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Abstract. In this paper we present a new problem, the fast set inter-

section problem, which is to preprocess a collection of sets in order to
efficiently report the intersection of any two sets in the collection. In
addition we suggest new solutions for the two-dimensional substring in-

dexing problem and the document listing problem for two patterns by
reduction to the fast set intersection problem.

1 Introduction and Related Work

The intersection of large sets is a common problem in the context of retrieval
algorithms, search engines, evaluation of relational queries and more. Relational
databases use indices to decrease query time, but when a query involves two
different indices, each one returning a different set of results, we have to intersect
these two sets to get the final answer. The running time of this task depends
on the size of each set, which can be large and make the query evaluation take
longer even if the number of results is small. In information retrieval there is a
great use of inverted index as a major indexing structure for mapping a word
to the set of documents that contain that word. Given a word, it is easy to get
from the inverted index the set of all the documents that contain that word.
Nevertheless, if we would like to search for two words to get all documents that
contain both, the inverted index doesn’t help us that much. We have to calculate
the occurrences set for each word and intersect these two sets. The problem of
intersecting sets finds its motivation also in web search engines where the dataset
is very large.

Various algorithms to improve the problem of intersecting sets have been in-
troduced in the literature. Demaine et al. [1] proposed a method for computing
the intersection of k sorted sets using an adaptive algorithm. Baeza-Yates [2] pro-
posed an algorithm to improve the multiple searching problem which is related
directly to computing the intersection of two sets. Barbay et al. [3] showed that
using interpolation search improves the performance of adaptive intersection al-
gorithms. They introduced an intersection algorithm for two sorted sequences
that is fast on average. In addition Bille et al. [4] presented a solution for com-
puting expressions on given sets involving unions and intersections. A special
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case of their result is the intersection of m sets containing N elements in total,
which they solve in expected time O(N(log ω)2/ω +m · output) for word size ω
where output is the number of elements in the intersection.

In this paper we present a new problem, the fast set intersection problem.
This problem is to preprocess a databases of size N consisting of a collection of
m sets to answer queries in which we are given two set indices i, j ≤ m, and wish
to find their intersection. This problem has lots of applications where there is a
need to intersect two sets in a lot of different fields like Information Retrieval,
Web Searching, Document Indexing, Databases etc. An optimal solution for this
problem will bring better solutions to various applications.

We solve this problem using minimal space and still decrease the query time
by using a preprocessing part. Our solution is the first non-trivial algorithm for
this problem. We give a solution that requires linear space with worst case query
time bounded by O(

√
Noutput+ output) where output is the intersection size.

In addition, we present a solution for the two-dimensional substring indexing

problem, introduced by Muthukrishnan et al. [5]. In this problem we preprocess
a database D of size N . So when given a string pair (σ1, σ2), we wish to return
all the database string pairs αi ∈ D such that σ1 is a substring of αi,1 and σ2

is a substring of αi,2. Muthukrishnan et al. suggested a tunable solution for this
problem which uses O(N2−y) space for a positive fraction y and query time of
O(Ny + output) where output is the number of such string pairs. We present
a solution for this problem, based on solving the fast set intersection problem,
that uses O(N logN) space with O((

√
N logNoutput + output) log2 N) query

time.

In the document listing problem which was presented by Muthukrishnan [6],
we are given a collection of size N of text documents which may be preprocessed
so when given a pattern p we want to return the set of all the documents that con-
tain that pattern. Muthukrishnan suggested an optimal solution for this problem
which requires O(N) space with O(|p|+ output) query time where output is the
number of documents that contain the pattern. However, there is no optimal so-
lution when given a query consists of two patterns p, q to return the set of all the
documents that contain them both. The only known solution for this problem is
of Muthukrishnan [6] which suggested a solution that uses O(N

√
N) space which

supports queries in time O(|p| + |q| +
√
N + output). We present a solution for

the document listing problem when the query consists of two patterns. Our solu-
tion uses O(N logN) space with O(|p|+ |q|+(

√
N logNoutput+output) log2 N)

query time.

The paper is structured as follows: In Sect. 2 we describe the fast set intersec-
tion problem. In Sect. 3 we describe our solution for this problem. In Sect. 4 we
present similar problems with their solutions. In Sect. 5 we present our solution
for the two-dimensional substring indexing problem and the document listing

problem for two patterns. In Sect. 6 we present some concluding remarks.



2 Fast Set Intersection Problem

We formally define the fast set intersection (FSI) problem.

Definition 1. Let D be a database of size N consisting of a collection of m
sets. Each set has elements drawn from 1 . . . c. We want to preprocess D so that

given a query of two indices i, j ≤ m, we will be able to calculate the intersection

between sets i, j efficiently.

A naive solution for this problem is to store the sets sorted. Given a query
of two sets i, j, go over the smaller set and check for each element if it exists in
the second set. This costs O(min(|i|, |j|) logmax(|i|, |j|)). This solution can be
further improved using hash tables. A static hash table [7] can store n elements
using O(n) space and build time, with O(1) query time. For each set we can
build a hash table to check in O(1) time if an element is in the set or not.
This way the query time is reduced to O(min(|i|, |j|)) using linear space. The
disadvantage of using this solution is that on the worst case we go over a lot
of elements even if the intersection is small. A better query time can be gained
by using more space for saving the intersection between every two sets. Using
O(m2c) space we get an optimal query time of O(output) where output is the
size of the intersection. Nevertheless, this solution uses extremely more space.
In the next section we present our solution for the fast set intersection problem
which bounds the query time on the worst case.

3 Fast Set Intersection Solution

Here we present our algorithm for solving the FSI problem. We call result set to
the output of the algorithm, i.e., the intersection of the two sets. By output we
denote the size of the result set.

3.1 Preprocessing

For each set in D we store a hash table to know in O(1) time if an element is in
that set or not. In addition, we store the inverse structure, i.e., for each element
we store a hash table to know in O(1) time if it belongs to a given set or not.

Our main data structure consists of an unbalanced binary tree. Starting from
the root node at level 0, each node in that tree handles number of subsets of the
original sets from D. The cost of a node in that tree is the sum of the sizes of
all the subsets it handles. The root node handles all the m sets in D, therefore,
it costs N .

Definition 2. Let d be a node which costs n. A large set in d is a set which has

more than
√
n elements.

Lemma 1. By definition, a node d which costs n, can handle at most
√
n large

sets.



A set intersection matrix is a matrix that stores for each set if it has an in-
tersection with any other set. For m̀ sets this matrix costs O(m̀2) bits space with
O(1) query time for answering if set i and set j have a non-empty intersection.

For each node we construct a set intersection matrix for the large sets in that
node. By lemma 1, saving the set intersection matrix only for the large sets in a
node that costs n space will cost only another n space.

Now we describe how we divide sets between the children of a node. Only
large sets in a node will be propagated down to its two children, we call them
the propagated group. Let d be a node which costs n and let G be its propagated
group. Then, G costs at most n as well. Let E be the set of all elements in the
sets of G. We partition E into two disjoint sets E1, E2. For a given set S ∈ G
we partition it between the two children as following: The left child will handle
S ∩ E1 and the right child will handle S ∩ E2. We want each child of d to cost
at most n

2 . Nevertheless, finding such a partition of E is a hard problem, if even
possible at all. To overcome this difficulty we shall add elements to E1 until
adding another element will make the left child cost more than n

2 . The next
element, which we denote by e, will be remarked in d for checking, during query
time, whether it lies in the intersection. We now take E2 = E − E1 − {e} , i.e.,
the remaining elements. This way each child costs at most n

2 .
A leaf in this binary tree is a node which is in constant size. Because each

node in the tree costs half the space of its parent then this tree has logN levels.

Theorem 1. The space needed for this data structure is O(N) space.

Proof. The hash tables for all the sets cost O(N) space. As well the inverse hash
tables for all the elements cost O(N) space.

The binary tree structure space cost is as follows: The root costs O(N) bits
for saving the set intersection matrix. In each level we store only another O(N)
bits because every two children don’t cost more than their parent. Hence, the
total cost of this tree structure is O(N logN) bits which is O(N) space in term
of words. ⊓⊔

3.2 Query Answering

Given sets i, j (without loss of generality we assume |i| ≤ |j|), we start traversing
the tree from the root node. If i is not a large set in the root we check each
element from it in the hash table of j. As there can be at most

√
N elements in

i because it is not a large set, this will cost O(
√
N). If both i, j are large sets we

do as follows: We check in the set intersection matrix of the root wether there
is a non-empty intersection between i and j. If there is not there is nothing to
add to the result set so we stop traversing down. If there is an intersection we
check the hash table of the element which is remarked in that node if it belongs
to i and j and add that element to the intersection if it belongs to both. Next
we go down to the children of the root and continue the traversing recursively.

Elements are added to the result set when we get to a node which in that
node i is not a large set. In this case, we stop traversing down the tree from that



node. Instead we step over all the elements of i in that node checking for each
one of them if it belongs to j. We call such a node a stopper node.

Theorem 2. The query time is bounded by O(
√
Noutput+ output).

Proof. The query computation consists of two parts. The tree traversal part and
the time we spend on stopper nodes.

There are output elements in the result set, therefore, there can be at most
O(output) stopper nodes. Because the tree height is logN , for each stopper node
we visit at most logN nodes for the tree traversal until we get to it. Therefore,
the tree traversal part adds at most O(output logN) to the query time. But this
is more than what we actually pay for the tree traversal because some stopper
nodes share their path from the root. This can be bounded better. Because
the tree is a binary tree if we fully traverse the tree till log output height it
will cost O(output) time. Now, from this height if we continue traverse the tree
we visit for each stopper node at most logN − log output nodes because we
are already at log output height. Thus, the tree traversal part is bounded by
O(output+ output(logN − log output)). By log rules this equals to O(output+
output log N

output
).

Now, we calculate how much time we spent on all the stopper nodes. A
stopper node is a node which during the tree traversal we have to go over all
elements of a non-large set in that node. The size of a non-large set in a stopper

at level l is
√

N
2l
. Consider there are x stopper nodes. We denote by li the level

for stopper node i. For all stopper nodes we pay at most:

x
∑

i=1

√

N

2li
=

√
N

x
∑

i=1

2−
1

2
li =

√
N

x
∑

i=1

1 · 2− 1

2
li

The Cauchy-Schwarz inequality is that (
∑n

i=1 xiyi)
2 ≤ (

∑n

i=1 x
2
i )(

∑n

i=1 y
2
i ). We

use it in our case to get:

≤
√
N

√

√

√

√

x
∑

i=1

12

√

√

√

√

x
∑

i=1

(2−
1

2
li)2

=
√
N
√
x

√

√

√

√

x
∑

i=1

2−li

Kraft inequality from Information Theory states that for any binary tree:

∑

l∈leaves

2−depth(l) ≤ 1

Because we never visit a subtree rooted by a stopper node, then in our case
each stopper node can be viewed as a leaf in the binary tree. Therefore, we can



transform Kraft inequality for all the stopper nodes instead of all tree leaves to
get that

∑x

i=1 2
−li ≤ 1. Using this inequality gives us that:

≤
√
N
√
x =

√
Nx ≤

√

Noutput = output

√

N

output

Thus, we pay O(output
√

N
output

), for the time we spend in the stopper nodes.

Therefore, the tree traversal part and the time we spend on all stopper nodes

is O(output+ output log N
output

+ output
√

N
output

). Hence, the final query time is

bounded by O(
√
Noutput+ output). ⊓⊔

Corollary 1. The fast set intersection problem can be solved in linear space

with worst case query time of O(
√
Noutput+ output).

4 Intersection-Empty Query and Intersection-Size Query

In the FSI problem given a query we want to return the result set, i.e., the
intersection between two sets. What if we only want to know if there is any in-
tersection between two sets? We call that the intersection-empty query problem.
Moreover, sometimes we would like only to know the size of the intersection
without calculating the actual result set. We define these problems as follows:

Definition 3. Let D be a database of size N consisting of a collection of m sets.

Each set has elements drawn from 1 . . . c. The intersection-empty query problem

is to preprocess D so that given a query of two indices i, j ≤ m, we want to

calculate if sets i, j have any intersection. In the intersection-size query problem

when given a query we want to calculate the size of the result set.

A naive solution for the intersection-empty query problem is to build a ma-
trix saving if there is any intersection between every two sets. This solution uses
O(m2) bits space with query time of O(1). For the intersection-size query prob-
lem we store the intersection size for every two sets by using slightly more space,
O(m2) space, with query time of O(1).

We can use part of our FSI solution method to solve the intersection-empty
query problem using O(N) space with O(

√
N) query time. Instead of the whole

tree structure we store only the root node with its set intersection matrix using
O(N) space. Given sets i, j (without loss of generality let’s assume |i| ≤ |j|), if
i is not large set in the root we check each element from it in the hash table of
j. Because i is not large set, this will cost at most O(

√
N) time. If i is a large

set then we check in the set intersection matrix of the root to see if there is
any intersection in O(1) time. Hence, we can solve the intersection-empty query
problem in O(

√
N) time using O(N) space.

With the same method we can solve the intersection-size query problem by
saving the size of the intersection instead of saving if there is any intersection
in the set intersection matrix. This way we can solve the intersection-size query
problem in O(

√
N) time using O(N) space.



5 Two-Dimensional Substring Indexing Solution

In this section, we show how to solve the two-dimensional substring indexing

problem and the document listing problem for two patterns using our FSI solu-
tion. The two-dimensional substring indexing problem was showed by Muthukr-
ishnan et al. [5]. It is defined as follows:

Definition 4. Let D be a database consisting of a collection of string pairs

αi = (αi,1, αi,2), 1 ≤ i ≤ c, which may be preprocessed. Given a query string pair

(σ1, σ2), the 2-d substring indexing problem is to identify all string pairs αi ∈ D,

such that σi is a substring of αi,1 and σ2 is a substring of αi,2.

Muthukrishnan et al. [5] reduced the two-dimensional substring indexing

problem to the common colors query problem which is defined as follows:

Definition 5. We are given an array A[1 . . . N ] of colors drawn from 1 . . . C.

We want to preprocess this array so that the following query can be answered

efficiently: Given two non-overlapping intervals I1, I2 in [1, N ], list the distinct

colors that occur in both intervals I1 and I2.

The common colors query (CCQ) problem is another intersection problem
where we have to intersect two intervals on the same array. We now show how
to solve the CCQ problem by solving the FSI problem. By that we solve the
two-dimensional substring indexing problem as well.

Given array A of size N , we build a data structure consisting of logN levels
over this array. In the top level we partition A into two sets of size at most N

2 , the

first set containing colors, i.e., elements, of A in range A[1 . . . N
2 ] and the second

set containing colors in range A[N2 +1 . . .N ]. As well, each level i is partitioned

into 2i sets, each respectively, containing a successive set of N
i

colors from A.
The bottom level, in similar fashion, is therefore partitioned into N sets each
containing one different color from array A. The size of all the sets in each level
is O(N). Therefore, the size needed for all the sets in all levels is O(N logN).

Lemma 2. An interval I on A can be covered by at most 2 logN sets.

Proof. Assume, by contradiction, that there exists an interval for which at least
m > 2 logN sets are needed. This implies that there is some level that at least
3 (consecutive) sets are selected. However, for every 2 consecutive sets there
have to be a set in the upper level that contains them both, so we can take it
instead, and cover the same interval with only m − 1 sets, in contradiction to
the assumption that at least m sets are required for the cover. ⊓⊔

Theorem 3. The CCQ problem can be solved using O(N logN) space with

O((
√
N logNoutput + output) log2 N) query time where output is the number

of distinct colors that occur in both I1 and I2.



Proof. Given two intervals I1, I2 we want to calculate their intersection, By
lemma 2, I1, I2 are each covered by a group of 2 logn sets at the most. To get the
intersection of I1, I2 we will take each set from the first group and intersect it with
each set from the second group using our FSI solution. Hence, we have to solve
the FSI problem O(log2 N) times. Our FSI solution takes O(

√
Noutput+output)

time and O(N) space for dataset which costs O(N) space. Here the dataset costs
O(N logN) space, therefore, we can solve the common colors query problem in
O((

√
N logNoutput+ output) log2 N) time using O(N logN) space. ⊓⊔

As showed in [5] to solve the two-dimensional substring problem we can
solve a CCQ problem. As a result, the two-dimensional substring problem can
be solved in O((

√
N logNoutput+output) log2 N) time using O(N logN) space.

5.1 Document Listing Solution For Two Patterns

The document listing problem was presented by Muthukrishnan [6]. In this prob-
lem we are given a collection D of text documents d1, . . . , dc, with

∑

i |di| = N ,
which may be preprocessed, so when given a query comprising of a pattern p
our goal is to return the set of all documents that contain one or more copies
of p. Muthukrishnan presented an optimal solution for this problem by building
a suffix tree for D, searching the suffix tree for p and getting an interval I on
an array with all the occurrences of p in D. Then they solve the colored range
query problem on I to get each document only once. This solution requires O(N)
space with optimal query time of O(|p|+ output) where output is the number of
documents that contain p.

We are interested in solving this problem for a two patterns query. Given two
patterns p, q, our goal is to return the set of all documents that contain both p
and q. In [6] there is a solution that uses O(N

√
N) space with O(|p|+ |q|+

√
N+

output) query time. Their solution is based on searching a suffix tree of all the
documents for the two patterns p, q in O(|p|+ |q|) time. From this they get two
intervals: I1 with p occurrences and I2 with q occurrences.. On these intervals
they solve a CCQ problem to get the intersection between I1 and I2 for all the
documents that contain both p and q.

We suggest a new solution based on solving the FSI problem. We use the same
method as Muthukrishnan [6] until we get the two intervals: I1 with p occurrences
and I2 with q occurrences. Now, we have to solve a CCQ problem which can be
solved as shown above in theorem 3. Therefore, the document listing problem for
two patterns can be solved in O(|p| + |q| + (

√
N logNoutput+ output) log2 N)

time using O(N logN) space where output is the number of documents that
contain both p and q.

6 Conclusions

In this paper we developed a method to improve algorithms which intersects
sets as a common task. We solved the fast set intersection problem using O(N)



space with query time bounded by O(
√
Noutput+ output). We showed how to

improve some other problems, the two-dimensional substring indexing problem
and the document listing problem for two patterns, using the fast set intersection
problem.

There is still a lot of research to be done in regards to the fast set intersection
problem. It is open if the query time can be bounded better. Moreover, we showed
only two applications for the fast set intersection problem. We are sure that the
fast set intersection problem can be useful in other fields as well.
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