Skip to main content

Computational Study of Compressive Loading of Carbon Nanotubes

  • Conference paper
  • 1190 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6017))

Abstract

A reduced-order general continuum method is used to examine the mechanical behavior of single-walled carbon nanotubes (CNTs) under compressive loading and unloading conditions. Quasi-static solutions are sought where the total energy of the system is minimized with respect to the spatial degree of freedom. We provide detailed buckled configurations for four different types of CNTs and show that, among the cases studied, the armchair CNT has the strongest resistance to the compressive loading. It is also shown that the buckled CNT will significantly lose its structural strength with the zigzag lattice structure. The unloading post-buckling of CNT demonstrates that even after the occurrence of buckling the CNT can still return to its original state making its use desirable in fields such as synthetic biomaterials, electromagnetic devices, or polymer composites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Iijima, S., Maiti, C.J.: Structural flexibility of carbon nanotubes. Journal of Chemical Physics 104, 2089–2092 (1996)

    Article  Google Scholar 

  3. Qian, D., Wagner, G.J., Liu, W.K., Yu, M., Ruoff, R.S.: Mechanics of carbon nanotubes. Appl. Mech. Rev. 55(6), 495–532 (2002)

    Article  Google Scholar 

  4. Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., Ajayan, P.M.: Organized assembly of carbon nanotubes. Nature 416, 495–496 (2002)

    Article  Google Scholar 

  5. Harris, P.J.F.: Carbon nanotubes and related structures. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  6. Reich, S., Thomsen, C., Maultzsch, J.: Carbon nanotubes, basic concepts and physical properties. WILEY-VCH, Chichester (2004)

    Google Scholar 

  7. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters 76(14), 2511–2514 (1996)

    Article  Google Scholar 

  8. Li, C., Thostenson, E.T., Chou, T.-W.: Sensors and actuators based on carbon nanotubes and their composites: A review. Composites Science and Technology 68, 1227–1249 (2008)

    Article  Google Scholar 

  9. Waters, J.F., Guduru, P.R., Jouzi, M., Xu, J.M., Hanlon, T., Suresh, S.: Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Applied Physica Letters 87, 103–109 (2005)

    Google Scholar 

  10. Kao, C.C., Young, R.J.: Modeling the stress transfer between carbon nanotubes and a polymer matrix during cyclic deformation. In: Pyrz, R., Rauche, J.C. (eds.) IUTAM Symposium on Modelling Nanomaterials and Nanosystems, pp. 211–220 (2009)

    Google Scholar 

  11. Wang, J., Gutierrez, M.S.: Molecular simulations of cyclic loading behavior of carbon nanotubes using the atomistic finite element method. Journal of Nanomaterials (2009)

    Google Scholar 

  12. Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. Journal of Mechanics and Physics of Solids 50, 1941–1977 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B 42(15), 9458–9471 (1990)

    Article  Google Scholar 

  14. Cirak, F., Ortiz, M., Schröder, P.: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering 47, 2039–2072 (2000)

    Article  MATH  Google Scholar 

  15. Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Philosophical Magazine 73(6), 1529–1563 (1996)

    Article  Google Scholar 

  16. Cirak, F., Ortiz, M., Pandolfi, A.: A cohesive approach to thin-shell fracture and fragmentation. Comput. Methods Appl. Mech. Engrg. 194, 2604–2618 (2005)

    Article  MATH  Google Scholar 

  17. Deiterding, R., Cirak, F., Mauch, S.P., Meiron, D.I.: A virtual test facility for simulating detonation-induced fracture of thin flexible shells. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 122–130. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Cirak, F., Deiterding, R., Mauch, S.P.: Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations. Computers and Structures 85, 11–14 (2007)

    Article  Google Scholar 

  19. do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs (1976)

    MATH  Google Scholar 

  20. Yang, Y.: Atomistic-based finite element simulation of carbon nanotubes. Ph.D. dissertation, Western Michigan University, Kalamazoo, MI 49008 (December 2008)

    Google Scholar 

  21. Sinnott, S.B., Shenderova, O.A., White, C.T., Brenner, D.W.: Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon 36(1-2), 1–9 (1998)

    Article  Google Scholar 

  22. Byrd, R.H., Lu, P., Noceda, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM, J. Scientific Computing 16(5), 1190–1208 (1995)

    Article  MATH  Google Scholar 

  23. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: L-bfgs-b: a limited memory fortran code for solving bound constrained optimization problems. EECS Department, Northwestern University, Tech. Rep. NAM-11 (1994)

    Google Scholar 

  24. Dumitrica, T., Hua, M., Yakobson, B.I.: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. PNAS 103(16), 6105–6109 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Liou, W.W. (2010). Computational Study of Compressive Loading of Carbon Nanotubes. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12165-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12165-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12164-7

  • Online ISBN: 978-3-642-12165-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics