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Abstract. A method for applying weighted decoding to error-correcting
output code ensembles of binary classifiers is presented. This method is
sensitive to the target class in that a separate weight is computed for each
base classifier and target class combination. Experiments on 11 real-world
datasets show that the method tends to improve classification accuracy
when using neural network or support vector machine base classifiers. It
is further shown that weighted decoding combines well with the technique
of bootstrapping to improve classification accuracy still further.

1 Introduction

The use of error-correcting output code (ECOC) ensembles [5,8] has proved to
be highly successful in solving multi-class classification problems. In this ap-
proach the multi-class problem is decomposed into a series of 2-class problems,
or dichotomies, and a separate base classifier trained to solve each one. These
2-class problems are constructed by repeatedly partitioning the set of target
classes into pairs of super-classes so that, given a large enough number of such
partitions, each target class can be uniquely represented as the intersection of
the super-classes to which it belongs. The classification of a previously unseen
pattern is then performed by applying each of the base classifiers so as to make
decisions about the super-class membership of the pattern. Redundancy can be
introduced into the scheme by using more than the minimum number of base
classifiers and this allows errors made by some of the classifiers to be corrected
by the ensemble as a whole.

The operation of the ECOC algorithm can be broken down into two distinct
stages - the coding stage and the decoding stage. The coding stage consists of
applying the base classifiers to the input pattern x so as to construct vector
of base classifier outputs s (x); the decoding stage consists of applying some
decoding rule to this vector so as to make an estimate of the class label that
should be assigned to the input pattern.

A commonly used decoding method is to base the classification decision on
the minimum distance between s (x) and the vector of target outputs for each of
the classes, using a distance metric such as Hamming or L1. This, however, treats



all base classifiers as equal, and takes no account of variations in their reliability.
In this paper we describe a method for weighting the base classifier outputs so as
to obtain improved ensemble accuracy. The weighting coefficients are computed
from a statistic, known as the class-separability statistic. This algorithm assigns
different weights to each base classifier and target class combination. Class-
separability weighting (CSEP) was shown in [12] to be useful in the field of
face-expression recognition. Here we show that it can also be beneficial when
applied to general classification problems, as exemplified by 11 UCI datasets [9].

One of the advantages of the ECOC approach is that it makes it possible
to perform multi-class classification by using base classifier algorithms that are
more suited to solving 2-class problems. In this paper we investigate experimen-
tally three types of base classifier, namely multi-layer perceptron (MLP) neural
networks [1], Gaussian kernel support vector machines (SVMs) and polynomial
kernel SVMs [3]. It is useful to regard each of these base classifier types as being
controlled by two main parameters which respectively determine the capacity
and the training strength of the learning algorithm. The term capacity [3] refers
to the ability of an algorithm to learn a training set with low or zero training
error. By training strength we mean the amount of effort that is put into training
the classifier to learn the details of a given training set. For the three types of
base classifier considered, the capacity parameter is, respectively, the number of
hidden nodes, the Gaussian gamma parameter and the polynomial degree pa-
rameter. The training strength parameter is the number of training epochs for
MLPs and the cost parameter for both types of SVMs.

A generally desirable property of multiple classifier systems, of which ECOC
is an example, is that there should be diversity among the individual classifiers
in the ensemble [2,11]. By this is meant that the errors made by component
classifiers should, as far as possible, be uncorrelated so that the error correcting
properties of the ensemble can have maximum effect. One way of encouraging
this is to apply bootstrapping [7] to the training set so that each base classifier
is trained on a unique bootstrap replicate. These are obtained from the original
training set by repeated sampling with replacement. This creates a training set
which has, on average, 63% of the patterns in the original set but with some
patterns repeated to form a training set of the same size. Previous work [10]
has shown that bootstrapping often reduces ensemble error and, in particular,
it tends to avoid the problem of overfitting the data at high training strength
values.

The remainder of this paper is structured as follows. The technique of apply-
ing class-separability weighting to the decoding of outputs from ECOC ensembles
is described in detail in section 2. An experimental investigation of the effect of
using this weighting scheme, with and without bootstrapping, is presented in
section 3. Finally, section 4 summarises the conclusions to be drawn from this
work.



2 ECOC Weighted Decoding

The ECOC method consists of repeatedly partitioning the full set of N classes
Ω into L super-class pairs. The choice of partitions is represented by an N × L
binary coding matrix Z. The rows Zi are unique codewords that are associated
with the individual target classes ωi and the columns Zj represent the different
super-class partitions. Denoting the jth super-class pair by Sj and Sj , element
Zij of the coding matrix is set to 1 or 01 depending on whether class ωi has been
put into Sj or its complement. A separate base classifier is trained to solve each
of these 2-class problems.

Given an input pattern vector x whose true class y (x) ∈ Ω is unknown, let
the soft output from the jth base classifier be sj (x) ∈ [0, 1]. The set of outputs
from all the classifiers can be assembled into a vector s(x) = [s1(x), . . . , sL(x)]T ∈
[0, 1]L called the output code for x. Instead of working with the soft base clas-
sifier outputs, we may also first harden them, by rounding to 0 or 1, to obtain
the binary vector h(x) = [h1(x), . . . , hL(x)]T ∈ {0, 1}L. The principle of the
ECOC technique is to obtain an estimate ŷ (x) ∈ Ω of the class label for x from
a knowledge of the output code s(x) or h(x).

In its general form, a weighted decoding procedure makes use of an N × L
weights matrix W that assigns a different weight to each target class and base
classifier combination. The class decision, based on the L1 metric, is made as
follows:

ŷ (x) = arg min
ωi

L∑
j=1

Wij |sj (x) − Zij| , (1)

where it is assumed that the rows of W are normalized so that
∑L

j=1 Wij =
1 for i = 1 . . . N . If the base classifier outputs sj (x) in eqn. 1 are replaced
by hardened values hj (x) then this describes the weighted Hamming decoding
procedure.

The values of W may be chosen in different ways. For example, if Wij = 1
L

for all i, j then the decoding procedure of eqn. 1 is equivalent to the standard
unweighted L1 or Hamming decoding scheme. In this paper we make use of the
class separability measure [11,12] to obtain weight values that express the ability
of each base classifier to distinguish members of a given class from those of any
other class.

In order to describe the class-separability weighting scheme, the concept of a
correctness function must first be introduced: given a pattern x which is known
to belong to class ωi, the correctness function for the j’th base classifier takes
the value 1 if the base classifier makes a correct prediction for x and 0 otherwise:

Cj (x) =

{
1 if hj (x) = Zij

0 if hj (x) ̸= Zij

. (2)

We also consider the complement of the correctness function Cj (x) = 1−Cj (x)
which takes the value 1 for an incorrect prediction and 0 otherwise.
1 Alternatively, the values +1 and -1 are often used.



For a given class index i and base classifier index j, the class-separability
weight measures the difference between the positive and negative correlations of
base classifier predictions, ignoring any base classifiers for which this difference
is negative:

Wij = max


0,

1
Ki


∑

p ∈ ωi

q /∈ ωi

Cj (p) Cj (q) −
∑

p ∈ ωi

q /∈ ωi

Cj (p)Cj (q)




, (3)

where patterns p and q are taken from a fixed training set T and Ki is a
normalization constant that ensures that the i’th row of W sums to 1. An
algorithm for computing W is summarised in fig. 1.

Inputs: matrix of training patterns T ∈ RP×M , binary coding matrix Z ∈
{0, 1}N×L, trained ECOC coding function E : RM 7→ [0, 1]L .
Outputs: weight matrix W ∈ [0, 1]N×L where

PL
j=1 Wij = 1, for i = 1 . . . N .

Apply E to each row of T and round to give prediction matrix H ∈ {0, 1}P×L.
Initialise W to 0.
for c = 1 to N

for i = indices of training patterns belonging to class c
for j = indices of training patterns not belonging to class c

let d be the true class of the pattern Tj .
for k = 1 to L

if Hik = Zck and Hjk = Zdk, add 1 to Wck

as the predictions for both patterns Ti and Tj are correct.
if Hik 6= Zck and Hjk 6= Zdk, subtract 1 fromWck

as the predictions for both patterns Ti and Tj are incorrect.
end

end
end

end
Reset all negative entries in W to 0.
Normalize W so that each row sums to 1.

Fig. 1. Pseudo-code for computing the class-separability weight matrix for ECOC.

3 Experiments

In this section we present the results of performing classification experiments
on 11 multi-class datasets obtained from the publicly available UCI repository
[9]. The characteristics of these datasets in terms of size, number of classes and
number of features are given in table 1.



Table 1. Experimental datasets showing the number of patterns, classes, continuous
and categorical features.

Dataset Num. Num. Cont. Cat.
Patterns Classes Features Features

dermatology 366 6 1 33
ecoli 336 8 5 2
glass 214 6 9 0
iris 150 3 4 0

segment 2310 7 19 0
soybean 683 19 0 35
thyroid 7200 3 6 15
vehicle 846 4 18 0
vowel 990 11 10 1

waveform 5000 3 40 0
yeast 1484 10 7 1

For each dataset, ECOC ensembles of size 200 were constructed using each
of three base classifier types and a range of capacity and training strength pa-
rameters. Each such combination was repeated 10 times with and without CSEP
weighting and with and without bootstrapping. In total this led to 56,000 ex-
perimental runs being performed. Each run used a different randomly chosen
stratified training set and a different randomly generated ECOC coding matrix;
for neural network base classifiers another source of random variation was the
initial network weights. When bootstrapping was used, each base classifier was
trained on a separate bootstrap replicate drawn from the complete training set
for that run. The CSEP weight matrix was, in all cases, computed from the full
training set. In each run the data was normalized so that the training set had
zero mean and unit variance. The ECOC code matrices were constructed in such
a way as to have balanced numbers of 1s and 0s in each column. Training sets
were based on a 20/80 training/test set split.

The base classifier types employed were single-hidden layer MLP neural net-
works using the Levenberg-Marquardt training algorithm, SVMs with Gaussian
kernel and SVMs with polynomial kernel. The MLPs were constructed as a sin-
gle hidden layer of perceptrons, with the number of hidden nodes ranging from
2 to 16 and the number of training epochs from 2 to 1024. For Gaussian SVMs
the width parameter gamma was varied between 1 and 8, whilst for polynomial
SVMs degrees of 1,2,3 and 4 were used. The cost parameter of SVMs was varied
between 10−3 and 103. In all cases, apart from polynomial degrees, the base
classifier parameters were varied in geometric progression.

Table 2 compares the effect, on ensemble generalisation accuracy, of using
CSEP weighted decoding and bootstrapping in different combinations. For each
such combination and each base-classifier algorithm it shows the number of
datasets for which rank 1 accuracy was achieved (with the scores being divided
in the case of two or more equally ranked classifiers). It also shows the mean
ranking, taken over the 11 datasets, achieved by each combination together with



the mean best-case ensemble error and the percentage reduction in this error2.
The evidence of this table is that both bootstrapping and CSEP weighting on
their own do tend to produce some improvement in classifier accuracy, with the
latter algorithm being somewhat more effective than the former. This is shown
by higher rank 1 counts, lower mean rank values and lower test errors. It is
striking, however, that the greatest benefit is obtained when both techniques are
used, indicating that their effects are mutually complementary so that they can
be combined to good effect. It is also noticeable that, perhaps due to its more
stochastic nature, the MLP base classifier shows the greatest reduction in mean
test error, with the deterministic SVM classifiers benefitting to a lesser degree.

Table 2. Comparison of the merits of four combinations of algorithms, namely standard
ECOC, ECOC with bootstrapping (BS), ECOC with CSEP weighted decoding and
ECOC with both bootstrapping and weighted decoding.

Standard BS CSEP BS+CSEP
Rank 1 count

MLP 0 1 3 7
Gaussian SVM 0.5 1.5 2.5 6.5

Polynomial SVM 1 1 3 6
Mean rank

MLP 3.18 2.82 2.36 1.64
Gaussian SVM 3.09 2.91 2.18 1.55

Polynomial SVM 3.18 2.55 2.55 1.73
Mean best-case ensemble test error (%)
MLP 16.54 16.23 16.16 15.78

Gaussian SVM 15.84 15.88 15.77 15.65
Polynomial SVM 16.98 16.81 16.88 16.63

Relative decrease in mean test error (%)
MLP - 1.87 2.30 4.59

Gaussian SVM - -0.25 0.44 1.20
Polynomial SVM - 1.00 0.59 2.06

Further evidence for these findings can be seen in Fig. 2. This shows the
mean ensemble test error, taken over all datasets, at the optimal base classifier
capacity and over a range of training strength values. It is immediately apparent,
from an inspection of this figure, that the best results tend to be obtained us-
ing CSEP weighted decoding and bootstrapping in combination. Bootstrapping
alone tends to reduce ensemble error and also makes the ensemble less susceptible
to overtraining at high values of the training strength parameter. When CSEP
weighting is added to bootstrapping there is a further consistent reduction in en-
semble error over the range of training strength values. This improvement tends
to be most pronounced at low values of training strength, but is still observ-

2 Calculated as 100 x (original error - new error)/original error.
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Fig. 2. The effects of class-separation weighting and bootstrapping on ensemble test
error over a range of training strength values. These graphs show the mean error rate,
taken over all datasets, at optimal base classifier capacity. The capacity parameters
were (a) 8 hidden nodes, (b) gamma = 4, (c) degree = 2.



Table 3. Comparison of lowest ensemble error attained using standard ECOC and
bootstrapped ECOC with weighted decoding (BS+CSEP). All values are expressed as
percentages.

MLP Gaussian SVM Polynomial SVM
Data Set Std. BS + relative Std. BS + relative Std. BS + relative

ECOC CSEP decrease ECOC CSEP decrease ECOC CSEP decrease
dermatology 4.86 3.07 36.83 2.97 2.90 2.35 3.21 2.97 7.56

ecoli 17.48 15.08 13.73 14.66 14.00 4.50 15.68 14.44 7.89
glass 37.16 36.64 1.40 35.76 35.69 0.22 38.57 37.71 2.22
iris 5.25 5.00 4.76 5.83 5.08 12.86 5.58 5.75 -2.99

segment 3.92 3.94 -0.51 5.64 5.59 0.96 6.08 5.69 6.50
soybean 9.39 9.04 3.73 7.90 8.06 -2.10 8.24 8.25 -0.02
thyroid 2.57 1.95 24.12 2.77 2.69 2.94 3.39 2.90 14.54
vehicle 22.22 20.76 6.57 22.38 22.04 1.52 23.66 23.08 2.44
vowel 21.14 22.42 -6.05 20.83 20.86 -0.12 25.85 25.86 -0.05

waveform 16.70 14.75 11.68 14.48 14.41 0.45 14.59 14.45 0.97
yeast 41.22 40.97 0.61 41.02 40.85 0.41 41.90 41.83 0.18
mean 16.54 15.78 8.81 15.84 15.65 2.18 16.98 16.63 3.57

able at higher values of this parameter. In the absence of bootstrapping, CSEP
weighting still leads to a reduction in ensemble error but the effect is more clas-
sifier dependent, with MLPs gaining the greatest benefit and polynomial SVMs
the least. Again, the error reduction achieved by CSEP weighting is greatest at
low values of training strength.

In the remainder of this section we look in more detail at the effects of apply-
ing bootstrapping and CSEP weighted decoding in combination. Table 3 shows
the error levels measured on each of the test sets for each of the base classi-
fier types when the base classifier parameters were optimised so as to minimise
ensemble test error. Also shown is the percentage relative reduction in error
achieved by bootstrapping plus CSEP weighting.

It can be seen from this table that, in the majority of cases (26/33), boot-
strapping plus CSEP weighting did lead to a reduction in ensemble error. The
size of this reduction was greatest when using an MLP base classifier but was
nevertheless observable for the SVM base classifiers also.

There is also evidence that, for MLP base classifiers, bootstrapping plus
CSEP weighted decoding has the desireable property that it tends to require
simpler classifiers with fewer hidden nodes than standard ECOC. Table 4 shows
the optimal numbers of hidden nodes, with and without bootstrapping plus
weighted decoding. It can be seen that in 7/11 cases the former combination
required fewer nodes, with the converse being true in only 2/11 cases. Also shown
in table 4 is the number of training epochs required for optimal performance and
it can be seen that the picture here is more evenly balanced between the two
methods.



Table 4. Optimal numbers of hidden nodes and training epochs for MLP base classifiers
with and without bootstrapping plus weighted decoding.

Nodes Epochs
Dataset Standard BS+CSEP Standard BS+CSEP

dermatology 4 8 16 4
ecoli 16 8 4 4
glass 16 8 8 64
iris 8 2 4 4

segment 16 8 32 64
soybean 8 8 4 4
thyroid 8 4 32 64
vehicle 8 4 8 16
vowel 8 8 128 32

waveform 4 16 8 4
yeast 8 4 8 8

4 Discussion and Conclusions

In this paper we have shown, by performing experiments on 11 real world
multi-class datasets, that the techniques of bootstrapping and class-separability
(CSEP) weighting each tend reduce ECOC ensemble error. Bootstrapping affects
the coding stage; it tends to increase diversity and to make the ensemble resis-
tant to overfitting, especially at high values of the training strength parameter.
CSEP weighting affects the decoding stage by taking account of the different
performances of the base classifiers with respect to each target class.

It has been shown that these two algorithms complement each other and
thus combine well together to produce a greater reduction in ensemble error
than either of the methods individually. One reason for this may be related to
the fact that a side-effect of bootstrapping is to reduce the training set of each
base classifier to a subset of the available training set. It seems likely that this
benefits CSEP weighting because the weight matrix, which is calculated using
the full training set, will tend to be less biased by virtue of the fact that some
of the training patterns will not have been used for base classifier training. In
effect this is similar to using a hold-out set for CSEP training.

The greatest benefit from CSEP weighting was observed when using MLPs
as base classifiers. In this context it was also observed that the method has the
desireable property that it tends to lead to simpler MLPs, requiring fewer hidden
nodes for optimal performance. When deterministic base classifier algorithms
such as SVMs were used, class-separability weighting was still found to be of
benefit but to a lesser degree.

Future work will focus on characterizing how CSEP weighting improves per-
formance in terms of a bias-variance decomposition of error.
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