Skip to main content

Efficient Algorithms for the 2-Center Problems

  • Conference paper
Computational Science and Its Applications – ICCSA 2010 (ICCSA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6017))

Included in the following conference series:

  • 1173 Accesses

Abstract

This paper achieves O(n 3loglogn/logn) time for the 2-center problems on a directed graph with non-negative edge costs under the conventional RAM model where only arithmetic operations, branching operations, and random accessibility with O(logn) bits are allowed. Here n is the number of vertices. This is a slight improvement on the best known complexity of those problems, which is O(n 3). We further show that when the graph is with unit edge costs, one of the 2-center problems can be solved in O(n 2.575) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Alon, N., Galil, Margalit, O.: On the Exponent of the All Pairs Shortest 2Path Problem. Jour. Comp. Sys. Sci. 54(2), 255–262 (1999)

    Article  MathSciNet  Google Scholar 

  3. Ben-Moshe, B., Bhattacharya, B., Shi, Q.S.: Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 693–703. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Chan, T.: More algorithms for all pairs shortest paths. In: STOC 2007, pp. 590–598 (2007)

    Google Scholar 

  5. Dobosiewicz, A.: more efficient algorithm for min-plus multiplication. Inter. J. Comput. Math. 32, 49–60 (1990)

    Article  MATH  Google Scholar 

  6. Frederickson, G.N.: Parametric Search and Locating Supply Centers in Trees. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 299–319. Springer, Heidelberg (1995)

    Google Scholar 

  7. Fredman, M.: New bounds on the complexity of the shortest path problem. SIAM Jour. Computing 5, 83–89 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Han, Y.: Improved algorithms for all pairs shortest paths. Info. Proc. Lett. 91, 245–250 (2004)

    Article  Google Scholar 

  10. Han, Y.: An O(n 3(loglogn/logn)5/4) Time Algorithm for All Pairs Shortest Path. Algorithmica 51(4), 428–434 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kariv, O., Hakimi, S.L.: An Algorithmic Approach to Network Location Problems. I: The p-Centers. SIAM Jour. Appl. Math. 37(3), 513–538 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kariv, O., Hakimi, S.L.: An Algorithmic Approach to Network Location Problems. II: The p-Medians. SIAM Jour. Appl. Math. 37(3), 539–560 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Takaoka, T.: A New upper bound on the complexity of the all pairs shortest path problem. Info. Proc. Lett. 43, 195–199 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Takaoka, T.: Subcubic algorithms for the all pairs shortest path problem. Algorithmica 20, 309–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 278–289. Springer, Heidelberg (2004)

    Google Scholar 

  16. Takaoka, T.: An O(n 3loglogn/logn) time algorithm for the all pairs shortest path problem. Info. Proc. Lett. 96, 154–161 (2005)

    Article  MathSciNet  Google Scholar 

  17. Zwick, U.: All pairs shortest paths in weighted directed graphs - exact and almost exact algorithms. In: 39th FOCS, pp. 310–319 (1998)

    Google Scholar 

  18. Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 921–932. Springer, Heidelberg (2004)

    Google Scholar 

  19. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication. Jour. ACM 49(3), 289–317 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takaoka, T. (2010). Efficient Algorithms for the 2-Center Problems. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12165-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12165-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12164-7

  • Online ISBN: 978-3-642-12165-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics