated to C. A subset of Basil,
pure Basil, can be translated to LISP. In contrast to PIL, Basil is not an object oriented
language and its purpose is not to simplify retargeting compilers. Instead, it is designed
to make the semantic gap between source language and machine language smaller. In
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addition, Basil allows its code to be annotated with position information, which can be
used for debugging.

ANTLR Code generation back-ends for the ANTLR [19] parser generator are defined
using StringTemplate [5], a template engine designed for code generation. For each
supported platform (currently over a dozen) a number of code templates define the code
to generate to implement ANTLR’s features. As of version 3 of ANTLR, each back-end
requires around 2800 lines of StringTemplate code. Whenever a new ANTLR version
is released, the templates for each templates need to be adapted, resulting in a number
of platform back-ends being out of sync with the current ANTLR version.

PIL could reduce ANTLR’s maintenance issues. A back-end for the PIL compiler
for one platform encompasses around 1100-1300 lines of Stratego/XT code. Note that
these back-ends are reusable in multiple DSL compilers as well. A single ANTLR to
PIL transformation needs to be defined, presumably also requiring about 2800 lines
of code. In addition, custom code needs to be written for each platform wrapping IO
APIs. Once PIL back-ends for each of ANTLR’s supported platforms are implemented,
PIL could reduce the 33,000 lines of code required to implement all ANTLR back-ends
significantly.

The Model-Driven Architecture OMG has defined the Model-Driven Architecture [17]
in which platform-independent models (PIMs), through an MDA mapping are trans-
formed to platform-specific models (PSMs). Whether this mapping should be performed
manually or automatically is not specified. In our approach the WebDSL model is a PIM
and the platform-specific code that is generated from that are PSMs. PIL acts as a thin
layer in-between PIM and PSMs. The separation of platform-independent models from
platform-specific models is essential when targeting multiple platforms. For instance,
DSLs that contain escapes to the underlying platform are not platform-independent and
can therefore not realistically be ported to other platforms. The fact that we imple-
mented WebDSL back-ends for two different platforms (Java and Python), proves that
WebDSL models are indeed platform-independent.

Bézivin et al. demonstrate how MDA can be used to automatically derive multiple
PSMs from one PIM. They generate Java, web services and JWSDP from UML and
EDOC PIM [7] models. Muller et al. [18] apply the MDA approach to generate web
applications from visual UML-based models. Their code generator is written in Java
and can generate either Java or PHP code that communicates with either an Oracle,
MySQL or PostgreSQL database. The development of WebDSL so far has not focussed
on supporting multiple database systems, but this is future research. We intend to inves-
tigate supporting not only SQL databases, but also alternative types of databases such
as Google’s BigTable [10]. Although PIL itself does not solve the problem of targeting
different types of database systems, it can make the code to use these database systems
portable across software platforms.

6.3 Conclusion

In this paper we explored a number of approaches to construct DSL compilers targeting
multiple software platforms. The ability to retarget DSLs is enabled by the strict separa-
tion between platform-independent models and platform-specific models. It is common
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practice to maintain separate compiler back-ends for each targeted platform. However,
the maintenance of these back-ends is costly because DSL to target platform transfor-
mations are expensive to build and maintain. We argued that high-level intermediate
languages can improve the retargetability of DSLs by only having to define one trans-
formation from the DSL to the intermediate language. Subsequent mappings from the
intermediate language to target platforms are cheap to develop and reusable in multiple
DSL compilers.

We presented PIL, a Platform Independent Language, as an implementation of such
a high-level intermediate language. PIL is based on a subset of Java, and is therefore
a more familiar and easy to target language than traditional low-level intermediate lan-
guages as commonly used in compiler construction. PIL/G, a collection of abstractions
built on PIL, adds features simplifying the use of PIL as a code generation language,
such as partial classes and methods, identifier concatenation and expression blocks.

We validated our approach by implementing a PIL back-end generating Java and
Python code for the WebDSL compiler. Previously, these platforms were supported
through separate back-ends which led to large-scale code duplication. By using PIL,
only one DSL to PIL transformation needs to be maintained, as well as small platform-
specific API wrappers for database and HTTP request access.
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18. P.-A. Muller, P. Studer, and J. Bézivin. Platform independent web application modeling.

In P. Stevens, J. Whittle, and G. Booch, editors, UML, volume 2863 of Lecture Notes in
Computer Science, pages 220–233. Springer, 2003.

19. T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Software Practice
and Experience, 25:789–810, 1994.

20. S. Peyton Jones, N. Ramsey, and F. Reig. C–: A portable assembly language that sup-
ports garbage collection. In G. Nadathur, editor, PPDP, volume 1702 of LNCS, pages 1–28.
Springer, 1999.

21. M. Richards. The portability of the BCPL compiler. Software - Practice and Experience,
1971.

22. L. Semenzato. The high-level intermediate language l. Technical Report UCB/CSD-93-760,
EECS Department, University of California, Berkeley, Jul 1993.

23. T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Development: Technology,
Engineering, Management. John Wiley & Sons, 2006.

24. T. B. Steel, Jr. A first version of UNCOL. In IRE-AIEE-ACM ’61 (Western): Papers presented
at the May 9-11, 1961, western joint IRE-AIEE-ACM computer conference, pages 371–378,
New York, NY, USA, 1961. ACM.

25. UCSD. UCSD p-System and UCSD PASCAL Users Manual. SofTech Microsystems, 1981.
26. M. van den Brand, B. Cornelissen, P. A. Olivier, and J. J. Vinju. Tide: A generic debugging

framework - tool demonstration. Electr. Notes Theor. Comput. Sci., 141(4):161–165, 2005.
27. A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic Computation,

15(5/6):523–545, 1993.
28. A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated bibliogra-

phy. ACM SIGPLAN Notices, 35(6):26–36, 2000.
29. E. Visser. Scannerless generalized-LR parsing. Technical Report P9707, Programming Re-

search Group, University of Amsterdam, July 1997.
30. E. Visser. WebDSL: A case study in domain-specific language engineering. In R. Lämmel,
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