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Abstract. A hexagonal patch is a plane graph in which inner faces have length 6,
inner vertices have degree 3, and boundary vertices have degree 2 or 3. We con-
sider the following counting problem: given a sequence of twos and threes, how
many hexagonal patches exist with this degree sequence along the outer face?
This problem is motivated by the enumeration of benzenoid hydrocarbons and
fullerenes in computational chemistry. We give the first polynomial time algo-
rithm for this problem. We show that it can be reduced to counting maximum
independent sets in circle graphs, and give a simple and fastalgorithm for this
problem.

Keywords: graph algorithms, computational complexity, counting problem, pla-
nar graph, circle graph, fullerene, hexagonal patch, fusene, polyhex.

1 Introduction

The notions used and problems introduced in this section aredefined more formally
in Section 2. A plane graphG is a graph together with a fixed planar embedding in
the plane. The unbounded face is called theouter faceand the other faces are called
inner faces. The boundary of the outer face is simply called theboundaryof G. A
hexagonal patchis a 2-connected plane graph in which all inner faces have length 6,
boundary vertices have degree 2 or 3, and non-boundary vertices have degree 3. These
graphs are also known asfusenes[18], hexagonal systems[10], polyhexes[17] and
(6,3)-polycycles[12] in the literature. These graphs are well-studied in mathematical
and computational chemistry since they model benzenoid hydrocarbons and graphite
fragments (see e.g. [18] and the references therein). A central question is that of enu-
merating hexagonal patches, either of a given size [6], or with a given boundary form.

A sequencex0, . . . ,xk−1 of twos and threes is aboundary codeof a hexagonal
patchG if there is a way to label the boundary vertices ofG with v0, . . . ,vk−1 such
thatv0, . . . ,vk−1,v0 is a boundary cycle ofG, and the degreed(vi) = xi for all i. Note
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that cyclic permutations and/or inversions of the sequencecan yield different bound-
ary codes for the same patch, but for the question we study this fact is not important.
It is well-known and easily observed using Euler’s formula that the boundary code of
a hexagonal patch satifiesd2 − d3 = 6, wheredi is the number of boundary vertices
with degreei. We define the parametersd2(X) andd3(X) also for sequencesX of twos
and threes, as expected. One may ask whether a hexagonal patch exists that satisfies a
given boundary code. A result by Guo, Hansen and Zheng [18] shows that this question
is not as easy as was first expected: in Figure 1 their example is shown which shows
that different patches may exist with the same boundary code. This can be verified by
comparing the degree ofv1 with u1, v2 with u2, etc. Our drawing of this graph is taken
from [8]. (In [18] it is also shown that although multiple solutions may exist, they all
have the same size.) Therefore the following question should be asked: given a sequence

v1 v2 u2
u1

Fig. 1. Two different patches with the same boundary code.

S of twos and threes,how manyhexagonal patches exist with boundary codeS? This
counting problem is calledHexagonal Patch. Guo et al [18] and Graver [17] give con-
ditions for when solutions are unique, if they exist. Deza etal [10] give an algorithm
for deciding whether at least one solution exist. The complexity of their algorithm is
however superexponential. In addition they give a polynomial time algorithm for a very
restricted case (see Section 3). These results have been generalized to various problem
variants, mainly by varying the conditions on the face lengths and vertex degrees, see
e.g. [12, 7–9]. However, the question whether the counting problem can be answered
efficiently remained open.

In this paper we show that the counting problem Hexagonal Patch can be solved in
time O(k3) where k is the length of the sequence.This is surprising since the number
of solutions may be exponential ink, as can easily be seen by generalizing the example
from Figure 1. Therefore, we can only return thenumberof solutions in polynomial
time, and not return alist of all corresponding patches. The algorithm can however be
extended to generate all patches in timekO(1) ·O(n), wheren is the number of returned
solutions. We remark that it is not hard to generalize our result to the generalizations
introduced in [8]: A 2-connected plane graph is an(m,k)-patchif all inner faces have
lengthk, inner vertices have degreemand boundary vertices have degree at mostm. Our
methods work for instance for(4,4) and(6,3)-patches in addition to(3,6)-patches, but
for simplicity we restrict to hexagonal patches.

An additional motivation for this result is the following:fullerene patchesgeneralize
hexagonal patches by also allowing 5-faces in addition to 6-faces. Such patches model



fragments of fullerene molecules, and therefore their enumeration is another important
problem from computational chemistry. Fullerene molecules have at most twelve 5-
faces. The current result is an essential ingredient for theresult we give in a second
paper [2], where we give a polynomial time algorithm for deciding whether a given
boundary code belongs to a fullerene patch with at most five 5-faces.

Our algorithm is based on the following idea: with a few intermediate steps, we
transform the problem Hexagonal Patch to the problem of counting maximum indepen-
dent sets in circle graphs. Acircle graph Gis the intersection graph of chords of a circlecircle graph
(detailed definitions are given below). Algorithms are known for the optimization prob-
lem of finding maximum independent sets in circle graphs [16], but counting problems
on circle graphs have not been studied to our knowledge.

In this paper we give a simple dynamic programming algorithmfor counting inde-
pendent sets in circle graphs. In addition this algorithm improves the complexity for the
optimization problem. Circle graphs can be represented as follows (see Figure 2(a),(b)):
Every vertex ofG is associated with achordof a circle drawn in the plane, which is a
straight line segment between two points on the circle, suchthat two vertices are ad-
jacent if and only if the two chords overlap (possibly only ina common end). We will
represent chord diagrams with graphs as follows (see Figure2(d)). Number the points
on the circle that are ends of chords with 0, . . . ,k− 1, in order around the circle, and
view these as vertices. View a chord fromi to j as an edgei j . Call the resulting graph
G′ thechord model graph. Note that (maximum) independent sets of the circle graphchord model graph
correspond bijectively to(maximum) planar matchingsor (M)PMs of G′, which are (maximum) planar

matchings(maximum) matchingsM that do not contain edges{i, j} and{x,y} with i < x< j < y.
Hence counting MPMs inG′ is polynomially equivalent to counting maximum inde-
pendent sets in circle graphs.
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Fig. 2. A circle graph, (simple) chord diagram and (simple) chord model graph.

Circle graphs are extensively studied and generalize permutation graphs and dis-
tance hereditary graphs, see e.g. [5]. Recognizing them andconstructing a chord rep-
resentation can be done in polynomial time [4, 15], and the current fastest algorithm
uses timeO(n2), wheren is the number of vertices [22]. A number of problems that
are NP-hard on general graphs are easy on circle graphs, suchas in particular finding
maximum independent sets [16, 23, 24, 19].



The first algorithm for the optimization problem by Gavril [16] has time complexity
O(m3), wherem is the number of vertices of the circle graph, which is the number
of edges of the corresponding chord model graph. This was improved toO(m2) by
Supowit [23]. Recently this has been improved further by Valiente [24] in the way we
will explain now. All of these algorithms work with the chordmodel graph (or chord
diagram), and as a first step, transform it into a 1-regular graph as shown in Figure 2(e):
for a vertex of degreed, d new vertices are introduced, and thed incident edges are
distributed among these in such a way only one of these edges can appear in a PM
of G. This does not change the size and number of MPMs. The resulting graphG has
2m vertices andm edges, and is called thesimple chord model graph. We assume the
vertices are numbered 0, . . . ,2m− 1, in the proper order. Then thelengthof an edge
i j ∈ E(G) is | j − i|. The algorithm from [24] has complexityO(l), wherel is the sum
of all edge lengths of the simple chord model graph obtained this way. Clearly this is at
mostO(m2), and in many cases better. However, whendensechord model graphs are
given onn vertices andm∈ Ω(n2) edges, this algorithm may needΩ(n4) steps. Our
transformation from Hexagonal Patch yields a chord model graphG′, which in fact may
be dense.

We give a simple algorithm with complexityO(nm), which not only determines the
size of a MPM, but also counts the number of MPMs of the chord model graph. This
improvement in time complexity is possible by working with arbitrary degrees, and
not using the simple chord model graph, in contrast to all previous algorithms for this
problem [24].

The outline of the paper is as follows. In Section 2 we give definitions, and a precise
formulation of the problem. In Section 3 we define locally injective homomorphisms
to the hexagonal lattice (the brickwall) as a way of representing problem instances and
solutions and reduce the counting problem to a problem on walks in the brickwall. In
Section 4 we reduce that problem to that of countingproper assignment setsof the walk,
which is in fact the problem of counting MPMs in chord model graphs. In Section 5 we
present our algorithm for counting MPMs, and in Section 6 we give a summary of our
algorithm for Hexagonal Patch. We end in Section 7 with a discussion, where we also
discuss a similar problem from topology. Statements for which proofs are omitted are
marked with a star, the proofs appear in the appendix.

2 Preliminaries

For basic graph theoretic notions not defined here we refer to[11]. A walk of length kwalk
in a (simple) graphG is a sequence ofk+1 verticesv0, . . . ,vk such thatvi andvi+1 are
adjacent inG for all i ∈ {0, . . . ,k−1}. v1, . . . ,vk−1 are theinternalvertices andv0,vk theinternal
endvertices of the walk. The walk isclosedif v0 = vk. Throughout this paper we willend

closed in addition assume thatvi−1 6= vi+1 for all i ∈ {1, . . . ,k−1}, and if the walk is closed,
v1 6= vk−1 (i.e. we will assume walksdo not turn back). If vi 6= v j for all i 6= j then
the walk is apath. If the walk is closed andvi 6= v j for all distinct i, j ∈ {0, . . . ,k−1}path
then it is also called acycle. A cycle of lengthk is also called ak-cycle. For a walkcycle

k-cycle W = v0, . . . ,vk, Wx denotesvx. If W is a closed walk, thenWx denotesvx modk. We will

Wx
also talk about theverticesandedgesof a walk, which are defined as expected. In a



slight abuse of terminology, the graph consisting of these vertices and edges will also
be called a walk (or path or cycle if applicable).

Let H be a hexagonal patch, andB be a boundary cycle ofH of lengthk. Let X =
x0, . . . ,xk−1 be a sequence of twos and threes. We say that the tuple(H,B) is asolution
for the boundary code Xif d(Bi) = xi for all i ∈ {0, . . . ,k−1}. Two solutions(H,B) and
(H ′,B′) are consideredequivalentif there is an isomorphismψ from H to H ′ such that equivalent
ψ(Bi) = B′

i for all i. Formally, when we ask for the number ofdifferentpairs(H,B) that
satisfy some property, we want to know how many equivalence classes contain a pair
(H,B) satisfying this property. The counting problem Hexagonal Patch is now defined
as follows: given a sequenceX, how many different solutions(H,B) to X exist?

3 From Boundary Codes to Walks in the Brickwall

Fig. 3. The brickwallB.

An (infinite) 3-regular plane graph where every face has length 6 is called abrick-
wall. It can be shown that the facial cycles are the only 6-cycles of a brickwall, and that brickwall
all brickwalls are isomorphic.

We will useB to denote the brickwall as drawn in Figure 3. Edges that are hori- B

zontal (vertical) in this drawing are called thehorizontal(vertical) edges ofB. Paths horizontal
verticalconsisting of horizontal edges are calledhorizontal paths. Two vertices joined by a
horizontal pathshorizontal path are said to have the sameheight.
heightThe reason that we study brickwalls is because the followingmapping of hexagonal

patches into them is very useful. LetH be a hexagonal patch. Alocally injective homo-
mophism (LIH)of H into B is a mapping of the vertices ofH to vertices ofB, such locally injective

homomophism (LIH)that adjacent vertices are mapped to adjacent vertices inB, and such that all neighbors
of any vertex inH are mapped to different vertices inB. Since the shortest cycles inB
are of length 6, a LIH intoB maps 6-cycles to 6-cycles. Since the faces ofB are the
only 6-cycles inB, we see that a LIH ofH into B also maps inner faces to faces.

Loosely speaking, the idea behind these mappings is as follows. LetH be a hexag-
onal patch of which we fix a boundary cycleB. When we mapH with a LIH φ into B,
then the boundaryB is mapped to some walkW in B. But now it can be shown that
this walkW is only determined by the choice of the initial vertices and the boundary
code ofH. Hence instead of asking how many hexagonal patches exist with a certain
boundary code, we may ask how many patches exist that can be mapped properly to
the brickwall, such that the boundary coincides with the walk that is deduced from the
boundary code. Below we will go into more detail.



The technique of mapping patches to brickwalls is not new, and is actually consid-
ered folklore to some extent [10]. For instance, Deza et al [10] observe that Hexagonal
Patch can be solved in polynomial time if the LIH is bijective, and Graver [17] shows
that the problem Hexagonal Patch can only have multiple solutions if there is a brick-
wall vertex that has at least three preimages in such a LIH. Wewill however study these
mappings more in more detail than has been done before, and develop new concepts,
and prove new statements which we feel are of independent interest.

LetW be a walk in a 3-regular plane graphG. We sayW makes a right (left) turn at
i when edgeWiWi−1 immediately follows edgeWiWi+1 in the clockwise (anticlockwise)W makes a right (left)

turn at i order aroundWi . Note that since we assume that walks do not turn back andG is 3-
regular,W makes either a left or a right turn at everyi.

Walk construction:Using a given sequencex0, . . . ,xk−1 of twos and threes, we con-
struct a walkW = v0, . . . ,vk in B as follows. Forv0 and v1, choose two (arbitrary)
adjacent vertices. Fori ≥ 1, choosevi+1 such thatW makes a left turn ati if xi = 3, and
makes a right turn ati if xi = 2.

Let W be a closed walk inB of lengthk, H be a hexagonal patch,φ a LIH from
H to B and B a boundary walk ofH of length k. Then the tuple(H,φ ,B) is said
to be asolution for W when φ(Bi) = Wi for all i. Two solutionsS= (H,φ ,B) andsolution for W
S′ = (H ′,φ ′,B′) are considered to beequivalentif and only if there is an isomorphismequivalent
ψ from H to H ′ such thatψ(Bi) = B′

i for all i. We say thatψ is an (or demonstrates the)
equivalence betweenSandS′. The LIH φ allows us to use the terminology defined for
B for the graphH as well; we will for instance call edges ofH horizontalor vertical if
their images underφ are horizontal or vertical, respectively.

Let the boundaryB of a hexagonal patchH be mapped to the closed walkW in B

by the LIH φ . This is aclockwise solutionif and only if for everyi, d(Bi) = 2 if Wclockwise solution
makes a right turn ati, andd(Bi) = 3 if W makes a left turn ati. It is anticlockwise
when these conditions are reversed. Let RIGHT(W) and LEFT(W) denote the numberRIGHT(W)

LEFT(W) of indicesi ∈ {0, . . . ,k−1} such thatW makes a right turn or left turn ati, respectively.
The turning numberof W is t(W)= (RIGHT(W)− LEFT(W))/6. Using the fact thatturning number

t(W)
for a solution(H,φ ,B), φ maps faces ofH to faces ofB, it can be shown that every
solution is either clockwise or anticlockwise. Since a hexagonal patch hasd2−d3 = 6
(di is the number of degreei vertices on the boundary), Lemma 1 then follows. Variants
of Lemma 2 have been proved in [8, 17].

Lemma 1 (*) Let W be a closed walk inB. If t(W) = 1, then every solution to W is
clockwise. If t(W) = −1 then every solution to W is anticlockwise. If t(W) 6∈ {−1,1},
then no solution exists.

Lemma 2 Let (H,B) be a solution to a boundary code X and let W be a walk inB

that is constructed using X. Then there exists a unique LIHφ such that(H,φ ,B) is a
clockwise solution to W.

Because of Lemma 2, we may rephrase the problem Hexagonal Patch in terms of
solutions(H,φ ,B) to a closed walkW in the brickwall.

Theorem 3 The number of different (hexagonal) solutions for a boundary code X with
d2(X)− d3(X) = 6 is the same as the number of different clockwise solutions for the
walk W inB that is constructed using X.



Proof: For any solution(H,B) for X, a unique LIHφ exists such that(H,φ ,B) is a
clockwise solution toW (Lemma 2). For any clockwise solution(H,φ ,B) to W, the
characterization of clockwise solutions and the construction of W shows that(H,B) is
a solution toX. (Sinced2(X)−d3(X) = 6 andt(W) = 1 by Lemma 1,W turns at 0 as
prescribed byx0.) Note that the definitions of equivalence for pairs(H,B) and triples
(H,φ ,B) coincide and, in particular, do not depend onφ . �

4 From Walks in the Brickwall to Assignment Sets

Throughout Section 4,W denotes a closed walk inB with lengthk. We first sketch the
main idea of this section. If we consider a solution(H,φ ,B) to W, then we mentioned
above that this defines which edges ofH are horizontal and vertical. Now if we start at
a boundary vertexBi of H that is incident with a horizontal interior edge ofH, then we
can continue following this horizontal path ofH until we end in a different boundary
vertexB j . We will say that this solutionassigns ito j. If we only know all assignments
defined by the solution this way, we can reconstruct the unique solution. We will deduce
properties of such sets of assignments such that there is a solution if and only if these
properties are satisfied. The purpose is to show that we may focus on counting such
assignment sets instead of solutions to the walk.

For all i, j whereWi andWj lie on the same height,Hi, j denotes the horizontal walkHi, j

in B from Wi to Wj . Consider an indexi ∈ {0, . . . ,k− 1} and the vertexWi . Let u be
the neighbor ofWi in B not equal toWi−1 or Wi+1. If u has the same height asWi and
W makes a left turn ati, then indexi is called aPA-index. In Figure 4(b) an example PA-index
is shown, where vertices corresponding to PA-indices are encircled, and their indices
are shown. Note that ifW has a clockwise solution(H,φ ,B), then the PA-indices are
precisely those indicesi such thatBi has degree 3 and the interior edge incident withBi

is horizontal (see Figure 4(a)).
A possible assignment (PA)is a pair{i, j} of PA-indices withWi 6=Wj such thatWi possible assignment

(PA)andWj have the same height andHi, j does not contain any ofWi−1,Wi+1,Wj−1,Wj+1

(note thatHi, j has non-zero length). For instance, in Figure 4(b) some PAs are{1,28},
{1,14} and{21,32}, but{1,24} is not.
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Fig. 4. Assignment paths of a solution and PA-indices of a walk.



Let (H,φ ,B) be a clockwise solution to a closed walkW in B. An assignment pathassignment path
P is a horizontal path inH from Bi to B j wherei 6= j, and all edges and internal vertices
of P are interior edges and vertices ofH. In Figure 4(a) the assignment paths of the
given solution are shown in bold.

Proposition 4 (*) If a clockwise solution(H,φ ,B) to W contains an assignment path
from Bi to Bj , then{i, j} is a PA of W.

This motivates the following definition. A clockwise solution S= (H,φ ,B) to a
walk W assigns i to jif there is an assignment path fromBi to B j . For each clockwiseassigns i to j
solutionS, we define the setA (S):= {{i, j} : {i, j} is a PA ofW andSassignsi to j}.A (S)
This is theassignment setdefined by the solutionS.assignment set

Lemma 5 (*) Let W denote a closed walk inB and let S,S′ be clockwise solutions of
W. If S and S′ are equivalent, thenA (S) = A (S′).

Now we will deduce the properties of a setA (S). Proposition 6 shows that assign-
ment paths do not share vertices. Combining this with planarity yields Proposition 7.

Proposition 6 (*) Let (H,φ ,B) be a clockwise solution to W. Every interior vertex of
H and every vertex Bi , where i is a PA-index, lies on a unique assignment path.

Proposition 7 (*) Let S be a solution to a closed walk W that assigns i to j. For any
x,y with x< i < y< j or i < x< j < y, S does not assign x to y.

These two propositions give us properties a set of the formA (S) for a clockwise
solutionSnecessarily has to have. GivenW, a setA of possible assignments ofW is a
perfect matchingon the set of PA-indices if for every PA-indexi of W there is exactlyperfect matching
one pair{i, j} ∈ A. A is non-crossingif there do not exist assignments{i, j},{x,y} ∈ Anon-crossing
such thati < x < j < y. An assignment setfor W is a set of possible assignments ofassignment set
W. It is a proper assignment setif it is a non-crossing, perfect matching on the setproper assignment set
of PA-indices ofW. Combining Proposition 4, Proposition 6 and Proposition 7 yields
Lemma 8. Lemma 9 states more or less the reverse; the long proof appears in Ap-
pendix B.

Lemma 8 If S= (H,φ ,B) is a clockwise solution of W thenA (S) is a proper assign-
ment set for W.

Lemma 9 (*) Let W denote a closed walk inB with t(W) = 1, and let A be a proper
assignment set of W. Then there exists a clockwise solution Sof W withA (S) = A.

It remains to establish the converse of Lemma 5. Suppose we have two solutions
S= (H,φ ,B) andS′ = (H ′,φ ′,B′) with A (S) = A (S′). Every vertex ofH andH ′ lies
on the boundary or on an assignment path (Proposition 6). Therefore we can use the
boundary and the assignment paths to define a bijectionψ : V(H) → V(H ′). When
doing this appropriately, it can be shown thatψ an equivalence.

Lemma 10 (*) Let W be a closed walk inB, and let S and S′ denote clockwise solu-
tions of W. IfA (S) = A (S′), then S and S′ are equivalent.



Theorem 11 Let W be a walk inB with t(W) = 1. The number of equivalence classes
of solutions to W is the same as the number of different properassignment sets for W.

Proof: The above lemmas show thatS 7→ A (S) gives a bijection from the set of equiv-
alence classes of clockwise solutions ofW to the set of proper assignment sets forW,
since the following properties are satisfied: (1)A is well-defined:Let S1 andS2 denote
clockwise solutions ofW. If S1 andS2 are equivalent, thenA (S1) =A (S2) (Lemma 5).
(2) The range ofA is correct: For any clockwise solutionS of W the setA (S) is a
proper assignment set forW (Lemma 8). (3)A is injective:Let S1 andS2 denote clock-
wise solutions ofW. If A (S1) = A (S2), thenS1 andS2 are equivalent (Lemma 10).
(4) A is surjective:For any proper assignment setA for W, there exists a clockwise
solutionSof W with A (S) = A (Lemma 9). �

It follows that for solving the Hexagonal Patch problem, we may focus on counting
proper assignment sets for the walkW (assumingt(W) = 1).

5 Counting Maximum Planar Matchings

In this section we will observe that the remaining algorithmic problem is that of count-
ing independent sets in circle graphs, and present a fast algorithm for this problem. We
use the closed walkW in B to construct a graphGW with vertex setV = {0, . . . ,n−1},
wheren is the number of PA-indices ofW. Let p0, . . . , pn−1 be all PA-indices ofW,
numbered according to their order inW. Then the edge set ofGW will be E = {i j |
{pi , p j} is a PA ofW}. The following lemma is now easily observed.

Lemma 12 Let GW be the graph as constructed above from the walk W. If GW has no
perfect planar matching, then W has no proper assignment sets. Otherwise the number
of proper assignment sets for W is equal to the number of MPMs in GW.

Now we will present an algorithm for counting MPMs of a graphG with V(G) =
{0, . . . ,n−1}. As mentioned in the introduction, this is equivalent to counting maxi-
mum independent sets in a circle graphH, whereG is the chord model graph ofH. We
will present this algorithm for the general case whereG has edge weights:wi j denotes
the edge weight ofi j , and a PMM is maximumif ∑e∈M we is maximum.

For i, j ∈ V(G) with i ≤ j, let Gi, j= G[{i, . . . , j}]. If i > j, thenGi, j is the empty Gi, j

graph. Fori, j ∈ V(G), let Si, j denote the size of a MPM inGi, j . In particular,S0,n−1 Si, j
is the size of a MPM inG. We now give a subroutineS(i, j) for calculatingSi, j , which
considers the sizes of various PMs forGi, j , and returns the size of the largest PM.

A subroutineS(i, j) for calculatingSi, j :
(1) m := 0
(2) If i < j then m := Si+1, j

(3) For v∈ N(i) with i +1≤ v≤ j −1:
(4) m := max{m,Si,v+Sv+1, j}
(5) If j ∈ N(i) and j > i then
(6) m := max{m,wi j +Si+1, j−1}
(7) Returnm



Lemma 13 (*) Let G be a graph with V(G) = {0, . . . ,n− 1} and i, j ∈ V(G). If the
values Sx,y are known for all x,y with −1 ≤ y− x < j − i, then the subroutine S(i, j)
computes Si, j in time O(d(i)).

Let Ni, j denote the number of MPMs inGi, j . Below is a similar subroutineN(i, j)Ni, j

for calculatingNi, j , which considers various PMs forGi, j , checks whether they are
maximum by comparing the size withSi, j , and keeps track of the number of MPMs
using the variableN.

A subroutineN(i, j) for calculatingNi, j :
(1) If j ≤ i then Return 1,exit.
(2) N := 0
(3) If Si, j = Si+1, j then N := N+Ni+1, j

(4) For v∈ N(i) with i +1≤ v≤ j −1:
(5) If Si, j = Si,v+Sv+1, j then N := N+Ni,v×Nv+1, j

(6) If j ∈ N(i) andSi, j = wi j +Si+1, j−1 then N := N+Ni+1, j−1

(7) ReturnN

Lemma 14 (*) Let G be a graph with V(G) = {0, . . . ,n− 1} and i, j ∈ V(G). If the
values Sx,y and Nx,y are known for all x,y with −1≤ y− x < j − i, and Si, j is known,
then the subroutine N(i, j) computes Ni, j in time O(d(i)).

Theorem 15 Let G be a graph with V(G) = {0, . . . ,n− 1} on m edges. The size and
number of MPMs of G can be computed in time O(nm).

Proof: For d = −1 to n− 1, we consider alli, j ∈ {0, . . . ,n− 1} with j − i = d, and
calculateSi, j andNi, j using the above subroutines. This way, for every value ofd, every
vertex ofG is considered at most once in the role ofi. For this choice ofi, calculating
Si, j andNi, j takes timeO(d(i)) (Lemma 13, Lemma 14). Hence for one value ofd this
procedure takes timeO(∑i∈V(G) d(i)) = O(m). �

We remark that Valiente’s algorithm [24] for simple (1-regular) chord model graphs
can also be extended by using SubroutineN(i, j) to calculateNi, j in constant time,
immediately any time after a valueSi, j is calculated. This then yields time complexity
O(l) and space complexityO(n). In some cases it may be better to transform to a simple
chord model graph and use this algorithm.

6 Summary of the Algorithm

We now summarize how counting the number of hexagonal patches that satisfy a given
boundary codeX of lengthk can be done in timeO(k3). W.l.o.g.d2(X)−d3(X) = 6.
First useX to construct a walkW in B of lengthk, as shown in Section 3. Theorem 3
shows that we may now focus on counting clockwise solutions toW. If W is not closed
it clearly has no solution. Sinced2(X)− d3(X) = 6 we may now assumet(W) = 1.
Then Theorem 11 shows we may focus on counting proper assignment sets forW. Now
constructGW as shown in Section 5.GW hasn vertices wheren < k is the number of
PA-indices ofW (andO(n2) edges). By Lemma 12, the number of proper assignment
sets forW is equal to the number of MPMs ofGW, provided thatGW has a perfect PM.
This number and property can be determined in timeO(n3) ∈ O(k3) (Theorem 15).



7 Discussion

Our first question is whether the complexity ofO(k3) can be improved. Secondly, con-
sidering the motivation from benzenoid hydrocarbons, it isinteresting to study whether
a patch exists that has a ‘reasonably flat’ embedding inR

3 using regular hexagons.
More precisely, this is the brickwall walk problem, but requires in addition giving a
consistent linear order (‘depth’) for all vertices mapped to the same vertex ofB. It may
also be interesting to study generalizations such as to surfaces of higher genus.

After we presented an early version of this work [3], Jack Graver pointed us to a
similar well-studied problem in topology. LetS1 denote the unit circle andD2 the unit
disk in R

2. An immersionis a continuous functionf : A → B such that for everyx in
A there is a neighborhoodN of x such thatf |N is a homeomorphism. (Acurvewhen
A = S1, B = R

2.) An immersionc : S1 → R
2 of the circle into the plane isnormal

if c has only finitely many double-points andc crosses itself at each of these. Two
immersionsd, d′ areequivalentif there exists a homeomorphismφ : R2 → R

2 such
that d ◦ φ = d′. Now the Immersion Extensionproblem is this: given an immersion
c : S1 → R

2, how many immersionsd : D2 → R
2 exist that extendc? Note that this

problem is not combinatorial, therefore it makes no sense tostudy its computational
complexity. One can turn it into a combinatorial problem by restricting the input to
piecewise linear (PL)curvesc : S1 →R

2.

When viewing the walk constructed in Section 3 as a curve, there are obvious sim-
ilarities between the Hexagonal Patch problem and the Immersion Extension problem.
However, to our knowledge it is an open problem to prove that these problems are in
fact equivalent. The ideas introduced here may be helpful for giving such a proof. Es-
tablishing this would provide insight to both problems, since the Immersion Extension
problem is well-studied – at least on normal curves – see e.g.[1, 13, 21]. Interestingly,
Blank [1, 14] reduces the Immersion Extension problem problem to a combinatorial
problem that is essentially the same as counting MPMs in simple chord model graphs.
He does not address the complexity of this problem. Shor and Van Wyk [21] were the
first to study the complexity of the combinatorial ImmersionExtension problem on
normal curves. They give anO(n3 logn) algorithm wheren is the number of pieces of
the PL curvec. Assuming the equivalence of the Immersion Extension problem and
the Hexagonal Patch problem, this would give an alternativealgorithm for Hexagonal
Patch; note that there are methods for transforming generalPL curves to equivalent nor-
mal PL curves [20]. Since our algorithm does not need such a step, it is not only faster
but also much easier to implement (see also [20]). However, the question of equivalence
of these problems is still interesting because many generalizations of the Immersion Ex-
tension problem have been studied [13]. Finally, we believethat in fact our method can
be adapted to give a simple and fast for the combinatorial Immersion Extension problem
that does not require the assumption that the given curve is normal, but that is beyond
the scope of this paper.

Acknowledgement We thank Gunnar Brinkmann for introducing us to this subjectand
his suggestions, and Hajo Broersma for the discussions on this topic.
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A Proofs of Section 3 and Section 4

Proof of Lemma 1: Letφ be a LIH from a hexagonal patchH with boundary cycle
B of lengthk to B, and letW = φ(B0),φ(B1), . . . ,φ(Bk−1),φ(B0). We first show that
(H,φ ,B) is either a clockwise solution to the walkW or an anticlockwise solution to
W.

An index i is calledlocally clockwiseif either d(Bi) = 2 andW makes a right turn
at i, or d(Bi) = 3 andW makes a left turn ati.

We show that if somei is locally clockwise, then every index is locally clockwise.
Suppose this is not true, so then there is ani that is locally clockwise such thati + 1
is not. Assume first thatd(Bi) = 2 andd(Bi+1) = 2. ThenW makes a right turn ati,
but a left turn ati +1. ThereforeWi−1 andWi+2 do not lie at a common facial cycle of
B. SinceBi andBi+1 both have degree 2 inH, all of the verticesBi−1, . . . ,Bi+2 lie at a
common inner face ofH. This is a contradiction sinceφ maps faces ofH to faces ofB.

In the case whered(Bi) = d(Bi+1) = 3, we consider the neighborvi of Bi that is
not equal toBi−1 or Bi+1, and the neighborvi+1 of Bi+1 that is not equal toBi or Bi+2.
These again lie at a common face ofH, but if W makes a left turn ati and a right
turn ati +1, are mapped to two vertices that do not lie at a common face, which again
yields a contradiction. The two other cases are analogous. We conclude that if a solution
contains a locally clockwise vertex, it is clockwise.

Now we relate this to the turning number. Letdi denote the number of vertices of
degreei on the boundary ofH. If (H,φ ,B) is a clockwise solution thend2 = RIGHT(W)
and d3 = LEFT(W). We know thatd2 − d3 = 6 sinceH contains no 5-faces. Hence
t(W) = 1. Similarly, if an anticlockwise solution exists thent(W) =−1 follows, which
proves the statement. �

Proof of Proposition 4: We show that if a clockwise solution(H,φ ,B) toW assigns
Bi to B j , then{i, j} is a PA ofW. Let P be an assignment path fromBi to B j . We have
that Bi andB j have the same height, sinceP is horizontal.Bi 6= B j holds sinceH is
2-connected.P is then mapped to a non-zero length path inB (it does not turn back,
sinceφ is a LIH), soWi 6=Wj follows. All edges ofP are interior edges ofH, soBi and
B j have degree 3, and thereforeW makes a left turn ati and j. It follows thati and j are
PA-indices. Sinceφ is a LIH andP contains no boundary edges,Hi, j does not contain
any ofWi−1,Wi+1,Wj−1,Wj+1. �

Proof of Lemma 5: We show that if two clockwise solutionsS andS′ of W are
equivalent, thenA (S) = A (S′). Let S= (H,φ ,B) and S′ = (H ′,φ ′,B′), and letψ :
V(H) → V(H ′) demonstrate their equivalence. Note thatφ ′ ◦ψ andφ are both LIHs
from H into B that mapBi to Wi . As the LIH with this property is uniquely determined
by Lemma 2, we conclude thatφ ′ ◦ψ = φ . In particular, any edgeuv is horizontal in
H if and only if ψ(u)ψ(v) is horizontalH ′. Clearly an analogous statement holds for
vertices being interior. Thereforeψ maps assignment paths to assignment paths. Since
ψ(Bi) = B′

i for all i it follows thatA (S) = A (S′). �

Proof of Proposition 6: Let(H,φ ,B) be a clockwise solution toW. We show that
every interior vertex ofH and every vertexBi , wherei is a PA-index, lies on a unique
assignment path. LetM be the set of horizontal non-boundary edges ofH, and letH ′ =



(V(H),M). Sinceφ is a LIH,H ′ has maximum degree at most 2.H ′ contains no cycles,
because these would have to be mapped to cycles ofB butB contains no cycles with
only horizontal edges. HenceH ′ is a set of paths and isolated vertices.

It can be seen that vertices with degree 2 inH ′ are interior vertices ofH, and that
vertices with degree 1 inH ′ are equal toBi for some PA-indexi. Hence the path com-
ponents ofH ′ (paths of non-zero length) are all assignment paths. Since all assignment
paths inH are also part ofH ′, we see that there is a one-to-one correspondence between
assignment paths inH and non-trivial components ofH ′. We also see that every inte-
rior vertex ofH and every vertexBi wherei is a PA-index lies on one such path. The
statement follows. �

Proof of Proposition 7: We show that if a solution(H,φ ,B) assignsi to j and i <
x< j < y, then it does not assignx to y. SupposeH contains an assignment pathP from
Bi to B j , and an assignment pathQ from Bx to By. By Proposition 6,P andQ have
no vertices in common. But since the (distinct) end verticesof the paths appear in the
orderBi , Bx, B j andBy along a boundary cycle of the plane graphH, this is impossible.
(Formally, to obtain a contradiction, we may useP, Q and the boundary cycle ofH to
exhibit a subdivision ofK4 that is embedded with all vertices on the boundary, which
then would yield a planar embedding ofK5.) �

For the proof below and later proofs in the appendix, it is important to distinguish
between two different kinds of horizontal edges ofB: horizontal left(horizontal right)horizontal left

horizontal right edges are edges that follow a vertical edge after turning left (right). Note that this par-
titions the edges ofB into vertical edges, horizontal left edges, and horizontalright
edges, and that every face contains two of each. The same holds for faces in a solution
(H,φ ,B); Recall that if patchH is mapped by a LIHφ to B, this allows us to define
vertical and horizontal (left / right) edges inH. Similarly, we will talk about vertices of
H that lie to the left / below etc. other vertices. This is also defined byφ and the chosen
drawing ofB.

Proof of Lemma 10: We show that ifA (S) =A (S′) for two solutionsSandS′, then
these solutions are equivalent. LetS= (H,φ ,B) andS′ = (H ′,φ ′,B′). We construct the
isomophismψ from H to H ′ that will demonstrate the equivalence as follows. For alli,
ψ(Bi) = B′

i . This definesψ for boundary vertices. Every non-boundary vertex lies on a
unique assignment path (Proposition 6). Suppose such a vertexv lies on an assignment
pathP from Bi to B j . Then{i, j} ∈ A (S) and thus{i, j} ∈ A (S′). The assignment path
P′ from B′

i to B′
j in H ′ is also mapped byφ ′ to Hi, j and therefore has the same length

asP (sinceφ andφ ′ are LIHs). Now ifv is thex-th vertex onP, ψ will map v to the
x-th vertex ofP′. This definesψ . Since every vertex ofH lies on the boundary or on
an assignment path, the functionψ is defined for every vertex ofH, and since the same
holds forH ′, ψ is a bijection. By definitionψ maps boundary vertices to the correct
boundary vertices, so to demonstrate thatψ is an equivalence betweenSandS′, it only
remains to show that it is an isomorphism.

We only show that edges ofH are mapped to edges ofH ′ by ψ . By symmetry a
similar statement then follows forψ−1, which proves thatψ is an isomorphism. Clearly
ψ maps boundary edges ofH to boundary edges ofH ′. Observe that every horizontal
non-boundary edge ofH lies on an assignment path. Thereforeψ also maps horizontal



edges ofH to edges ofH ′. What remains are vertical edges ofH that do not lie on the
boundary. Note thatψ maps horizontal left (right) edges ofH to edges ofH ′ of the
same type, and by observing the same forψ−1, it also follows that if a vertical edge is
mapped to an edge, it is mapped to a vertical edge again.

Suppose there exists a (vertical, interior) edge ofH that is not mapped to an edge
of H ′ by ψ . Let e= u1v1 ∈ E(H) be such an edge such that all edges that lie to the left
of it are mapped to edges ofH ′. Supposeu1 lies belowv1. e is incident with two inner
faces ofH, so we may chooseF = u1,u2,u3,v3,v2,v1,u1 to be the inner face ofH on
the left side ofe. Note that all other edges ofF are mapped to edges ofH ′; four edges
are horizontal, and the other vertical edge is mapped by our choice ofe.

Let u′1, u′2, u′3, v′3, v′2 andv′1 respectively be the images underψ of the vertices ofF .
The edgesv′1v′2 andv′2v′3 lie on a common face ofH ′ (sincev′2 has degree at most 3).
We show that they lie on a commoninner face ofH ′. If not, then bothv′1v′2 andv′2v′3 are
boundary edges. Then the corresponding edgesv1v2 andv2v3 of H are boundary edges
too, and thus these two edges share both an inner face and the outer face. SinceH is
2-connected, it follows thatd(v2) = 2. Because bothH andH ′ are clockwise solutions,
d(v′2) = 2. Hence the two edges inH ′ also share two faces, and thus one inner face.

Let F ′ = v′1,v
′
2,v

′
3,x,y,z,v

′
1 be the inner face ofH ′ on which these two edges lie.

Sinceψ maps to edges of the same type,v′1v′2 andv′2v′3 are horizontal left and hori-
zontal right edges respectively. Sinceφ ′ maps inner faces ofH ′ to inner faces ofB,
v′3x is a vertical edge.v′3 is incident with at most one vertical edge (φ ′ is a LIH),
so we may conclude thatx = u′3 (here we use the fact that vertical edges are not
mapped to horizontal edges, sov′3u′3 is vertical). Continuing this reasoning shows that
F ′ = v′1,v

′
2,v

′
3,u

′
3,u

′
2,u

′
1,v

′
1. Henceu′1v′1 ∈ E(H ′), a contradiction with the choice of

u1v1. We conclude thatψ is an isomorphism, which concludes the proof. �

B The proof of Lemma 9

Before we can prove Lemma 9 we need to introduce some new terminology and lem-
mas. For a closed walkW = v0, . . . ,vk, the subwalk of W from i to jis the walk
vi ,vi+1, . . . ,v j of length j − i modk. If j < i then, more precisely, this is the walk
vi ,vi+1, . . . ,vk−1,v0, . . . ,v j . The subwalk ofW from i to j will be denoted byWi, j . Wi, j

If W = v0, . . . ,vk is a closed walk, then for anyi ∈ {0, . . . ,k− 1}, the walkW′ =
vi ,vi+1, . . . ,vk−1,v0,v1, . . . ,vi−1,vi is called arotation of W. We will write W′ ≈ W to rotation

W′ ≈Wexpress thatW′ is a rotation ofW. For a pair of walksW = v0, . . . ,vk andW′ = u0, . . . ,ul

with vk = u0 andvk−1 6= u1, W ◦W′ denotes theconcatenationof W andW′, which W ◦W′

concatenationis v0, . . . ,vk,u1, . . . ,ul . In sequences, the notation(a)b means thatb copies ofa are
(a)binserted in the sequence at this point. For instance, 1,2,(3)3,4 denotes the sequence

1,2,3,3,3,4.
LetW be a closed walk inB. For indicesi, let n(i) be the first PA-index afteri (not n(i)

equal toi). So with respect to the walkW shown in Figure 4(b),n(1) = 4, n(32) = 0,
etc. The subwalks of the formWi,n(i) for any PA-indexi are called thepiecesof W. pieces

Elementary CyclesLet A be a proper assignment set of a closed walkW in B. We
will now define how such a tupleW,A giveselementary cycles, which correspond to



closed walks inB. Informally, for any indexi the unique elementary cycle that con-
tainsWiWi+1 can be found as follows. This is illustrated in Figure 5, where the proper
assignment given by the solution shown in Figure 4(a) is used. Arcs are shown to in-
dicate the direction of the elementary cycles, and the head of the arc indicates the first
vertex.

1
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274 25 13

1424

21 17
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Walk W and proper assignmentA (b)(a) The elementary cycles ofW,A

Fig. 5. Elementary cycles inB given by a proper assignmentA of W.

Start atWi , and continue alongW (in the direction of increasing indices) until the
first PA-indexn(i) is found. Let{n(i), i1} ∈ A be the (unique) assignment inA that
containsn(i). Then continue along the horizontal pathHn(i),i1 in B. At Wi1, follow
W again until the next PA-indexn(i1), and then followHn(i1),i2 where{n(i1), i2} ∈
A, etc. Continue with this procedure, taking alternatingly pieces ofW and horizontal
paths that correspond to assignments inA until we arrive again atWi . Observe that this
procedure ends and that we do actually arrive atWi again this way. We consider the
choice of starting vertex to be irrelevant, hence in the following formal definition we fix
a canonical rotation. Anelementary cycleof W,A is a walk inB of the formelementary cycle

C=Wi0,n(i0) ◦Hn(i0),i1 ◦Wi1,n(i1) ◦ . . .◦Hn(i l ),i0,

where{n(i j), i j+1} ∈ A for all j, and{n(i l ), i0} ∈ A. In addition, we require thati0 < i j

for all j ∈ {1, . . . , l}. This last condition fixes the canonical rotation. Note thatele-
mentary cycles that start at different indices ofW may still yield the same walk inB.
Therefore we also consider a sequenceI of numbers that give the corresponding in-
dices ofW. We insert−1 in this sequence for the vertices that correspond to vertices of
horizontal paths instead of parts ofW. For example, for the above choice ofC,

I = i0, . . . ,n(i0) , (−1)x−1 , i1, . . . ,n(i1) , . . . . . . , (−1)y−1 , i0,

wherex andy are the length ofHn(i0),i1 andHn(i l ),i0 respectively. (Obviously, ifi0 >
n(i0), theni0, . . . ,n(i0) should be read asi0, i0 +1, . . . ,k−1,0,1, . . . ,n(i0), wherek is
the length ofW, etc.)

Formally, an elementary cycle is now a pairC, I of a closed walkC in B and se-
quence of numbersI that are of the form explained above. This formal definition is
needed to clearly define what thenumberof elementary cycles ofW,A is: elementary



cycles are still considered different even if they yield thesame walk, but admitting
different rotations is irrelevant. However, below we will often informally denote ele-
mentary cycles just byC; the index sequenceI is clear from how we denoteC. Note
that for everyi there is a unique elementary cycleC, I such thatI containsi and i +1
consecutively. In a slight abuse of notation, from now on we will often simply express
this statement as follows: there is a unique elementary cycleC that contains the walk
edgeWiWi+1. In the special case whereA= /0, there is only one elementary cycleC, I ,
which hasC=W.

A walk in B in which every vertical edge is followed by a horizontal right edge and
preceded by a horizontal left edge is called aright-turn walk. right-turn walk

Proposition 16 Let A be a proper assignment set for a walk W inB. Then every ele-
mentary cycle C of W,A is a right-turn walk.

Proof: Any vertical edge ofC must come from a piece ofW. So letWi−1Wi be this
vertical edge. IfW turns left ati, theni is a PA-index andC turns right. IfW turns right
at i, theni is not a PA-index andC turns right as well. Hence in both cases, a vertical
edge inC is followed by a horizontal right edge. Similarly,C turns right ati−1 in both
the case that it is a PA-index and the case that it is not, hencevertical edges inC are
preceded by horizontal left edges. �

For the following proof, we use the following vertex labelling forB. See also Fig-
ure 6, which illustrates the next Proposition.

V(B) = {bi, j : i, j ∈ Z}

E(B) = {bi, jbi+1, j : i, j ∈ Z}∪{bi, jbi+1, j+1 : i, j ∈ Z, i odd}

b2,0

b5,1
b4,0

b7,1

b6,0

b2,1

b1,0

b3,1

W0

W1

b5,0b3,0

b4,1 b6,1

b7,0

b8,1

Fig. 6. A right-turn walkW in B with t(W) = 2.

Proposition 17 Let W be a closed right-turn walk inB. Then t(W) ≥ 1. If t(W) = 1,
then W has a clockwise solution.

Proof: For a closed walkW in B of lengthk and anyl ∈ {0, . . . ,k} we definet(W, l)
to be the number of indicesi with 1≤ i ≤ l such thatW makes a right turn ati minus the
number of those indices whereW makes a left turn. Sot(W,0) = 0 andt(W,k) = 6t(W),
and for everyl , t(W, l +1) = t(W, l)±1.

Every closed walk inB contains a vertical edge (since walks do not turn back), so
w.l.o.g. assumeW0W1 = b1,0b2,1. SinceW is a right-turn walk, after this a horizontal



right edge follows, which is part of an alternating sequenceof horizontal right and left
edges. This sequence continues until a horizontal left edgeis followed by a vertical
edge, and after that an alternating sequence of horizontal right and left edges again
follows (note that the walk cannot close before this point).So for somei ≥ 1 and j ≥ 1
we have

W0,2i+2 j+2 = b1,0,b2,1,b3,1, . . . ,b2i+2,1,b2i+1,0,b2i,0, . . . ,b2i−2 j+1,0.

(In Figure 6,i = 2 and j = 1. Note that in generalj > i is also possible.) Choosej
maximum, so either the walkW closes at this point (k = 2i +2 j +2), orW continues
with another vertical edge. In either case, the sequencet(W,0), t(W,1), . . . , t(W,2i +
2 j +2) is then 0,(1,2)i ,3,(4,5) j ,6. Continuing this reasoning shows thatt(W, l) can
never decrease below 6 whenl ≥ i + j +2, so we concludet(W) = t(W,k)/6 ≥ 1. In
addition, ift(W) = 1, then the walk cannot contain another vertical edge, so

W = b1,0,b2,1,b3,1, . . . ,b2i+2,1,b2i+1,0,b2i,0, . . . ,b1,0.

It is easily seen that in this case the subgraph ofB induced by the vertices ofW is a
clockwise solution toW. �
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Fig. 7. Splitting the walkW and assignment setA into two.

Splitting a walk In the following lemmas we use the following notations. LetA again
be a proper assignment set for the closed walkW in B. We assumeA contains a PA
{0,y} such thatn(y) = 0 (i.e.Wy,0 is a piece ofW). We now consider the two new closed
walksW′=W0,y◦Hy,0 andW′′=Wy,0◦H0,y in B. Note thatW′′ is in fact an elementaryW′

W′′ cycle ofW,A, and that for alli ∈ {0, . . . ,y}, W′
i = Wi . Figure 7 illustrates this for the

walk and assignment from Figure 5 (note thaty= 32).
We remark that although we consider various walks inB in this section, the nota-

tionsHi, j andn(i) are always defined with respect toW. LetA′= A−{0,y}. (We denoteA′

A\{x} andA∪{x} asA− x andA+ x respectively.) Observe thati is a PA-index ofW′

if and only if it is a PA-index ofW andi 6= 0,y. Thus it is easily seen that:



Proposition 18 A′ is a proper assignment set for W′.

The above construction of smaller walks and corresponding assignment sets from a
given pairW,A allows various induction proofs, justified by the next lemma.

Lemma 19 Let W, A, W′ and A′ be as defined above. Then

1. For every elementary cycle C′, I ′ of W′,A′, there is an elementary cycle C, I of W,A
with C≈C′.

2. W,A has one more elementary cycle than W′,A′.

Proof: We use the notationn′ andH ′
i, j for the walkW′, which are similar to the notations

n andHi, j for W, son′(i) denotes the next PA-index ofW′ after i, andH ′
i, j denotes the

horizontal path betweenW′
i andW′

j . LetC′, I ′ be an elementary cycle ofW′,A′ with

C′ =W′
i0,n′(i0)

◦H ′
n′(i0),i1

◦W′
i1,n′(i1)

◦ . . .◦H ′
n′(i l ),i0

.

All PAs in A′ also appear inA, and all PA-indices ofW′ are PA-indices ofW. It follows
that C′, I ′ is also an elementary cycle ofW,A, unless one of the pieces, sayW′

i l ,n′(i l )

contains the part ofW′ corresponding toHy,0. More precisely, this happens whenn(i l )=
y andn′(i l ) = n(0). (In Figure 7,n′(28)= 1= n(0) butn(28)= 32= y.) But in that case,
we may replaceW′

i l ,n′(i l )
with Wi l ,y ◦Hy,0 ◦W0,n(0), and choose the appropriate rotation

(starting with 0), which yields an elementary cycleC, I of W,A with C≈C′. This proves
the first statement.

The above construction maps elementary cycles ofW′,A′ to elementary cycles of
W,A. It is easy to see that they are all mapped to different elementary cycles, which only
contain pieces that are subwalks ofW0,y, and that every elementary cycle ofW,A that
contains a piece ofW0,y is covered this way. It remains to consider elementary cycles
of W,A that contain a piece ofWy,0. Since{0,y} ∈ A andn(y) = 0, there is only one
such elementary cycleC, I (with C = W′′, as defined above). This proves the second
statement. �

As a first application of Lemma 19, we can determine the numberof elementary
cycles.

Corollary 20 Let A be a proper assignment set for closed walk W inB, and let p be the
number of PA-indices of W. Then the number of elementary cycles of W,A is p/2+1.

Proof: If A= /0 then there are no PA-indices, andW itself is the only elementary cycle,
which proves the statement.

Otherwise we can use induction: choose a PA{x,y} ∈ A with x = n(y). Such a
PA exists sinceA is a non-crossing perfect matching on the PA-indices. W.l.o.g we
may assume thatx = 0, since considering a different rotation ofW and changingA
accordingly does not changep or the number of elementary cycles.

Now considerW′, A′ andW′′ as defined above using{0,y}. Let p′ denote the num-
ber of PA-indices ofW′. W′′ is an elementary cycle ofW, hence a right-turn walk,
which has no PA-indices. Therefore every PA-index ofW other than 0 ory corresponds



to a PA-index inW′, so p′ + 2 = p. By Lemma 19 the numbern of elementary cy-
cles inW is equal ton′ + 1, wheren′ is the numbers of elementary cycles ofW′,A′.
SinceA′ is a proper assignment set forW′ (Proposition 18) we may use induction, so
n= n′+1= p′/2+2= p/2+1. �

The above corollary will now be used to deduce that all elementary cycles defined
by aproperassignment set have turning number 1, and hence admit a clockwise solution
by Proposition 17.

Lemma 21 Let A be a proper assignment set for a closed walk W inB. Then t(W) = 1
if and only if every elementary cycle C of A,W has t(C) = 1

Proof: The number of PA-indices ofW is denoted byp. The number of left turns
thatW makes at non-PA-indices is denoted by LEFT∗(W). SinceW makes a left turn at
every PA-index, we have

6t(W) = RIGHT(W)− LEFT(W) = RIGHT(W)− p− LEFT∗(W).

Let C denote the set of all elementary cycles ofA,W. When summing the difference
between right and left turns over all elementary cycles we obtain

∑
C∈C

(RIGHT(C)− LEFT(C)) = RIGHT(W)− LEFT∗(W)+2p.

Here we used the following observations. (i) Elementary cycles make right turns at PA-
indices ofW, and every PA-index contributes a right turn to two elementary cycles. (ii)
Non-PA-indices ofW contribute the same type of turn to one elementary cycle. (iii)
All indices of elementary walks that do not correspond to pieces ofW correspond to
internal vertices of assignment paths; these vertices of assignment paths contribute a
left turn to one elementary cycle and a right turn to another,hence these terms cancel.
Combining this with|C |= p/2+1 (Corollary 20) yields

6t(W)+3p= RIGHT(W)− LEFT∗(W)+2p=

∑
C∈C

(RIGHT(C)− LEFT(C)) = ∑
C∈C

(RIGHT(C)− LEFT(C)−6)+3p+6⇐⇒

t(W) = ∑
C∈C

(t(C)−1)+1.

Becauset(C)−1 ≥ 0 for all C ∈ C (Proposition 16, Proposition 17), this proves the
statement. �

The proof of the next lemma is illustrated in Figure 8 (using the same example as
before).

Lemma 22 Let W, y, W′ and W′′ be as defined above. If S′ and S′′ are clockwise
solutions of W′ and W′′ respectively, then a clockwise solution S of W exists with
A (S) = A (S′)+ {0,y}
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Fig. 8. Combining two partial solutions.

Proof: Let S′ = (H ′,φ ′,B′) be a clockwise solution toW′ = W0,y ◦ Hy,0, and S′′ =
(H ′′,φ ′′,B′′) be a clockwise solution toW′′ = Wy,0 ◦H0,y. Let x = k− y (recall thatk
is the length ofW), soW′′

0,x =Wy,0.
Let B′

y,0 = v′0,v
′
1, . . . ,v

′
l , and letB′′

x,0 = v′′0,v
′′
1, . . . ,v

′′
l . Note that these paths indeed

have the same lengthl and

φ ′(v′i) = φ ′′(v′′l−i) for i = 0, . . . , l . (1)

Since{0,y} is a PA ofW, we havel ≥ 1. 0 andy are PA-indices, soW makes left
turns at 0 andy, and thereforeW′ makes right turns at 0 andy, andW′′ makes right
turns at 0 andx. Because bothS′ andS′′ are clockwise solutions,d(v′0) = d(v′l ) = 2 and
d(v′′0) = d(v′′l ) = 2 follows. Since these two paths are mapped to the same paths in B

but in reverse direction, and bothS′ andS′′ are clockwise solutions, we see thatv′i has
degree 2 whenv′′l−i has degree 3 and vice versa, fori = 1, . . . , l −1.

ConstructH by starting with a copy ofH ′ and a copy ofH ′′, and for alli ∈ {0, . . . , l},
identify the vertexv′i of H ′ with the vertexv′′l−i of H ′′. Call the resulting vertexvi . For
i ∈ {0, . . . , l − 1}, this results in two parallel edges betweenvi and vi+1. Delete one
edge of every such parallel pair. Becausel ≥ 1, this gives again a 2-connected graph.
Using the above observations on the degrees ofv′i andv′′i , we see thatd(vi) = 3 for all i:
either a vertex of degree 2 is identified with a vertex of degree 3 and two incident edges
are removed (wheni = 1, . . . , l −1), or two vertices of degree 2 are identified and one
incident edge is removed (wheni = 0, l ).

Choose an embedding ofH in which every inner face ofH ′ or H ′′ is again an inner
face ofH, and which has boundary cyclevl ,B′

1, . . . ,B
′
y−1,v0,B′′

1, . . . ,B
′′
x−1,vl . A LIH φ

from H is constructed by settingφ(u) = φ ′(u) for all u ∈ V(H)∩V(H ′) andφ(u) =
φ ′′(u) for all u∈V(H)∩V(H ′′), andφ(vi) = φ(v′i) = φ(v′′l−1) for the new vertices (see
Equation (1)).

We observe thatH is a hexagonal patch: all inner faces ofH correspond to inner
faces ofH ′ or H ′′, and thus all have length 6. The degree constraints hold since the new
verticesvi haved(vi) = 3 and boundary vertices ofH ′ andH ′′ that were not identified
remain boundary vertices.



Next we show thatφ is a LIH. For vertices ofH that have no neighbor inV(H ′)\{v′0, . . . ,v
′
l}

or no neighbor inV(H ′′)\{v′′0, . . . ,v
′′
l }, the local injectivity follows from the local injec-

tivity of φ ′ andφ ′′. The only two vertices ofH for which this does not hold arev0 and
vl . But the three neighbors ofvl in H are mapped toW1, Wk−1 and a vertex onH0,y,
which are all different. A similar statement holds forv0. This proves thatφ is again a
LIH.

We observed above that the boundary cycle ofH is

B= vl ,B
′
1, . . . ,B

′
y−1,v0,B

′′
1, . . . ,B

′′
x−1,vl ,

which is mapped byφ exactly toW0,W1, . . . ,Wy−1,Wy,Wy+1, . . . ,Wk−1,W0 = W. So
(H,φ ,B) is a solution toW. Since we started with clockwise solutions, it is also obvi-
ously a clockwise solution. (By Lemma 1 we do not have to checkthis for all boundary
vertices.)

An assignment path fromB′
i to B′

j in H ′ yields an assignment path fromBi to B j in
H. In addition, the pathv0, . . . ,vl in H is mapped byφ to Hy,0, and no internal vertices
of this path lie on the boundary ofH. Hence this solution assigns 0 toy. Now all PA-
indices ofW are accounted for (W′′ contains no PA-indices), which shows thatA (S) =
A (S′)+ {0,y}. �

Finally, we have collected all the ingredients that are necessary to prove the remain-
ing lemma.

Proof of Lemma 9: We show that if a proper assignment setA is given for a walk
W with t(W) = 1, then a clockwise solutionSof W with A (S) = A exists.

If A = /0 then sinceA is a proper assignment set, this implies thatW has no PA-
indices andW itself is the only elementary cycle ofA,W. This is a right-turn walk by
Proposition 16, and sincet(W) = 1, it has a clockwise solutionS by Proposition 17.
Note thatA (S) = /0= A since there are no PA-indices.

If A 6= /0, then choose an arbitrary{x,y} ∈ A with n(y) = x (this exists sinceA is a
non-crossing perfect matching). We may again assume w.l.o.g. thatx = 0. Use this to
defineW′, W′′ andA′ as before.A′ is a proper assignment set forW′ (Proposition 18).
Lemma 19 shows that for every elementary cycleC′ of W′,A′, an elementary cycleC of
W,A with C ≈C′ exists. By Lemma 21,t(C) = 1 follows fromt(W) = 1, sot(C′) = 1
for every such elementary cycleC′. Therefore by applying Lemma 21 again, we obtain
t(W′) = 1. At this point we have a new closed walkW′ in B with turning number 1,
with fewer PA-indices, and a proper assignment setA′ for it. Hence by induction,W′

admits a clockwise solutionS′ with A (S′) = A′. W′′ itself is an elementary cycle of
W, sot(W′′) = 1 (Lemma 21), and thereforeW′′ admits a clockwise solutionS′′ as well
(Proposition 16, Proposition 17). Now Lemma 22 shows thatS′ andS′′ can be combined
into a clockwise solutionS for W with A (S) = A. �

C Proofs of Section 5

Proof of Lemma 13: We show that subroutineS(i, j) correctly calculatesSi, j when the
statedSx,y values are known, in timeO(d(i)). Clearly, the algorithm only uses values
Sx,y with −1≤ y− x< j − i for the calculations.



Observe that throughout the algorithm, the value ofm equals the size of some PM
of Gi, j . We now show that in some line, the size of a MPM is considered,which proves
correctness.

Let M be a MPM ofGi, j . If j ≤ i thenM = /0 which is considered in line 1. Now
supposej > i. If M contains no edge incident withi, it is a PM ofGi+1, j and considered
in line 2. Otherwise, letiv ∈ M. If v = j, thenM consists of this edge and a PM of
Gi+1, j−1, which is considered in line 6. Otherwise, becauseM is non-crossing, it can be
partitioned into a MPM ofGi,v andGv+1, j , which is considered in the for-loop.

The complexity of the algorithm is determined by the for-loop, which iterates at
mostd(i) times. �

Proof of Lemma 14: We show that subroutineN(i, j) correctly calculatesNi, j when
the statedNx,y andSx,y values are known, in timeO(d(i)). The algorithm only uses
valuesSx,y with −1 ≤ y− x ≤ j − i and valuesNx,y with −1 ≤ y− x < j − i for the
calculations.

Clearly, line 1 returns the correct answer (in this case the empty set is the unique
MPM). Otherwise, the algorithm addsx to the numberN wheneverx different MPMs
of Gi, j are found that have not been considered earlier. We show thatall cases are
considered and no MPMs are double counted, which shows that the correct answer is
returned in line 7.

If Si, j = Si+1, j then all MPMs ofGi+1, j are also MPMs ofGi, j , which explains
line 3. This accounts for all MPMs ofGi, j that do not contain an edge incident withi.
Gi, j admits MPMsM that contain an edgei j if and only if Si, j = wi j +Si+1, j−1. Then
M − i j is a MPM of Gi+1, j−1, and there is a bijection between such MPMs, which
explains line 6. It remains to consider MPMsM of Gi, j which contain an edgeiv with
i + 1 ≤ v ≤ j − 1. These can be decomposed into a PM ofGi,v and a PM ofGv+1, j ,
which must be MPMs, soSi, j = Si,v+Sv+1, j . In fact, if Si, j = Si,v+Sv+1, j then every
combination of a MPM ofGi,v and a MPM ofGv+1, j gives a unique MPM ofGi, j that
containsiv, which explains line 5. All cases are now considered, so at the end of the
algorithm,N = Ni, j .

The complexity of the algorithm is determined by the for-loop, which iterates at
mostd(i) times. �


