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Abstract. The development of Spatial Decision Support Systems
(SDSSs) which explicitly consider spatial relations has had a signifi-
cant growth over recent years. The main intention of this paper is re-
viewing spatial optimization approaches for identifying contiguous and
compact areas fulfilling particular criteria. These approaches explicitly
consider topological spatial relations between geographical entities (cells,
lines, points, areas). In this direction, spatial optimization techniques
as heuristics, meta-heuristics, and mathematical programming are re-
viewed. Since the application fields, the nature of the approaches, the
data format, and the size of the reviewed works are very diverse, high
level comparison is made in order to identify critical issues regarding the
identification of contiguous and compact areas in digital geographical
information.

1 Introduction

1.1 Justification

The speedy progress of computational facilities has contributed to the develop-
ment of sophisticated systems like those devoted to Decision Support. A Decision
Support System (DSS) implies a computer program that: assists individuals or
groups of individuals in their decision process, supports rather than replaces
judgments of individuals, and improves effectiveness rather than efficiency [25],
i.e. emphasizes effective impact rather than performance. A Spatial Decision
Support System (SDSS) is different from a DSS in the fact that it is used to
support decision processes where the spatial aspect of a problem plays a decisive
role [43]. A SDSS is defined as an interactive, computer-based system designed to
support users in achieving effective decision-making by solving semi structured
spatial problems [31].
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Even considering the fact that last developments of Geographic Information
Systems (GIS) irrefutably have contributed to improve geo-spatial information
processing, and to develop SDSSs; historically, most models have dealt with the
spatial data aspatially. The important spatial interactions between elements were
usually not dealt with; and in Multi-Criteria Decision Analysis spatial influence
or requirements have not often been explicit criteria in developing the solution
[23]. Moreover, there are authors [17,8,42] arguing that GIS capabilities are not
enough to contribute to the solution of some kind of problems where the ana-
lytical and dynamic modelling aspects are crucial. In this sense, coupling GIS
with analytical tools and dynamic modelling is proposed in several applications
(e.g. [28,7,21,27]) as means to obtain useful methodologies to deal with spatial
analysis in problems encompassing e.g. contiguity, compactness and clustering.

1.2 Objectives

The main intention of this paper is reviewing approaches to geographically iden-
tify compact areas fulfilling multiple on-site criteria. Compactness implies conti-
guity, and both of them are based on adjacency topological spatial relationships.
Identification of compact areas has became a major issue in decision support
systems. The problem is complex since the searched sites can be composed ei-
ther by polygons or points in vector representations, or by a set of cells in raster
maps. High quality or optimal compact sites can be relevant from e.g. economi-
cal, conservation, or management point of view.

While the second section introduces general definitions of techniques applied
in spatial optimization in general; the third section looks over different ap-
proaches specifically dealing with contiguity and compactness. Finally, section 4
discusses the reviewed applications and section 5 draws the conclusions.

2 Definitions

Although this document makes use of terminology that could be intuitive, it
is important to define some concepts in order to clarify the contributions for
identifying compact areas in geo-data sets as part of decision support processes.
A site is contiguous if one can walk from an identified location to another without
leaving the site [54]. Since the notion of compactness is associated with firmly
packed sites, some of the earliest attempts to develop a compactness index relied
on perimeter to area ratios [30].

Compactness belongs to the Automatic Zoning Problem (AZP), defined by
[38] as a hard optimization problem, in which N building blocks are aggregated
into M zones such that some function (or functions) on the M zone data is (are)
optimized subject to various constraints on the topology of the M zones and/or
on the nature of the data they generate. Compactness is an issue that belongs
to optimization spatial analysis which in turn applies diverse analytic and com-
putational techniques in order to find optimal or near to optimal solutions to
problems involving geographical objects (cells, lines, points, areas).
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2.1 Spatial Relations

Although some approaches for spatial analysis [29] explicitly consider relations
between spatially distributed entities, other approaches process the descriptive
data attached to these entities. Three classes of Spatial Relations (SR), namely
metric, order and topology have been distinguished based on the type of func-
tions or relation associated with a set of objects [14]. Topology is a mathematical
concept that has its origin in the principles of object adjacency and connected-
ness [44]. Topology describes the relationship between an object and its neighbors
[1], relationships which are invariant under geometric transformations such as
translation, rotation, and scaling [14]. Moreover, Topological relations can be de-
fined through the three components of an object, that is, the interior, boundary
and exterior [40]. Adjacency is a kind of topological relationship, which is ap-
plied in issues of compactness, fragmentation, and clustering. A simple example
is shown in figure 1. While in the left hand side the set of nine black cells forms
a compact patch, the black cells in the right hand side are fragmented. A region
is more compact when the selected cells share more common borders with other
selected cells. In this way, while the area is constant, adjacency leads to a shorter
perimeter.

Fig. 1. Compactness vs. fragmentation

2.2 Techniques Applied in Compact Site Location

Heuristic Methods. A heuristic is a problem-specific way of directing prob-
lem solving. Since in the worst case exact algorithms need exponential time to
find the optimum, approximate methods, often called heuristic methods or sim-
ply heuristics, seek to obtain good, that is, near-optimal solutions at relatively
low computational cost without being able to guarantee their optimality [12].
When the heuristics are general-propose methods that can guide different prob-
lems to find high quality solutions, those are called meta-heuristics, defined [22]
as solution methods that orchestrate an interaction between local improvement
procedures and higher-level strategies to create a process capable of escaping
from local optima and performing a robust search of a solution space. Examples
of meta-heuristics are among others: genetic algorithms, tabu search, simulated
annealing, multi-agent systems, and guided local search.

Simulated Annealing. The analogy between combinatorial optimization and
physical process of crystallization is applied [26] to introduce the concept of an-
nealing in combinatorial optimization. The crystallization process inspired [35]
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to propose a numerical optimization procedure which starts from an initial so-
lution with energy level f(0). A small perturbation to the initial solution brings
the system to a new energy level f(1). If f(1) is smaller than f(0) then the new
solution obtained through the perturbation (state change) is accepted. If f(1) is
greater than f(0), the new solution is accepted if the probability of acceptance
given by the Metropolis criterion [2] (f(0) − f(1)/S0) is greater than a random
number drawn from a uniform [0,1] distribution. Next, the freezing parameter
(S0) is slightly decreased and a new perturbation is performed. This process is
repeated until a given number of iterations is reached or until change occurrences
are very rare. The decrease of the freezing parameter is usually done only once
every L iterations using a constant multiplication factor: Si+1 = r ∗ Si, with
0 < r < 1.

Genetic Algorithms. The original motivation for the GA approach was a bi-
ological analogy. In the selective breeding of plants or animals, for example,
offspring are sought that have certain desirable characteristics that are deter-
mined at the genetic level by the parents’ chromosomes combine [41]. GA as
they are know today were first described by John Holland in the 1960s and fur-
ther development by Holland and his students and colleagues at the University
of Michigan in 1960s and 1970s [36]. To search a space of solutions (or a space
of hypotheses), GA define three elements: chromosomes/genotype (Individual
solutions to a problem), population (set of chromosomes), and generations (it-
erations which allow the population to evolve). Genetic Algorithms provide an
approach to learning that is based loosely on simulated evolution [37]. The algo-
rithm starts with a randomly generated population of μ chromosomes. Fitness
of each chromosome is calculated, and the next generation is created with search
operators applied to the chromosomes of the current population to generate λ
offspring. Individuals of the λ offspring and μ parents, or only individuals of the
λ offspring, are considered to create the population of the new generation. This
process is iterated until one or more highly fit chromosomes are found in the
population. Search operators are classified in two categories: mutation operators
modify an individual to form another; crossover operators generate one or more
offspring from combinations of two parents [13].

Tabu Search. Local Search (LS ) algorithms start from a candidate solution
and moves to a neighbor solution that is better, and stops when all neighbors
are inferior to the current solution. Since local search can be trapped in local
optima, to improve its effectiveness, various techniques have been introduced
over the years. Simulated Annealing (SA), Tabu Search (TS ), and Guided Local
Search (GLS ) all attempt to help [48]. Tabu Search uses tabu lists (memory)
to avoid cycling back to previous solutions. In fact, basic TS can be seen as
simply the combination of LS with short-term memories [19]. A neighborhood
is formally defined [13]: for any solution s of S, a set N(s) ⊂ S that is a set
of the neighboring solutions of s. The neighboring solutions, N(s), are feasible
solutions generated with the application of a move (or modification) m to s
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(m
⊕

s), where a move m belongs to a set M . TS makes an “intelligent” choice
of a solution from N(s). Random selection or the analysis of subsets of M is
proposed by some authors in order to accelerate the evaluation. This method for
neighbor selection is associated with a decrease in quality, because the chosen
solutions could have lesser quality than those selected in a complete examination
of the neighborhood. This limitation encourages avoiding local optima because
it generates certain diversity in the visited solutions, in this way the benefit is
at global level.

Exact Methods. Exact methods include enumeration and mathematical pro-
gramming, as well as many specialized algorithms that have been developed for
particular optimization problems [52].

Mathematical Programming. Linear and Integer Programming (LP/IP), be-
longing to the Mathematical Programming methods, can find optimal (or exact)
solutions. The simplex algorithm solves Linear Programming (LP) problems. LP
is defined [53] as an optimization problem which: 1) attempt to maximize (or
minimize) a linear function of the decision variables (objective function); 2) the
values of the decision variables must satisfy a set of constraints and each con-
straint must be a linear equation or a linear inequality; and 3) a sign restriction
is associated with each variable, for any variable xi, the sign restriction speci-
fies that xi must be either nonnegative (xi ≥ 0) or unrestricted in sign (urs).
While in pure integer programming all variables are integers, in mixed integer
programming only some variables are integers. Spatial optimization is one of the
fields where LP/IP has been successfully applied.

Enumerations Methods. Enumeration methods evaluate all candidate solu-
tions (explicit enumeration - brute force), or select a set of efficient solutions
(implicit enumeration), and select the one that optimizes specific criteria. Since
the computational cost of this sort of search is proportional to the number of
candidate solutions, it is typically applied in limited sized problems (small num-
ber of candidate solutions).

3 Compact and Contiguous Site Location Approaches

3.1 Heuristic Approaches

To deal with the problem of generating compact and contiguous districts while
providing population equality and maintaining jurisdictional boundaries, an Op-
timization Based Heuristic is developed [34] based on a mathematical model
[18], and with capabilities of considering many potential districts. The problem
is represented with a graph, where each node is associated with the population
of a county (unit), and an edge exists when two geographical units are neigh-
bors. A penalty cost is assigned to every potential district that measures its
“non-compactness” from an ideal district; this penalty cost is minimized. The
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non-comptacness of a district is measured by how far units in the district are
from a central unit (u). The central unit is the node which minimizes:

∑
j∈V ′ Suj ,

where V’ is the set of nodes in a district. Since it is not possible to enumerate all
possible districts (exponential to the number of populations units), the model
uses the column generation methodology [3] to generate them “as needed”. To
ensure contiguity the model requires the district to be a subtree of a shortest
path tree rooted at u. To enforce the shortest subtree requirement, a constraint
is added to control that a node j is selected only if at least one of the nodes that
is adjacent to it and closer to u is also selected [34].

To explicitly manage the shape in site allocation problems, the Parameterized
Region-Growing (PRG) [6] is proposed as a fusion of two ideas: Simple Region
Growing (SRG) and Parameterized Shape Growing (PSG). The SRG algorithm
iteratively adds the most suitable neighboring cell; if two or more cells have
equal suitability then the one closest to the seed is chosen. The PSG algorithm
uses the same incremental process as the SRG but with a shape-suitability score
determined by the distance and direction of the cell to the seed. The length of
the diagonal of the enclosing rectangle (diag) is used to normalize the score [6].
PRG combines SRG and PSG through a weighted average of the two scores. The
simulated problems generated promising regions with a specific shape when an
operator chooses the approximate location, shape and orientation of the regions.
Nevertheless, an appropriate parameter setting is required.

Another heuristic approach, the Patch Growing Process (PGP) [8] generates
feasible patches with reference to a seed cell which must have a high suitability
score and must not be located within w cells of the boundary of the study area.
This w value is the seed expansion, and defines the number of cells above and
below, and left and right away from the seed cell; for example w = 1 implies
three by three initial seed patch. Once the seed patch is defined, the neighbors
to the patch are placed on a list in a random order. Each cell in the list is
analyzed in terms of the number of edges e, that it shares with the current
patch (from 1 to 4). The composite suitability of the cell i (CSi) is defined by
CSi = Suiti + N.ei, where Suiti is the suitability value of the cell itself, N the
weight attached to the number of edges shared with the existing patch. Then
the list of neighboring cells is ordered according to the composite suitability.
Although the cells with the same composite value appear as a group, they are in
random order inside the group. Next, the top X percent of the cells on this list
are added to the patch. The X and N parameters are the most important, N
rewards the compactness of the overall shape that would result once the highest
X percent of the perimeter cells are joined to the growing patch [8]. The results
are graphically illustrated, and show that the X and N parameters effectively
control the compactness of the grown regions. The PGP algorithm [8] is the base
of a new Heuristic solution Method for Site Location (HMSL) [45] including
Multi-Criteria Decision Analysis, and where the seed patches are automatically
generated through a quadtree-based search. The authors compare the results
with the objective value obtained with an Integer Programming (IP) formulation,
and report that the heuristic results are near to optimal.
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3.2 Meta-heuristics

One of the firsts evolutionary approaches [4] for locating optimal sites generates
candidate sites through a Parameterized Region Growing (PRG) process. This
process considers both, spatial and aspatial criteria to compute the suitability
score of cells. The approach starts with a single cell and iteratively adds the
neighboring cells with the highest score. The numeric string in the proposed
genetic algorithm is made up of 10 numbers, one for each PRG parameter.
While crossover operation exchanges one or more numbers, the other operators
do generate new numbers but change only one number in a string [4]. The raster
maps used for experimentation are 80x80 grids, and are grouped in two classes:
homogeneous and heterogeneous. With fixed shape and trade-off parameters,
the GA found 24 solutions as good as the ones obtained with an alternative
exhaustive search method (15 out of 20 in homogeneous maps and 9 out of 20 in
heterogeneous maps). The Genetic Algorithm for Patch Design (GAPD) [5] is
proposed later to explicitly handle both dynamic and static criteria. It generates
parameter strings according to which PRG grows multiple patches over the input
maps.

When objectives conflict, it is often impossible to find a single optimum that
dominates all other solutions [55]. In this sense, the notions of Pareto Optimal
and Pareto Front are introduced according to the concepts presented by [39]. In
the approaches proposed with GA, Pareto optimum means the current optimum,
and consequently the non-dominated solutions only apply to the solutions that
have been found in the current population [55]. Due to the recombinations in
the different iterations the entire population reaches or approaches the Pareto
Front. In the case study of [55], the goal is to find a set of contiguous places that
minimize total cost and maximize proximity to certain facilities. An undirected
graph is used to represent each feasible solution where each vertex represents
a cell in the space, and an edge the connection between two cells (considering
4-connected regions only). The experiments were carried out with a 128x128 grid
of cells. The proposed approach was able to generate the Pareto Front for each
multi-objective site-search test.

There also exist several approaches for searching optimal location in spa-
tial data represented with vector models. Genetic Algorithms are applied to
allocate a contiguous set of land parcels using a graph representation to cap-
ture the spatial characteristics of a valid solution [54]. An attribute vector
A = (c(v1), · · · , c(vi), · · · , c(vn)) is the cost for the ith vertex [54]. In this way it
is possible to define the objective function as minimizing the sum of costs for all
vertices in a solution V ′. Initial sites are created with relatively regular shapes;
each site starts from a seed vertex and continues to create a contiguous par-
tial site until an entire site is built. The recombination operation is carried out
through the local search algorithm based on the concept of a neighborhood of a
solution S. While in a first stage this algorithm finds a movable vertex that can
be removed from the site but avoiding non-contiguity, in a second stage vertices
are found which can be added to the site without resulting in a non-contiguous
site. The mutation process selects the vertex in the site with the lowest cost value
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and uses it as a new seed to create another site. Forty five problems ranging from
100x100 to 500x500 total vertices were tested, varying also the number of ver-
tices to be allocated (p). CPU time to solve each problem increases with p, i.e.
the time used to solve problems for different values of n remains approximately
the same for a fixed value of p.

Evolutionary computation has also been applied in landscape ecology. The
optimization procedure presented by [47] comprises in a first stage a simula-
tion analysis of incremental removal of forest patches. Multiple simulations and
Principal Component Analysis (PCA) capture the relative influence of two land-
scape ecology metrics: the Mean Proximity Index (MPI ) and the Mean Nearest
Neighbor Distance (MNND). Since in previous studies, remnant patch size and
relative proximity were key determinants of species abundance, a genetic algo-
rithm is formulated by [47] to maximize the total extension of a network of
remnant forest fragments selected on the basis of their relatively proximity and
size. A string with length equal to the number of candidate patches and with
0 - 1 (0 = patch not selected, 1 = patch selected) values represent the initial
population. The relative performance or “fitness” for each candidate landscape
is evaluated by a particular landscape ecology metric or by a linear combination
of metrics [47].

Simulated annealing is applied by [2] to allocate NxM pixels with K different
types of land use. The distribution is prepared according to a probability Pk

(k = 1, · · · , K) representing the proportion of land that must be allocated with
land use k. Additionally, a development cost is assigned to each potential land
use. These costs vary with location because they may depend on specific physical
attributes of the area [2]. The initial development cost (f(0)) is associated with
a random distribution of the K land uses over the area. A new development
cost (f(1)) is obtained through a swap of the land uses of two randomly selected
cells. Whether the cost f(i + 1) is smaller than the cost f(i) the cell change
is accepted [2]. When f(i + 1) is greater than f(i) the cell change is accepted
according to the probability of acceptance given by the Metropolis criterion.
Afterwards, the cost function is expanded in order to add spatial compactness
criteria by adding a non-linear neighborhood objective to the objective function.
The proposed approach was tested on different areas (10x10, 50x50, 250x250,
300x300), where the optimization time increases rapidly with grid size, requiring
few hours to solve the largest problem.

Greedy search and simulated annealing methods to construct spatially co-
hesive reserve areas have been compared [33]. While the simulated annealing
implementation is similar to a previously proposed approach [2], the greedy
search algorithm updates an existing solution by adding one unreserved site.
The new solution is called a neighboring solution, and its generation is repeated
until no further decrease in the objective function value is possible. An iterative
improvement is included in order to fulfill the constraint included in the objec-
tive function, which specifies a minimum area required for specific flora or fauna
species (conservation value). The initial solution consist of all unreserved sites.
Sites are only added to the solution and never removed. On the other hand the
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simulated annealing approach can reject the new solution. Although both algo-
rithms gave similar solutions, simulated annealing usually gave better results in
terms of minimizing the combined cost function (minimizing total reserve area
and minimizing total boundary length).

3.3 Mathematical Programming

Spatial optimization has been widely applied in biological sciences. Four linear
programming examples have been formulated [24] in order to account for bio-
logical dispersal. The constraints relate population in an habitat area in a time
period (t) to the populations in other areas in a previous time period (t− 1). In
addition they take account of the population growth and the immigration dis-
persion. Although the four linear models require stronger assumptions regarding
ecosystem function and behavior, according to the authors the methods are ap-
plicable in the context of an adaptive, learning process in order to take advantage
of the optimization methodology, and make progress either in learning about the
ecological system or in managing it.

The Maximal Covering Location Model (MCLM ) [9] minimizes the number of
facilities to cover each and every demand point on a network. MCLM is modified
[11] to determine the optimal deployment of available fire-fighting vehicles. The
modified model differs from the classical MCLM in that it considers a different
time limit for each class, where time limit represents the only time during which
fire suppression can be effective. These time limits were calculated taking into ac-
count the type of vegetation, wind direction, and slope. The demand points, and
at the same time candidate locations of the network were created from a set of ver-
tices automatically generated by a GIS software. Previous to locate the vertices,
a suitability map is constructed combining vegetation and slope type layers. Con-
tiguous blocks belonging to the same suitability class are joined together to form a
sub-region; the more valuable a sub-region is, the greater coverage (more demand
points) it needs. Finally, the resolution (distance between vertices) is settled ac-
cording to the suitability of each sub-region, in this way more valuable sub-regions
have more vertices. This proposal was applied in a case study, where it was possi-
ble to see that the non-uniform distribution of the demand points is promising in
facility location models, and that it could be useful also for other applications like
deployment of water reservoirs and fuel breaks.

In order to reduce vulnerability of elements like species, communities, and
endemic plants, a mathematical model is developed [10] for selecting sites for
diversity conservation (Biodiversity Management Areas - BMAs). Since this ap-
proach does not contemplate spatial relations, the solutions are composed of
isolated planning units. To avoid fragmentation, [16] formulate a mathematical
model including in the objective the minimization of the outside perimeter of
selected areas. Outside perimeter only counts those edges of a planning unit that
are not shared in common with another selected planning unit in a cluster, and
therefore, compact clustering is encouraged [16]. The model requires the defini-
tion of a binary variable (Zij) which is allowed a value of 1 if adjacent planning
units i and j are both selected. In addition, the model includes two constraints
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to assure that shared edges are only subtracted from the objective if both plan-
ning units that share the edge are selected. The main conclusion of the authors
is that the model can produce dramatic reduction in perimeter of the reserve
system at the expense of relatively small increases in area and suitability index.

A mosaic of n cells can be represented (e.g. [49], [42]) as a planar graph with
vertices and edges. The directed arcs of a planar graph and of its dual3 are
used to enforce contiguity in both spanning trees of the graph (a spanning tree
uses n− 1 edges to connect all n vertices of a graph). The interwoven structure,
obtained from the complementary nature of primal and dual graphs, prevents
cycles in both trees. The formulation of a land acquisition problem is then stated
by [50] as the problem of finding an optimal subtree of a spanning tree with a
planar graph. Contiguity of the subtree is enforced by requiring the subtree to
be a subset of the spanning tree backbone in the primal graph, and by specifying
that the difference between the number of vertices and number of edges in the
subtree must equal 1. Later, the acquisition of convex areas was faced by [51]
with base on the definition of half-plane: a set of cells that can be specified in
terms of a boundary line with known slope, direction, and an intercept position.
The direction indicates the side of the boundary to which the cells belong. The
main constraints enforce the mutually exclusive relation between half-planes and
cells: by selecting a cell, none of cells contained in that half-plane may be selected,
and by selecting a half-plane, none of cells contained in that half-plane may be
selected [51]. The experimentation reveal that computing times are sensitive to
three other factors: number of half-planes, region size, and whether or not some
cells (“seeds”) are selected in advance of performing the optimization.

In the mathematical formulation proposed by [45], compactness is achieved by
increasing the number of boundaries that a selected cell shares with other cells
that are also selected as part of the solution. This formulation implies the reduc-
tion of the patch perimeter, while the area is constant. In the same direction [46]
present an Integer Programming Formulation (IP) for combining compactness
and flow minimization requirements. This work allocates a predefined number
of cells satisfying the following criteria: 1) minimize flow reaching the outlet of
a watershed, 2) maximize/minimize intrinsic characteristics of the cells, and 3)
form a compact patch. Although the core structure of the IP formulation can be
applied for different sorts of flow and intrinsic characteristics, it is targeted to a
reforestation application. The proposed approach is applied to perform several
experiments in two watersheds in South Dakota in the USA for searching a given
number of best cells (1) minimizing sediment reaching the watershed outlet,(2)
maximizing the on-site environmental criteria, and (3) forming a compact patch.

3.4 Enumeration Methods

To solve land allocation problems, an interactive multi-objective optimization
algorithm is develop [20] to operate over a grid of cells. Each cell is designated

3 Given a planar graph G, its dual has a vertex for each plane region in G, and an
edge for each edge in G shared by two neighboring regions.
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as feasible or infeasible for the proposed land development. In addition, some
cells are designated as amenity (desirable to have them in close proximity) and
some cells as detractors (opposite to amenity). The algorithm finds a contigu-
ous set of exactly k feasible cells. To solve the problem, four objectives func-
tions are implemented: minimize cost of acquisition and development, minimize
amenity distance, maximize detractor distance, and minimize the product of the
perimeter and diameter of the set of allocated cells (compactness objective).
The algorithm developed by [20] identifies a subset of efficient solutions (partial
generation of the efficient set). The algorithm has four steps: 1) Initialization,
find an initial efficient solution; 2) Selection, present the most preferred vector
of objective function values to the decision maker, and request the selection of
one objective function to be improved over its current level; 3) Optimizations,
solve the single objective sub-problem; 4) Evaluation, if step 2 determines new
efficient solutions, return to step 1 unless the decision maker is satisfied with
the current subset of efficient points. The case study uses an area represented
by 900 cells. Seven problems were solved specifying one function as objective,
and desired levels values for the other three functions. In none of these problems
the time response was slow enough to make the interactive use of the program
impractical.

4 Discussion

Spatial Optimization based on mathematical programming is an active research
area, where several models have been developed taking into account topologi-
cal relations. Special attention was given to models dealing with compactness,
and theoretical approaches have been proposed to consider other spatial as-
pects like perforation [42]. Mathematical formulations targeted to the location
of contiguous and compact sites are applied in problems with sizes ranging from
100 to 4900 units whereas the required computation times vary from few sec-
onds to hours. Although the number of units is small, some approaches are
successfully applied on vector information at a regional level. It implies that
mathematical approaches can be applied even to large regions when they are
represented by an appropriate number of units. Table 1 shows the heuristics,
meta-heuristics, and mathematical programming approaches dealing with com-
pactness. This table makes use of a referential size as an indicator of the total
number of objects subject to analysis. Table 1 shows that the referential size of
mathematical approaches is kept small with respect to the ones in the heuristics
and meta-heuristics. Since mathematical methods are able to generate exact so-
lutions, these methods are very useful for the evaluation of non exact methods
and in situations when the computation time is not a relevant issue (e.g. for
planning activities). Moreover, mathematical formulations can act as optimal-
ity references for evaluating non-exact methods. Since compactness modeled by
means of mathematical programming require a high amount of computational
resources to achieve optimal solutions, the development of parallel computing
and the generation of innovative models will contribute to improve the efficiency
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Table 1. Summary of the work with regard to compactness

R eferential Size Predefined Time Time units
 s ize units  seed

Heuristics
    Mehrotra and J ohnson 1998 46 counties N 5 minutes
    B rookes 2001 300 cells Y - -
    C hurch et al 2003 23000 cells Y - -
    Vanegas  et al 2008 4900 cells N 1 second

Metaheuristics
    B rookes 1997 6400 cells Y - -
    B rookes 2001 372890 cells Y 36 hours
    X iao et al 2002 16384 cells N - -
    Aerts  and Heuvelink 2002 2500 cells N few hours
    McDonnell et al 2002 2160 cells N

G reedy 1 second
S imulated Anealing 96 seconds

    L i and Y eh 2004 22500 cells Y hours
    Venema 2004 162 patches N - -
    S tewart et al 2005 1600 cells N 15-18 minutes
    X iao 2006 250000 cells N 2268 seconds

Mathematical P rogramming
    Hof and B evers 2000 1689 cells N - -
    Dimopoulou and G iannoikos 2001 160 cells N 1.5 minutes
    F ischer and C hurch 2003 776 planning units N S econds  - hours
    Williams 2003 1024 cells Y 220 minutes
    S hirabe 2004 100 cells N wall clock
    Vanegas  et al 2008 4900 cells N 540 - 28450 seconds
E numeration Methods
    Hof and B evers 2000 900 cells N 16.8 seconds

of spatial optimization models. Taking into account that these alternatives are
not easy to achieve, it is important to come across other approaches able to bal-
ance accuracy and efficiency. Several authors suggest the study of approximate
methods in order to find feasible and near-to-optimal solutions.

Since Genetic Algorithms follow the concept of solution evolution by stochasti-
cally developing generations of solution populations using a given fitness statistic
[32], they are a suitable approach to reach equilibrium between performance and
optimality when the problems are large or non-linear. Although LP approaches
can find optimal solutions (compact patches) through a straightforward search
in adjacent basic feasible solutions, the improvements in the objective function
value can be too slow. In this sense, the stochastic nature of GA (achieved
through the genetic operators) can improve the performance of the search. Nev-
ertheless, the reviewed GA solutions dealing with compactness are applied in
relatively small sized problems. The biggest reviewed problems use GA com-
bined with local search, and require the specification of seed points. GA are
population-based metaheuristics, i.e. exploration oriented. They allow a better
diversification in the whole search space [15]. Similar performance to GA is ob-
tained with simulated annealing approaches, which were not applied on large
sized problems at a regional level either. The very small times required by the
greedy and simulated annealing approaches in [33] are also explained by the fact
that the design of the reserve areas requires the analysis and improvement of
one solution instead of a population of solutions. Single-solution based meta-
heuristics are exploitation oriented; they have the power to intensify the search
in local regions [15].
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The idea present in some GA approaches, which use a seed or a central unit
as the starting point to define efficient compact patches, is also used in pure
heuristic approaches. This sort of techniques has been applied on raster and
vector data models, and the results obtained in some cases are superior to other
approaches, and are at least practical to use in other cases. This paper reviews
also heuristics approaches searching for compact areas. Some of these apply
region growing and greedy algorithms as central processes in order to locate
sites meeting a desired shape and size. In these algorithms the selection of a seed
patch is a key issue. Its selection determines the final location of the sites looked
for. The condition of being problem-based approaches is the most important
advantage of pure heuristics, and in the case of the problems presented here
the results are adequate from the performance point of view. Although in the
studies we reviewed the solutions are near to the optimal because of the seed
point selected by the user, most of them do not include an analysis of how far
or near from optimality the solutions are.

One of the main characteristics of the heuristic approaches is that in most
of the cases they make use of a starting seed area. Particularly remarkable is
the referential size of the problem tackled by Church et al. (2003) [8] and the
time required by Vanegas et al. (2008) [45]. The last includes an automatic
generation of seed patches. Regarding to the meta-heuristics, table 1 shows that
most of the approaches do not make use of a seed region. But the works of
Brookes (2001) [5] and Xiao et al. (2006) [54] are capable to deal with the
largest amount of data (372890 and 250000 cells respectively), potentiality based
mainly on the predefinition of seed regions in the case of [5] and on the capacity
for automatically generate seeds in the case of [54].

The enumeration method applied by Gilbert et al. (1985), the only one which
was accessible, shows also good performance results. Although the reference size
of the problem is not large, the short computation time makes it a promising
method. The good performance is explained by the fact that the algorithm is
specially developed to tackle the problem at hand, i.e. this enumeration method
is also a problem-specific solution type.

5 Conclusions

Although the objectives of the reviewed studies, particularities of the application
fields, and computational equipments are very diverse, relevant conclusions can
be drawn regarding the location of contiguous and compact sites. As can be seen,
LP/IP formulations are not only adequate for situations when the problem can
be represented with an appropriate number of geographical entities, but they
also play an important role in the evaluation of approximate solutions.

It seems that automatic generation of seed regions are a crucial issue to in-
crease the size of the analyzed problems. Seeds generation is equivalent to identify
local minima solutions, from which at least near to global optimal solutions can
be achieved. Therefore the study and evaluation of seed generation techniques
seem to be valuable in order to improve the solution space search and in turn



Compactness in Spatial Decision Support: A Literature Review 427

the quality of the resulting contiguous and compact patches. The efficiency of
population based metaheuristics can be increased through the combination and
exploration of the high quality seed solutions. In the same direction, the effec-
tiveness of single solution based metaheuristics can be improved through the
exploitation of these seed solutions.
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