
Rank Selection in Multidimensional Data
?

Amalia Duch, Rosa M. Jim�enez, and Conrado Mart��nez

Departament de Llenguatges i Sistemes Inform�atics
Universitat Polit�ecnica de Catalunya

Barcelona, Spain
fduch,jimenez,conradog@lsi.upc.edu

Abstract. Suppose we have a set of K-dimensional records stored in
a general purpose spatial index like a K-d tree. The index e�ciently
supports insertions, ordinary exact searches, orthogonal range searches,
nearest neighbor searches, etc. Here we consider whether we can also e�-
ciently support search by rank, that is, to locate the i-th smallest element
along the j-th coordinate. We answer this question in the a�rmative
by developing a simple algorithm with expected cost O(n

�(1=K) logn),
where n is the size of the K-d tree and �(1=K) < 1 for any K � 2. The
only requirement to support the search by rank is that each node in the
K-d tree stores the size of the subtree rooted at that node (or some equiv-
alent information). This is not too space demanding. Furthermore, it can
be used to randomize the update algorithms to provide guarantees on the
expected performance of the various operations on K-d trees. Although
selection in multidimensional data can be solved more e�ciently than
with our algorithm, those solutions will rely on ad-hoc data structures
or superlinear space. Our solution adds to an existing data structure (K-
d trees) the capability of search by rank with very little overhead, and
it can be easily adapted to other spatial indexes as well. The simplicity
of the algorithm makes it easy to implement, practical and very exible;
however, its correctness and e�ciency are far from self-evident.

1 Introduction

Selection is one of the fundamental computing tasks: given a collection A of n
items drawn from a totally ordered domain, and a rank i, 1 � i � n, the goal is
to retrieve the i-th smallest item from A. The selection problem can be trivially
solved in time O(n log n) by sorting A, but it can be solved more e�ciently in
either expected linear time [1] or worst-case linear time [2].

Suppose that the collection A is stored in some balanced (or unbalanced)
binary search tree. Then we can dynamically mantain the collection, supporting
both updates and searches in (expected) time O(log n), but we can also support
selection in (expected) time O(log n) quite easily. We will only need to augment
the data structure so that each node stores the size of the subtree rooted at that

? This research was supported by the Spanish Min. of Science and Technology project
TIN2006-11345 (ALINEX).

node. This is a very modest price to pay. In fact, the information about subtree
sizes can be used advantageously to balance the tree, either probabilistically [3]
or deterministically [4]. Hence, we might argue that adding the capability of
searching or deleting items by rank comes at no cost.

When dealing with multidimensional point data, we also face frequently the
need to sort the data according to one of the coordinates or to �nd the i-th
smallest element along some given coordinate. Those problems can be solved
like in the unidimensional case in time O(n log n) and O(n), respectively. But it
is natural to question if we can do better when the collection of multidimensional
points is stored in a data structure like aK-d tree [5] or a quadtree [6] (see also [7,
8] for background on multidimensional data structures).

Here we show that we can select the i-th point along a given coordinate j,
0 � j < K, in expected sublinear time, when the collection of K-dimensional
points is stored in a K-d tree. More speci�cally, for a collection of n points, we
can �nd the answer in expected time O(n�(1=K) log n), where �(x) is a func-
tion that depends on the type of K-d tree we use. Furthermore, the exponent
�(x) = 1�x+�(x) < 1 for all x 2 (0; 1), with �(x)! 1 as x! 0 (that is, when
1=x = K ! 1). Although better performance for rank search in multidimen-
sional data can be easily obtained (using more than linear space, for instance),
we stress here that our solution adds e�cient rank search to general purpose
multidimensional data structures like K-d trees or quadtrees, with only a mod-
est increase of space, namely, storing the size of the subtree rooted at each node.
Thus the total space comsumption remains linear in n. Like in the case of ordi-
nary \unidimensional" binary search trees, the information about subtree sizes
can be used to randomize the insertion and deletion in K-d trees, thus guar-
anteeing the expected time bounds of several operations like ordinary search,
partial match search, orthogonal range search and nearest neighbor search, even
when the dynamic updates are not random [9, 10].

Section 2 briey summarizes the standard K-d trees and several of its vari-
ants, the probabilistic model that will be used in the sequel, and recalls a few
important previous results, e. g., the expected cost of partial match search in
K-d trees. Then we describe in Section 3 the main contribution of this paper,
the algorithm to �nd the i-th smallest element of a K-d tree T along the j-th
coordinate. The following section, Section 4, is devoted to the analysis of the
expected cost of the algorithm, and we prove there that this cost is sublinear for
any K. Section 5 reports the results of several experiments that we have con-
ducted. The results match very well the predictions of the theoretical analysis
in Section 4.

2 Preliminaries

A K-dimensional search tree T (K-d tree, for short) of size n � 0 stores a set
of n K-dimensional records, each holding a key x = (x0; : : : ; xK�1) 2 D, where
D = D0 � � � � �DK�1, and each Dj is a totally ordered domain. The K-d tree
T is a binary tree such that

{ Either it is empty and n = 0, or
{ Its root stores a record with key x and has a discriminant j, 0 � j < K, and
the remaining n � 1 records are stored in the left and right subtrees of T ,
say L and R, in such a way that both L and R are K-d trees; furthermore,
for any key u 2 L, it holds that uj � xj , and for any key v 2 R, it holds
that xj < vj .

We will assume without loss of generality that D = [0; 1]K . We will also use the
notation hx; ji to refer to a node that contains the key x and the discriminant j.

A K-d tree of size n induces a partition of the domain D into n+ 1 regions,
each corresponding to a leaf in the K-d tree. The bounding box of a node z is
the region of the space associated to the leaf replaced by z when it was inserted
into the tree. Thus, the bounding box of the root hx; ji is [0; 1]K , the bounding
box of the left subtree's root is [0; 1]� � � � � [0; xj]� � � � � [0; 1], and so on.

Di�erent variants of K-d trees have been proposed so far; many di�er in
the way the discriminants are assigned to nodes. In the original or standard K-d
trees by Bentley [5], the root of the tree gets discriminant 0, the nodes in the �rst
level get discriminant 1, and so on, in a cyclic fashion. Notice that, since there is
a �xed, data-independent rule to assign discriminants to nodes, there is no need
to explicitly store the discriminants. Much later Duch et al. [9] proposed relaxed

K-d trees, where each node is assigned a random discriminant, uniform and
independently drawn from f0; : : : ;K�1g. The squarish K-d trees of Devroye et
al. [11] try to get a more balanced partition of the space by discriminating along
the coordinate for which the bounding box of the node is more elongated. We will
consider along the paper the three variants mentioned above, as representative
variants of K-d trees.

Because of their de�nition, the insertion and search algorithms for K-d trees
are straightforward, and we will not give here the details. Insertions work identi-
cally in the three variants, except in the way discriminants are assigned to newly
inserted nodes. The search algorithm is the same for all variants. We also mention
here two other algorithms, common to all variants of K-d trees. In partial match

search we are given a pattern q = (q0; : : : ; qK�1) where qj 2 [0; 1] or qj = ?, for
0 � j < K. Coordinates such that qj 6= ? are called speci�ed, otherwise they are
called unspeci�ed ; we assume that the number s of speci�ed coordinates satis�es
0 < s < K. The goal of the partial match search is to retrieve all points in the K-
d tree that match the pattern q, that is, the points x such that xj = qj whenever
qj 6= ?. To perform a partial match, the K-d tree is recursively explored. First,
we check whether the root matches or not the pattern, to report it in the former
case. Then, if the root discriminates with respect to an unspeci�ed coordinate,
we make recursive calls in both subtrees. Otherwise, if the root containing x
discriminates with respect to a speci�ed coordinate j we continue recursively in
the appropriate subtree, depending on whether qj � xj or xj < qj . The other
algorithm is orthogonal range search. The input to the algorithm is a K-d tree
T and a K-dimensional rectangle Q = [`0; u0]� � � � � [`K�1; uK�1], and the goal
is to retrieve all the points in T that lie within Q. The algorithm is very similar
to partial match search; the recursion proceeds into one of the subtrees if the

root stores hx; ji and xj < `j or uj < xj ; otherwise we have to make recursive
calls in both subtrees and check if x does actually fall inside Q or not.

We now turn our attention to the probabilistic model that we will use later
in Section 4, when analyzing the expected performance of our algorithm. We say
that a K-d tree built from a given set of n keys is random if it is built with iden-
tical probability from any of the n! possible input sequences. The discriminants
must be assigned according to a �xed rule (standard, squarish K-d trees) or at
random (relaxed K-d trees). As a consequence, a K-d tree T of size n is random
if and only if it is either empty (n = 0), or if its left and right subtrees, L and
R, are independent random K-d trees of sizes ` and n� 1� `, respectively, with

Pr [jLj = ` j jT j = n] =
1

n
;

for any 0 � ` < n.
There is another equivalent, alternative formulation of the probabilistic model

above which is also useful. A random K-d tree of size n is built by n successive
random insertions in a initially empty K-d tree. An insertion in a random K-d
tree of size n is random if it has the same probability to fail in any of the n+ 1
leaves of the tree. Thus the insertion of n points independently drawn from a
continuous distribution in [0; 1]K into an initially empty K-d tree will produce
always a random K-d tree.

The probabilistic model for random K-d trees is equivalent, as far as the
shape of trees are concerned, to the probabilistic model of binary search trees. It
follows then that the expected cost of insertions and the expected cost of exact
searches is �(log n) (see, for instance, [12]).

On the other hand, the expected cost of a partial match search with s random
speci�ed coordinates in a random K-d tree of size n is

Pn = �qn
�(s=K) +O(1); 0 < s < K; (1)

where �q is a constant that might depend on the alternance of speci�ed and
unspeci�ed coordinates in the pattern q, and �(x) is a function depending on
the type of K-d tree that we consider. In all cases, 1 � x � �(x) � 1 for
x 2 [0; 1] with �(x) < 1 if x > 0 and � ! 1 as x ! 0. For squarish K-d trees
�(x) = 1� x [11], for relaxed K-d trees �(x) = (

p
9� 8x� 1)=2 [9, 13] and for

standard K-d trees �(x) = 1 � x + �(x) [14, 15], where � = �(x) is the unique
solution in [0; 1] of

(�+ 3� x)x(�+ 2� x)1�x � 2 = 0:

For instance, for standard K-d trees, �(1=2) � 0:561, �(1=3) � 0:716 and
�(1=4) � 0:790. For relaxed K-d trees, we have �(1=2) � 0:618, �(1=3) � 0:758
and �(1=4) � 0:823.

The expected cost of orthogonal range search comes as a combination of par-
tial match costs [16, 17]. The query rectangle Q induces a division of the space

into 2K regions, which can be indexed with bitstrings of length K. The query
rectangle itself is the region R00:::0. By extending Q along each one of theK coor-
dinates and then substractingQ, we obtainK regionsR100:::0; R010:::0; : : : ; R00:::01.
By extending Q along two coordinates and then substracting Q and all regions
of the previous step, we obtain the regions R00:::011; : : : ; R110:::0, and so on. De-
noting pw the probability that a point falls in region Rw when the point is
drawn from the continuous distribution in [0; 1]K used to build the random K-d
tree, and the center of the query is also drawn using the same distribution, the
expected cost of an orthogonal range search is [17]

Sn = p00���0 � n+ 2p11:::1 � log n+
K�1X
j=1

X
w:w has j ones

�wpwn
�(j=K) +O(1); (2)

The probabilities pw will depend on the dimensions �0, . . . , �K�1 of the query
Q and can be though of as the \volumes" of the corresponding regions. For
instance, if the data points and the center of the queries are uniformly distributed
in [0; 1]K then

pw =

 Y
i:wi=0

�i

!
�
 Y
i:wi=1

(1��i)

!
:

For the particular case where the query hyperrectangle is a slice Q = [0; 1]�
[0; 1]� � � � � [`j ; uj]� [0; 1]� � � � � [0; 1] the expected cost reduces to

Sn = p � n+ �000:::1:::0 � (1� p) � n�(1=K) +O(1); (3)

since all regions except R00:::0 = Q and R00:::1:::0 are empty. Here we use p for
the probability that a random point falls inside the slice; the �rst term is thus
the expected number of points that fall inside the slice.

3 The algorithm

We present now the algorithm to �nd the i-th smallest point along the coordinate
j, 0 � j < K, in a K-d tree T . The algorithm has three main steps. In the �rst
step, it does a breadth-�rst traversal of the tree T using a queue Q of pointers
to nodes. This �rst step can also be easily formulated using a recursive preorder
traversal of the tree.

During the �rst step, at any of its iterations, we have a current subtree t
and two values low and high with the guarantee that the j-th coordinate of
the sought element is between those two values. The purpose of the �rst step is
either to locate the i-th point along the j-th coordinate|and we would be then
done|or to return a reasonably \thin" slice de�ned by low and high that must
contain the sought element. If the sought element is not found during the �rst
phase, the algorithm performs a convential orthogonal range search to �nd all
the points within the slice [low; high]. Finally, the third step �nds the sought
element using a standard selection algorithm applied to the elements returned
by the second step.

Algorithm 1 The �rst phase of multidimensional selection.

kdt kdselect(kdt T, int i, int j) {

queue <kdt > Q; Q.push(T);

double low = 0.0;

double high = 1.0;

bool found = false;

kdt t;

while (not Q.empty() and not found) {

t = Q.pop(); if (t == NULL) continue;

if (t -> discr != j) {

Q.push(t -> left); Q.push(t -> right);

} else { / / t - > d i s c r = = j

double z = t -> key[j];

if (low <= z and z <= high) {

int r = below(z, j, T);

if (i < r) high = z;

else if (i > r) low = z;

else found = true;

}

if (z <= low) Q.push(t -> right);

if (z >= high) Q.push(t -> left);

}

}

if (found) return t;

...

}

We give now a detailed description of the �rst step. If the current subtree t
discriminates with respect to j0 6= j, then the sought element could be eventually
found in any of its subtrees; therefore, nothing useful can be inferred and both
subtrees of t are enqueued for further processing in later iterations. If, on the
other hand, the root of t contains hx; ji, then we have to consider three possi-
bilities. If xj < low then none of the elements in the left subtree of t can be the
sought element; therefore, we enqueue the right subtree of t only. Similarly, if
high < xj then the right subtree of t can be pruned, and we need only to explore
(part of) the left subtree of t. Finally, if low � xj � high then we compute how
many points in the collection, that is, in T , have coordinate j less than or equal
to xj . This is done using the procedure below. Let r be that number. Then if
i = r the root of t is the sought element. If i < r then the sought element might
be in the left subtree of t but not in its right subtree, thus we push only the
left subtree of t into the queue. Furthermore, the j-th coordinate of the sought
element must be less than or equal to xj , hence we set high := xj . If i > r then
the sought element cannot be in the left subtree of t, and we enqueue the right
subtree of t; additionally, we set low := xj , since the j-th coordinate of the i-th
element must be greater than or equal to xj . This �rst part of the algorithm is

given in Algorithm 1. Figure 1 illustrates a standard K-d tree with K = 2, the
partition of [0; 1]2 that it induces, and the outcome (the shaded slice) of the �rst
step of kdselect when looking for the 11-th smallest element along coordinate 1
(the y-axis). Note that the number of the items in the �gure only indicate their
order of insertion.

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

16 9 7

6

4

17 14

11

2

12

19 13

20

3

1

5

10

18

8

15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

1

16

20

high

low

Fig. 1. An example of K-d tree and the execution of Algorithm 1.

To complete our description of the �rst step, we now draw our attention to the
procedure below. It is a simple variation of partial match (see Algorithm 2). The
algorithm uses the sizes of subtrees that we store at each node. Using this stored
information is essential to avoid computation and thus to achieve a reasonable
expected performance. We assume, for convenience, that each node stores its
rank relative to its bounding box and the discriminating coordinate, that is, the
size of its left subtree plus one.

If the tree is empty we return 0. Otherwise, if the root of T discriminates
with respect to a coordinate 6= j, we count recursively how many points there
are below the given line in both subtrees. We also add one if the root itself meets
the condition xj � z. If the root of T discriminates with respect to j then we
have to continue counting recursively in only one of the subtrees. Note that if
xj � z then we count how many points are below z in the right subtree, as all
the points in the left subtree and the root itself are below z. We avoid making
any traversal of the left subtree since this size is stored at the root of the tree.

4 Analysis

For our analysis of kdselect, we will consider that the inputK-d tree is random,
that the given rank i is random, namely, uniformly distributed in f1; : : : ; ng, and
that the given coordinate j is also uniformly chosen from f0; : : : ;K � 1g.

Algorithm 2 below counts how many points in T have coordinate j less than z

int below(double z, int j, kdt T) {

if (T == NULL) return 0;

if (T -> discr != j) {

int c = (T -> key[j] <= z) ? 1 : 0;

return below(z, j, T -> left) +

below(z, j, T -> right) + c;

} else {

if (z < T -> key[j])

return below(z, j, T -> left);

else

return T -> rank + below(z, j, T -> right);

}

}

The analysis of the expected performance of kdselect is based upon the fol-
lowing ingredients, which we will later prove formally:

1. The number of visited nodes in the main loop of kdselect is at most the
number of nodes that we would visit in an orthogonal range search to locate
the points that lie within the slice de�ned by [low; high].

2. The expected cost of a call to below is that of a partial match query with a
single speci�ed coordinate (the j-th).

3. The expected number of calls to below is O(log n).
4. If the i-th smallest element along coordinate j discriminates along coordinate

j, it will be found during the �rst step; otherwise, the �rst step will report
the smallest slice [low; high] that contains the i-th element along the j-th
coordinate and no interior point discriminating along coordinate j.

5. If the �rst step of kdselect does not �nd the sought element, then the expected
number of points in [low; high] is �(1).

Before going on with a formal proof of each of the statements above, we
discuss now how they a�ect the overall expected performance of kdselect. The
expected cost of the �rst phase will have two contributions, one coming from
the calls to below, the other from the main loop. From the items 2 and 3 above,
and since the expected cost of a partial match (Eq. (1)) is �(n�(1=K)), it follows
that the �rst contribution is O(n�(1=K) log n). For the second contribution, we
deduce from items 1 and 5 and Eq. (3) that it is �(n�(1=K)). In total, the �rst
step of the algorithm has expected cost O(n�(1=K) log n). The second and third
steps are only necessary if the i-th element has not been found (this happens1

with probability (K � 1)=K, when it does not discriminate with respect to j).
The second step is an orthogonal range search for points falling in the slice

1 Actually, for variants ofK-d trees such as standard and relaxedK-d trees; in general,
for any variant which does not exhibit a bias in the distribution of the coordinates
assigned to the discriminants.

[low; high] and has expected cost �(n�(1=K)). The third and last step is an
ordinary selection algorithm applied to the points found in the previous step;
since the expected number of points within the slice is �(1) (item 5), this part
has expected cost �(1). Summing up everything we conclude with the following
theorem.

Theorem 1. The expected cost to select the i-th smallest element along coor-

dinate j in a K-d tree of size n is O(n�(1=K) log n), where �(x) is a function

depending on the variant of K-d tree used, such that 1 � x � �(x) � 1 for all

x 2 [0; 1]. Furthermore, �(x) < 1 for all x > 0, and �(x)! 1 as x! 0.

We now prove the key �ve statements above. For the �rst statement, relating
the number of iterations of the �rst phase and the cost of an orthogonal range
search, the proof relies in the fact that a node x in a K-d tree is visited during
an orthogonal range search with query Q if and only if Q and the bounding
box of x intersect [16, 17]. Let `0 = 0, `1, . . . , `r be the sequence of values
assigned to the variable low along the execution of Algorithm 1 and similarly,
h0 = 1, h1, . . . , hr0 for the values of high. Suppose t = hx; j0i is the current
node, and that its bounding box intersects [`r; hr0]. Suppose also that at that
iteration low = `m and high = hm0 . If j0 6= j both subtrees of t will be visited (if
they are non-empty) and their corresponding bounding boxes intersect [`r; hr0].
If j0 = j and xj < low = `m then only the right subtree of t will be visited.
Since `m � `r, the bounding box of the right subtree of t does intersect [`r; hr0],
whereas the bounding box of the left subtree of t does not. For the case where
high = hm0 < xj , we have that the left subtree is visited and its bounding box
intersects [`r; hr0], and the right subtree is not visited and its bounding box does
not intersect [`r; hr0]. Finally, if low � xj � high we will update either low or
high (or �nish because we �nd the sought element). If we have not yet �nished,
the new current [low; high] contains the �nal [low; high] slice, that is, [`r; hr0],
and we apply the same reasoning as above. The basis of this inductive proof is
provided by the root of the tree, whose bounding box [0; 1]K obviously intersects
the slice [`r; hr0].

The second statement, that the cost of below is that of a partial match is
also very easy to prove. The algorithm below behaves exactly as a partial match
with a query pattern q = (?;?; : : : ; z;? : : :), where only the j-th coordinate of
q is speci�ed.

For the third statement, where we claim that the expected number of calls to
below is O(log n) we reason as follows. Consider the points whose j-th coordinate
is smaller than or equal to that of the element for which we set the �nal value
of low. Of those, only the points whose bounding box intersects [low; high] will
be visited. Furthermore, only a fraction 1=K (on average, see the remarks in
the footnote of the previous page) of them discriminate with respect to j, so
eventually a call to below will be made when visiting them. Since the K-d tree
is random, the sequence of j-th coordinates of these points will form a random
permutation of [1; : : : ; N], where N � n is the number of points discriminating
with respect to j, whose bounding box intersects [low; high] and such that its

j-th coordinate is less than or equal to low. Each call to below to update the
value of low corresponds to a left-to-right maxima in that permutation, and it
is well-known (see for instance [12]) that the expected number of left-to-right
maxima in a random permutation of size N is �(logN). Analogously, each call
to below to update the value of high corresponds to a left-to-right minima in
the random permutation induced by the sequence of j-th coordinates larger or
equal to high, for visited points discriminating with respect to j.

The fourth statement says that if the sought element discriminates with
respect to the given coordinate j, then it will be found; otherwise, the �rst phase
of the algorithm will terminate returning the slice [low; high] that contains the
sought element. The last part follows by design of the algorithm: the invariant of
the iteration guarantees that the sought element lies within the slice [low; high].
On the other hand, if the sought element discriminates with respect to j and
since its bounding box intersects [low; high], sooner or later it will be visited
and its rank will be computed using below.

The last statement establishes that the expected number of points within
the slice is �(1), when the sought element is not found by the �rst step of
kdselect. By item 4,the sought element does not discriminate with respect to j.
Moreover, low and high are the j-th coordinates of two points, say u and v, that
discriminate with respect to j; all points properly falling within [low; high] have
been visited but do not discriminate with respect to j. The expected number of
points in the slice is the number of points that we see when we start from the
j-th coordinate of the sought element and go towards low = uj , plus the number
of points that we see when we go towards high = vj . These points that we count
must not discriminate with respect to j. Since the probability that a point does
not discriminate with respect to j is (K � 1)=K, the expected number of points
within the slice in either direction is K, including the two points discriminating
with respect to j that de�ne the boundaries of the slice. In total, the expected
number of points is 2K + 1.

5 Experiments

To corroborate the analysis of kdselect we have performed a preliminary set of
experiments in two diferent variants of K-d trees (standard and relaxed).

For every dimension going from K = 2 to K = 4, we generate M K-d trees
of size n, with n going from 1000 to 50000 with a step of 1000 elements. In each
tree we look for the i-th element (with i going from 1 to n with a step of n=100)
in each of the K possible coordinates (going from 0 to K � 1). For each tree we
count the total number of visited nodes in the main loop of kdselect, the number
of calls to function below and the number of points lying in interval [low; high]
and take the corresponding averages.

Figure 2 contains the experimental results regarding the total number of
visited nodes in the main loop of kdselect. In particular, we plot the ratio of the
number of visited nodes to n�(1=K), so the �gures exhibit the convergence of the
ratio to a constant factor as n grows.

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

K=2
K=3
K=4

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

K=2
K=3
K=4

Fig. 2. Number of visited nodes in the main loop of Algorithm 1 divided by n�(1=K),
for standard (left) and relaxed (right) K-d trees.

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

K=2
K=3
K=4

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

K=2
K=3
K=4

Fig. 3. Number of calls to Algorithm 2 divided by logn in standard (left) and relaxed
(right) K-d trees.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

K=2
K=3
K=4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

K=2
K=3
K=4

Fig. 4. Number of points within interval [low; high] in in standard (left) and relaxed
(right) K-d trees.

The number of calls to below can be found in Figure 3; we actually plot
the ratio between the number of calls to below and log n, which converges to a
constant factor depending on K.

Finally, Figure 4 shows the number of points contained in the interval [low; high].
The experiments con�rm very well the predicted value 2K + 1, that does not
depend on the variant of K-d trees considered.

References

1. Hoare, C.A.R.: Find (Algorithm 65). Comm. ACM 4 (1961) 321{322
2. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.

J. Comp. Syst. Sci. 7 (1973) 448{461
3. Mart��nez, C., Roura, S.: Randomized binary search trees. J. Assoc. Comput. Mach.

45(2) (1998) 288{323
4. Roura, S.: A new method for balancing binary search trees. In Orejas, F., Spirakis,

P.G., van Leeuwen, J., eds.: Proc. of the 28th Int. Col. on Automata, Languages
and Programming (ICALP). Volume 2076 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 469{480

5. Bentley, J.L.: Multidimensional binary search trees used for associative retrieval.
Comm. ACM 18(9) (1975) 509{517

6. Bentley, J., Finkel, R.: Quad trees: A data structure for retrieval on composite
keys. Acta Informatica 4 (1974) 1{9

7. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley
(1990)

8. Gaede, V., G�unther, O.: Multidimensional access methods. ACM Computing
Surveys 30(2) (1998) 170{231

9. Duch, A., Estivill-Castro, V., Mart��nez, C.: Randomized k-dimensional binary
search trees. In Chwa, K.Y., Ibarra, O., eds.: Proc. of the 9th Int. Symp. on Al-
gorithms and Computation (ISAAC). Volume 1533 of Lecture Notes in Computer
Science., Springer-Verlag (1998) 199{208

10. Duch, A., Mart��nez, C.: Updating relaxed k-d trees. ACM Trans. on Algorithms
(2008) Accepted for publication.

11. Devroye, L., Jabbour, J., Zamora-Cura, C.: Squarish k-d trees. SIAM J. Comput.
30 (2000) 1678{1700

12. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching. 2nd edn.
Volume 3. Addison{Wesley (1998)

13. Mart��nez, C., Panholzer, A., Prodinger, H.: Partial match queries in relaxed mul-
tidimensional search trees. Algorithmica 29(1{2) (2001) 181{204

14. Flajolet, P., Puech., C.: Partial match retrieval of multidimensional data. J. Assoc.
Comput. Mach. 33(2) (1986) 371{407

15. Chern, H.H., Hwang, H.K.: Partial match queries in random k-d trees. SIAM J.
Comput. 35(6) (2006) 1440{1466

16. Chanzy, P., Devroye, L., Zamora-Cura, C.: Analysis of range search for random
k-d trees. Acta Informatica 37 (2001) 355{383

17. Duch, A., Mart��nez, C.: On the average performance of orthogonal range search
in multidimensional data structures. J. Algorithms 44(1) (2002) 226{245

