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Abstract. In this paper we present a novel approach to combining mul-
tiple kernels where the kernels are computed from different information
channels. In contrast to traditional methods that learn a linear combina-
tion of n kernels of size m×m, resulting in m coefficients in the trained
classifier, we propose a method that can learn n×m coefficients. This al-
lows to assign different importance to the information channel per exam-
ple rather than per kernel. We analyse the proposed kernel combination
in empirical feature space and provide its geometrical interpretation. We
validate the approach on both UCI datasets and an object recognition
dataset, and demonstrate that it leads to classification improvements.

1 Introduction

Since their introduction in the mid-1990s, kernel methods [1, 2] have proven
successful for many machine learning problems, e.g., classification, regression,
dimensionality reduction, clustering. Representative methods such as support
vector machine (SVM) [3, 2], kernel Fisher discriminant analysis (kernel FDA)
[4, 5], kernel principal component analysis (kernel PCA) [6] have been reported
to produce the state-of-the-art performance in numerous applications. In a kernel
method, the choice of kernel is critically important, since the kernel completely
determines the embedding of the data in the feature space. In many problems,
multiple kernels capturing different “views” of the problem are available. In such
a situation, one naturally wants to use these kernels in an “optimal” way.

Multiple kernel learning (MKL) was pioneered by Lancriet et al. in [7], where
the key idea is to learn a linear combination of a given set of base kernels by max-
imising the (soft) margin between two classes or by maximising the “alignment”
of the base kernels. In [7], the kernel weights are regularised with an `1 norm.
Following this seminal work, MKL has become one of the most active areas in
the machine learning community in the past few years. Various extensions have
been made to [7]. For example, the efficiency of MKL is significantly improved
in [8–10]; a multiclass version and a multilabel version are proposed in [11] and
[12] respectively; in [13–15], the ratio of the inter- and intra- class scatters of
FDA is maximised instead of the margin and kernel alignment; while in [16–18,



15], `2 norm and even a general `p norm regularisation is considered instead of
the `1 norm.

Despite the improvements achieved with these extensions both in terms of ef-
ficiency and accuracy, all these MKL methods share one limitation. To see this,
let us consider an object categorisation problem as an example. Suppose the
number of training samples is m and n training kernels of size m×m are avail-
able. Let these n kernels capture various aspects of the classification problem by
using different features such as colour, texture, shape. Since all the MKL meth-
ods discussed above learn a linear combination of the base kernels, the learnt
composite kernel also has a size m×m. As a result, the learnt decision function
has m coefficients, one for each training sample1. This means the contribution of
a particular feature channel is fixed for all training samples. This is an unneces-
sarily strong constraint that does not allow to fully exploit the information from
every sample. For example, one particular sample may carry more shape infor-
mation than colour information, and vice versa for another sample. In a linear
combination scheme, however, the shape information will be equally weighted
in both training samples. Relaxing this constraint will allow to assign different
weights to different samples depending on their importance in particular infor-
mation channel. This effectively means that two different features extracted from
the same sample are treated as two different samples of the same class.

In this paper, we present a learning approach that uses multiple kernels but,
in contrast to existing MKL approaches, allows training samples to have different
contributions in a particular feature channel. Instead of linear combination of
the base kernels, we construct an (n × m) × (n × m) training kernel matrix.
This leads to n × m coefficients in the trained decision function, in contrast
to m coefficients in the linear combination scheme. As a result, the training
samples contribute differently and the decision function is more flexible. We give
the geometrical interpretation of our augmented kernel matrix (AKM) scheme
and make comparison to that of the linear combination scheme. We show on
several UCI datasets and an object recognition dataset that the AKM scheme
can outperform linear combination of kernels.

The rest of this paper is organised as follows. We first introduce the concept of
empirical feature space in Section 2 as it is important for understanding various
kernel combination schemes. In Section 3 we briefly review the linear combination
scheme. We then present our AKM scheme in Section 4 and discuss its connection
to linear combination both algebraically and geometrically. Experimental results
are provided in 5, which validate this new scheme. Finally conclusions are given
in 6.

2 Empirical Feature Space

This section introduces the concept of empirical feature space that will be then
used to discuss different methods for kernel combination. Let us for the moment
1 More precisely, the decision function has m+ 1 coefficients including a bias term b.



consider a single kernel case. We are given a symmetric, positive semi-definite
(PSD) m × m training kernel matrix K and a corresponding m × l test ker-
nel matrix K̇, where K contains the pairwise dot products of the m training
samples in some feature space, and K̇ contains the pairwise dot products of the
m training samples and the l test samples in the feature space. Note that this
feature space usually has a very high or even infinite dimension and thus not
directly tractable. However, it is shown in [19] that there exists an empirical
feature space in which the intrinsic geometry of the data is identical to that in
the true feature space, and for many machine learning problems, it suffices to
study this empirical feature space.

To compute from K and K̇ the training and test samples in the empirical
feature space, consider the eigen decomposition of K:

K = V ΛV T (1)

where Λ is the r × r diagonal matrix containing the r (r ≤ m) non-zero eigen
values of K, and V is the m×r matrix containing the r associated eigen vectors.
Note that since K is PSD, all the r non-negative eigenvalues of K are positive,
and r is also the rank of K. It directly follows that

K = V Λ1/2(Λ1/2)TV T = ((V Λ1/2)T )T (V Λ1/2)T := XTX (2)

where the r ×m matrix X is defined as

X = (V Λ1/2)T (3)

and its ith column is the ith training sample in the empirical feature space. Now
let Ẋ be the r× l matrix whose ith column is the ith test sample in the empirical
space. Ẋ is given by solving the following linear equation:

XT Ẋ = K̇ (4)

We have shown in (3) and (4) given K and K̇ how to find the training and
test samples in the empirical feature space Rr. In many practical situations, for
example, in the case of Radial Basis Function (RBF) kernel, K is full rank, i.e.
r = m. As a result, the m training samples X and l test samples Ẋ live in an m
dimensional empirical feature space Rm.

3 Linear Combination of Kernels

Now we turn to the case of multiple kernels. Assume we are given n training
kernels K1, · · · ,Kn of size m×m and n corresponding test kernels K̇1, · · · , K̇n

of size m×l. In this section, we consider a linear combination of the base kernels:

K =
n∑
j=1

βjKj , βj ≥ 0 (5)



Using the results from the previous section, each of these n kernels is associated
with an empirical feature space:

Kj = XT
j Xj

K̇j = XT
j Ẋj (6)

where Xj and Ẋj are the training and test samples in the empirical feature
space associated with the jth kernel, respectively, and Xj ∈ Rrj , Ẋj ∈ Rrj for
j = 1, · · · , n where rj is the rank of Kj .

From the definition of dot product, it directly follows that taking the un-
weighted sum of the n base kernels is equivalent to taking the Cartesian product
of the empirical feature spaces associated with the base kernels. On the other
hand, taking the weighted sum of the base kernels as in Eq. 5 is equivalent to
taking the Cartesian product of the base empirical feature spaces after scaling
these spaces with

√
β1, · · · ,

√
βn. In this light, the goal of all MKL methods in

[7–18] is to learn an optimal scaling such that some class separation criterion is
maximised.

We illustrate the geometrical interpretation of taking the unweighted sum of
two kernels in Fig. 1. Note that for the sake of visualisation we assume in Fig. 1
that the empirical feature spaces of both K1 and K2 are 1-dimensional, i.e., the
ranks of both K1 and K2 are 1. In practice, however, both spaces can be up to
m dimensional.

Fig. 1. Geometrical interpretation of taking the sum of two kernels. Left: the
empirical feature space of K1. Middle: the empirical feature space of K2. Right:
the empirical feature space of K1 +K2.

4 Kernel Combination with Augmented Kernel Matrix

Despite various ways of learning the optimal kernel weights, a linear combination
of kernels leads to a composite kernel matrix K =

∑n
j=1 βjKj which has a size

m×m. If SVM or kernel FDA is used as a classifier in the subsequent step, the
decision function is in the form of:

f(x) =
m∑
i=1

αiK(x,xi) + b (7)



where K(x,xi) is the dot product between a new test sample and the ith train-
ing sample in the composite empirical feature space, α = (α1, · · · , αm) and b
are learnt by maximising the margin (SVM) or by maximising the ratio between
inter- and intra- class scatters (FDA). In both cases, there are m learnt coeffi-
cients α if we ignore the bias term b, one for each training sample. This implies
that the contribution of a given base kernel (thus a feature channel) is fixed for
all training samples, which may be an unnecessarily strong constraint. For ex-
ample, in an object recognition problem, one particular sample may carry more
shape information than colour information and vice versa for another sample.

Instead of linear combination of kernels, we consider a different kernel com-
bination scheme. We define an operation on two symmetric PSD training kernel
matrices K1 and K2, K1 ⊕ K2, as constructing an augmented block diagonal
matrix K such that:

K = K1 ⊕K2 =
(
K1 0
0 K2

)
(8)

The zeros on the off diagonal reflect the fact that we do not have any knowledge
about the cross terms between the two kernel matrices.

Let the eigen decomposition of K1 and K2 be:

K1 = V1Λ1V
T
1 (9)

K2 = V2Λ2V
T
2 (10)

where Λ1 and Λ2 are the diagonal matrices containing the r1 and r2 non-zero
eigen values of K1 and K2 respectively, and V1 and V2 are the m×r1 and m×r2
matrices containing the r1 and r2 associated eigen vectors, respectively:

V1 = {v1
1,v

1
2, · · · ,v1

r1} (11)

V2 = {v2
1,v

2
2, · · · ,v2

r2} (12)

where the m dimensional vector vjs is the sth eigen vector of kernel Kj .
On the other hand, let the eigen decomposition of K = K1 ⊕K2 be:

K = V ΛV T (13)

Since K is a block diagonal matrix with K1 and K2 on its diagonal, Λ is a
diagonal matrix containing the r1 + r2 eigen values of K, and these are simply
the union of the r1 eigen values of K1 and the r2 eigen values of K2. Without
loss of generality, we order Λ such that its first r1 diagonal elements are the
eigen values of K1, and the last r2 are those of K2. Moreover, we order the
2m× (r1 + r2) eigen vector matrix V accordingly:

V = {ṽ1
1, ṽ

1
2, · · · , ṽ1

r1 , ṽ
2
1, ṽ

2
2, · · · , ṽ2

r2} (14)

Using again the property of block diagonal matrix, the columns of V are simply
the eigen vectors of K1 and K2 padded with m zeros:

ṽ1
s = (v1

s
T
, 0, · · · , 0)T s = 1, · · · , r1 (15)

ṽ2
s = (0, · · · , 0,v2

s
T

)T s = 1, · · · , r2 (16)



Now the training vectors in the empirical feature spaces associated with K1,
K2 and K, i.e., X1, X2 and X, can be computed using Eq. 3. Exploiting the
relation between Λ1, Λ2 and Λ, and that between V1, V2 and V , it directly follows
that X is an (r1+r2)×2m block diagonal matrix with X1 and X2 on its diagonal:

X =
(
X1 0
0 X2

)
(17)

where the r1 ×m matrix X1 and r2 ×m matrix X2 are the training vectors in
the empirical feature spaces associated with K1 and K2, respectively.

The geometrical interpretation of this AKM scheme for kernel combination is
illustrated in Fig. 2, where for the sake of visualisation we assume that the em-
pirical feature spaces of both K1 and K2 are 1-dimensional. In practice, however,
both spaces can be up to m dimensional. It is clear in Fig. 2 that by combining
two kernels using the AKM scheme we have 2m training samples. This results
in 2m coefficients in the decision function trained using the augmented kernel
matrix, and as a result it allows training samples to have different contribution
through the feature channels. We will show the benefit of this experimentally in
the next section.

Fig. 2. Geometrical interpretation of augmenting the kernel matrix using Eq. 8.
Left: the empirical feature space of K1. Middle: the empirical feature space of
K2. Right: the empirical feature space of K1 ⊕K2.

For test kernels, the ⊕ operation is defined as:

K̇ = K̇1 ⊕ K̇2 =
(
K̇1

K̇2

)
(18)

As a result the composite test kernel K̇ has a size 2m × l. By applying the
decision function, which has 2m coefficients, on K̇, we obtain one score for each
test sample.

5 Experiments

In this section, we validate the usefulness of the proposed AKM kernel combina-
tion scheme on both UCI datasets and an object recognition dataset. SVM and



kernel FDA are the two most popular kernel based classification methods. It has
been shown [20, 4] that SVM and kernel FDA have strong connections. In fact,
the only difference between them is that SVM uses a hinge loss for computing
the empirical loss while FDA uses a squared loss. In our experiments we choose
kernel FDA as classifier to compare several kernel combination schemes: the `1
multiple kernel FDA (MK-FDA) of [14], the `2 MK-FDA of [15], `∞ MK-FDA
where all the base kernels get equal weights, and the AKM scheme proposed in
this paper.

5.1 UCI datasets

We show in this section results on four datasets from the UCI machine learning
repository [21], namely, sonar, heart, iris and wine. Among these datasets, the
first two are binary problems while the last two are multiclass problems. For
each dataset, we first normalise each feature in the input space to between -1
and 1. We then construct 10 RBF kernels using the normalised features with
the following kernel function KRBF (xi,xj) = exp−||xi−xj ||2/σ2

, where σ is set
to {10−1/2, 10−1/3, 10−1/6, 100, 101/6, 101/3, 101/2, 102/3, 105/6, 101}. All the ker-
nels are then centred in their empirical feature spaces[6]. For each dataset, we
randomly split all samples (or equivalently the kernel matrix) into a training set
and a test set using a ratio of 8 : 2. We repeat experiments 1000 times using
1000 random splits and report the mean error rate and standard deviation.

The first three methods under comparison all use linear combination of ker-
nels. In `1 MK-FDA and `2 MK-FDA, the optimal kernel weights are learnt;
while in `∞ MK-FDA the kernel weights are ones for all kernels. Once the ker-
nel weights are obtained, the composite training kernel and test kernel can be
computed. For the proposed AKM scheme, augmented training kernel and test
kernel are constructed using Eq. 8 and Eq. 18, respectively.

Once the training and test kernels have been obtained using the four methods,
we apply FDA to find the optimal projection and compute the classification error
rate. In our experiments, the spectral regression based FDA implementation in
[22] is employed for its efficiency. In this implementation, a γ parameter controls
the trade-off between empirical error and generalisation of the decision function.
For each dataset and each of the 1000 splits, we repeat 11 times using 11 γ
values: {0, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 10+1}.

We report the error rate and standard deviation of the four kernel combina-
tion methods in Table 1 and Table 2. For each γ value, we compute the mean
error rate of the 1000 runs, and report in Table 1 the smallest error rate and the
associated standard deviation for each method. We also select the optimal γ for
each of the 1000 runs and report the error rate and standard deviation in Table
2. Briefly speaking, results in Table 1 and Table 2 are obtained with γ optimised
over the mean of all 1000 runs and over each individual run, respectively.

From both tables we can see that MK-FDAs with different regularisation
norms can be advantageous on different datasets. This is because different norm
tend to produce kernel weights with different levels of sparsity: the smaller the



norm, the higher the sparsity. As a result, MK-FDA with different norms are
suitable for kernel sets with various levels of intrinsic sparsity. On the other
hand, the proposed AKM scheme outperforms all versions of MK-FDA, which
are already the state-of-the-art classifiers, on two out of four datasets, and is
comparable on the other two.

Table 1. Mean error rate. γ optimised over the mean of 1000 runs.

`1 MK-FDA `2 MK-FDA `∞ MK-FDA AKM FDA

sonar 13.5±5.0 14.2±5.2 13.9±5.1 11.9± 4.6

heart 17.5±4.7 17.0± 4.6 17.2±4.6 17.9±4.7

iris 5.1±3.8 4.7±3.5 4.6±3.6 4.1± 3.2

wine 5.6±9.7 1.5± 2.0 1.5± 2.0 2.5±2.6

Table 2. Mean error rate. γ optimised over each individual run.

`1 MK-FDA `2 MK-FDA `∞ MK-FDA AKM FDA

sonar 11.9±4.6 12.9±4.7 12.9±4.7 9.9± 4.0

heart 16.5±4.5 16.1± 4.4 16.3±4.4 16.6±4.4

iris 4.3±3.4 4.1±3.2 4.0±3.3 2.9± 2.7

wine 4.9±9.5 1.2±1.7 1.1± 1.7 1.9±2.3

5.2 Pascal VOC08 dataset

The Pascal visual object classes (VOC) challenge provides a yearly benchmark
for comparison of object recognition methods, with one of the most challenging
datasets in the object recognition / image classification community [27]. The
VOC 2008 development dataset consists of 4332 images of 20 object classes such
as aeroplane, cat, person, etc. The set is divided into a pre-defined training set
with 2111 images and a validation set with 2221 images. In our experiments, the
training set is used for training and the validation set for testing.

The classification of the 20 object classes is treated as 20 independent binary
problems. Average precision (AP) [23] is used to measure the performance of
each binary classifier. The mean of the APs of the 20 classes, MAP, is used as a
measure of the overall performance.

SIFT descriptor [24] and codebook technique [25] are used to generate kernels.
The combination of two sampling techniques (dense and Harris-Laplace), five
colour variants of SIFT descriptors [26], and three ways of dividing an image
into spatial location grids results in 2× 5× 3 = 30 base kernels.

We show in Table 3 the MAPs of the four kernel combination methods. The
γ parameter is set to 0, with which optimal MAPs are achieved for all four meth-
ods. The poor performance of `1 MK-FDA indicates that the base kernels carry
complementary information. In such a case, non-sparse kernel selection result is



Table 3. MAPs of the four kernel combination methods with 30 base kernels.

`1 MK-FDA `2 MK-FDA `∞ MK-FDA AKM FDA

MAP 45.1 46.3 46.2 46.4

favoured since it does not lead to information loss. The proposed AKM scheme
outperforms `2 and `∞ MK-FDAs by seemingly small margins. However, it is
worth noting that a difference of 0.1 in MAP is more significant than it may
appear to be. For example, the leading methods in PASCAL VOC classification
competitions typically differ only by a few tenths of a percent in MAP. More-
over, uniform FDA was used by the method that produced the highest MAP in
PASCAL VOC 2008 classification challenge [27]. This means the proposed AKM
scheme improves over the state-of-the-art classifier for object recognition.

In both the experiments on UCI datasets and on VOC08 dataset, `1 and `2
MK-FDAs are implemented in Matlab and the associated optimisation problems
are solved with the Mosek optimisation software 2. The stopping threshold ε in
`1 and `2 MK-FDAs is set to 5× 10−4.

6 Conclusions

In this paper we have presented a novel approach to combining multiple kernels
where the kernels are computed from different information channels. In contrast
to traditional methods that learn a linear combination of n kernels of size m×m,
resulting in m coefficients in the trained classifier, we propose a method that can
learn n×m coefficients. This allows to assign different importance to the informa-
tion channel per example rather than per kernel. We analyse the proposed kernel
combination in empirical feature space and provide its geometrical interpreta-
tion. We validate the approach on both UCI datasets and an object recognition
dataset, and demonstrate that it leads to classification improvements.
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