
Sharp Separation and Applications to Exact and
Parameterized Algorithms

Fedor V. Fomin1 Daniel Lokshtanov1 Fabrizio Grandoni2 Saket Saurabh1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
{fedor.fomin|daniello|saket.saurabh}@ii.uib.no

2 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma Tor Vergata,
via del Politecnico 1, 00133, Roma, Italy.

grandoni@disp.uniroma2.it

Abstract. Many divide-and-conquer algorithms employ the fact that the vertex set of a graph
of bounded treewidth can be separated in two roughly balanced subsets by removing a small
subset of vertices, referred to as a separator. In this paper we prove a trade-off between the size
of the separator and the sharpness with which we can fix the size of the two sides of the partition.
Our result appears to be a handy and powerful tool for the design of exact and parameterized
algorithms for NP-hard problems. We illustrate that by presenting two applications.
Our first application is a parameterized algorithm with running time O(16k+o(k) +nO(1)) for the
Maximum Internal Subtree problem in directed graphs. This is a significant improvement
over the best previously known parameterized algorithm for the problem by [Cohen et al.’09],
running in time O(49.4k + nO(1)).
The second application is a O(2n+o(n)) time algorithm for the Degree Constrained Spanning
Tree problem: find a spanning tree of a graph with the maximum number of nodes satisfy-
ing given degree constraints. This problem generalizes some well-studied problems, among them
Hamiltonian Path, Full Degree Spanning Tree, Bounded Degree Spanning Tree, Max-
imum Internal Spanning Tree and their edge weighted variants.

1 Introduction

The aim of parameterized and exact algorithms is solving NP-hard problems exactly, with the
smallest possible (exponential) worst-case running time. While exact algorithms are designed
to minimize the running time as a function of the input size, parameterized algorithms seek
to perform better when the instance considered has more structure than a general instance to
the problem. Exact and parameterized algorithms have an old history [7, 19, 25], but they have
been at the forefront in the last decade. In the last few years, many new techniques have been
developed to design and analyze exact algorithms, among them Inclusion-Exclusion, Möbius
Transformation, Subset Convolution, Measure & Conquer and Iterative Compression to name
a few [3, 4, 11–13, 24, 32].

A classical approach to solve combinatorial problems is divide-and-conquer : decompose
the problem in two or more sub-problems, solve them independently and merge the solutions
obtained. Several divide-and-conquer algorithms rely on the existence of a small separator,
which is defined as follows. Let G be an n-vertex graph with vertex set V = V (G) and edge
set E = E(G). A set of vertices S is called an α-separator of G, 0 < α ≤ 1, if the vertex set
V \ S can be partitioned into sets VL and VR of size at most αn such that no vertex of VL

is adjacent to any vertex of VR. For example, the classical result of Lipton and Tarjan [26]
that every planar graph has a 2

3 -separator of size O(
√
n) can be used to solve many NP-hard

problems in planar graphs in time O(2O(
√

n)) [27]. Alon, Seymour and Thomas [1] generalized

the result of Lipton and Tarjan [26] and proved that every graph excluding a fixed graph H
as a minor has a 2

3 -separator of size O(|V (H)|3/2√n). It is well known that every tree has a
2
3 -separator of size 1. This result was generalized to graphs of bounded treewidth in [5], where
it is shown that every graph of treewidth t has a 2

3 -separator of size at most t.

1.1 Our Results

In this paper (see Section 2) we prove a trade-off between the size of the separator S and the
sharpness with which we can fix the size of VL and VR in the partition, for graphs of treewidth
t. Given a function w : X → R, we define w(Y) =

∑
y∈Y w(y) for any Y ⊆ X.

Theorem 1 (Sharp Separation). Let G = (V,E) be a graph of treewidth t and w : V →
{0, 1}. Then for any integer p ≥ 0 and 0 ≤ x ≤ w(V) there is a partition (VL, S, VR) of V
such that |S| ≤ t p, w(VL) ≤ x + w(V)

2p+1 , w(VR) ≤ w(V) − x + w(V)
2p+1 , and there is no edge in

G with one endpoint in VL and the other endpoint in VR, that is, S separates VL from VR.
Given a tree-decomposition of G of width t, S can be computed in polynomial time.

Here w is used to model a subset W ⊆ V of vertices that we wish to separate. Theorem 1
implies for example that, with a separator of logarithmic size (for bounded treewidth graphs),
we can obtain a perfectly balanced partition with max{|VL|, |VR|} ≤ n/2. In this paper we will
always set p ≥ logw(V), which makes the additive term w(V)/2p+1 disappear.

Our Sharp Separation Theorem is a handy tool in the design of parameterized and exact
algorithms based on the divide-and-conquer paradigm. We illustrate that by presenting two
applications.

k-Internal Spanning Tree Our first result is a parameterized algorithm for the following
problem.

k-Internal Out-Branching: Given a digraph D = (N,A) and a positive integer k,
check whether there exists an out-branching with at least k internal vertices.

The undirected counterpart to this problem, k-Internal Subtree was first studied by Prieto
and Sloper [30], who gave an algorithm with running time 24k log knO(1) and a kernel of size
O(k2) for the problem. Recently, Fomin et al. [14] gave an improved algorithm with running
time 8knO(1) and a kernel with at most 3k vertices. For k-Internal Out-Branching, Gutin
et al. [18] obtained an algorithm of running time 2O(k log k)nO(1) for and gave a kernel of size of
O(k2). A faster algorithm, running in time 49.4knO(1) was subsequently improved by Cohen
et al. [8]. In this paper we use the Sharp Separation Theorem to obtain an algorithm with
running time O(16k+o(k) + nO(1)).

Theorem 2. There is a one-sided-error Monte-Carlo algorithm for k-Internal Out-Branching.
The algorithm runs in polynomial-space and in time O(16k+o(k) +nO(1)), where n is the size of
the input digraph D. When an out-branching with at least k internal nodes exists the algorithm
fails to find one with probability at most 1/4. This algorithm can be derandomized at the cost
of an exponential O(4kkO(log k)) space complexity.

2

Degree constrained spanning tree. The second application of the Sharp Separation The-
orem is an algorithm for Degree Constrained Spanning Tree defined below. For a given
graph G = (V,E), let dG(v) denote the degree of v ∈ V in G.

Degree Constrained Spanning Tree (DCST). Given a graph G = (V,E) and a
function D : V → 2{1,...,n}. Find a spanning tree T of G maximizing |{v ∈ V : dT (v) ∈
D(v)}|.

Intuitively, D(v) can be seen as a set of desirable degrees for a vertex v in the spanning tree.
We have a hit each time dT (v) ∈ D(v) for some v. The goal is maximizing the number of hits.

DCST naturally generalizes many NP-hard spanning tree and path problems studied in
the literature. For instance we can code the famous Hamiltonian Path problem, find a
spanning path of a given graph, by letting D(v) = {1, 2} for all vertices; A spanning tree
with n hits is a Hamiltonian path. Another example is the Full Degree Spanning Tree
problem, where we search for a spanning tree which maximizes the number of vertices having
the same degree in the graph as in the tree [22]. To code this problem we set D(v) = {dG(v)}
for every vertex v. Another well-studied spanning tree problem is the Bounded Degree
Spanning Tree problem [15, 17, 33]. Here we search for a spanning tree such that the degree
of each vertex v in the spanning tree is bounded by an integer Bv ≤ n given as input. Clearly
setting D(v) = {1, . . . , Bv} yields an encoding of this problem as well. Finally, to code the
Maximum Internal Spanning Tree problem, where the aim is finding a spanning tree
maximizing the number of internal vertices of the tree, we set D(v) = {2, . . . , dG(v)} for every
vertex v.

One of the earliest results in the field of exact algorithms [19, 21, 23] is a O(2nnO(1)) time
algorithm for Hamiltonian Path. For several other special cases of DCST, no algorithm
with running time O(2nnO(1)) was known until recently. For example, Fernau et al. [10] give
a O(3nnO(1)) time algorithm for Maximum Internal Spanning Tree [10] and leave the
existence of a O(2nnO(1)) time algorithm open. This year Nederlof [29] was able to give
Inclusion-Exclusion based algorithm running in time O(2nnO(1)) for DCST. We use the Sharp
Separation Theorem to give an alternate algorithm for the DCST problem, in particular we
prove the following result.

Theorem 3. The Degree Constrained Spanning Tree problem can be solved in time
and space O(2n+o(n)), where n is the number of nodes in the graph.

Our algorithm differs from the work of Nederlof in the following ways. One one hand,
his algorithm takes polynomial space and works in 2nnO(1) time. On the other hand, our
approach is more robust. In particular our algorithm can be easily extended to find subgraphs
of constant treewidth instead of trees, and also works for edge weighted variants of Degree
Constrained Spanning Tree.

1.2 Preliminaries

For basic graph terminology we refer the reader, e.g., to [9]. We just recall the definition of
treewidth, and also the less standard digraph notions needed in this paper.

A tree decomposition of a (undirected) graph G = (V,E) is a pair (X,U) where U = (W,F)
is a tree, and X = ({Xi | i ∈W}) is a collection of subsets of V such that

3

1.
⋃

i∈W Xi = V ,
2. for each edge vw ∈ E, there is an i ∈W such that v, w ∈ Xi, and
3. for each v ∈ V the set of vertices {i | v ∈ Xi} forms a subtree of U .

The width of (X,U) is maxi∈W {|Xi|−1}. The treewidth tw(G) of G is the minimum width over
all the tree decompositions of G. By a classical result of Arnborg, Corneil and Proskurowski [2],
a tree-decomposition of G of width t, if any, can be computed in O(nt+2) time. When this
running time is dominated by other steps of the algorithm considered, we will just consider
this decomposition as given.

2 Sharp Separation in Graphs of Bounded Treewidth

In this section we prove our Sharp Separation Theorem, which is at the heart of the algorithms
described in the following sections. In order to prove that, we need the following well-known
result.

Lemma 1 ([5]). Given a n-vertex graph G = (V,E) of treewidth t and w : V → R+ ∪ {0}.
There is a set T of vertices of size at most t such that for any connected component G[C] of
G \ T , w(C) ≤ w(V)/2. Given a tree-decomposition of G of width t, T can be computed in
polynomial time.

Proof. (Theorem 1) We construct VL, VR and S iteratively, starting from empty sets, as
follows. By Lemma 1 there is a set T of size at most t such that for any connected component
G[C] of G \ T , w(C) ≤ w(V)/2. We add T to S and for each component G[C] of G \ T , add
C to VL or VR if this does not violate w(VL) ≤ x or w(VR) ≤ w(V)− x, respectively.

Let us show that at the end of the process there is at most one component G[C] left.
Suppose by contradiction that there are at least 2 such components, say G[C1] and G[C2].
W.l.o.g. assume w(C1) ≤ w(C2). This implies that w(VL) +w(C1) > x and w(VR) +w(C1) >
w(V)− x. Consequently,

w(VL) + w(VR) + 2w(C1) > w(V).

However, this contradicts the fact that

w(VL) + w(VR) + 2w(C1) ≤ w(VL) + w(VR) + w(C1) + w(C2) ≤ w(V).

Now we iteratively reapply the construction above for p− 1 times, each time considering
the component G[C] left from previous step. Eventually we add C to either VL or VR.

Each time the weight of C halves, so at the end of the process w(C) ≤ w(V)/2p+1. The
upper bound on the weight of VL and VR follows. Since at each step we add to S a set of size
t, we eventually obtain |S| ≤ p t. The running time claim follows immediately from Lemma
1. This concludes the proof. ut

3 k-Internal Out-Branching

In this section we use Theorem 1 to give a parameterized algorithm with running time
O(16k+o(k) + no(1)) for the k-Internal Out-Branching problem. Our approach combines

4

the Sharp Separation Theorem with the divide-and-color paradigm in [6, 20] and a polynomial-
sized kernel for the problem [18]. In Section 3.1 we start by presenting a (polynomial-space)
one-sided-error Monte-Carlo algorithm for k-Internal Out-Branching with the claimed
running time. We derandomize the algorithm in Section 3.2, at the cost of an exponential
space complexity.

3.1 A Monte-Carlo Algorithm

The first step of our algorithm is to apply the kernelization algorithm of Gutin et al. [18]. Given
an instance (D, k) of k-Internal Out-Branching the algorithm of Gutin et al. produces
a new instance (D′, k′) with |D′| = O(k2) and k′ ≤ k such that D′ has an out-branching with
at least k′ internal vertices if and only if D has an out-branching with at least k internal
vertices. After this step we can assume that the number n of vertices in the input digraph D
is at most O(k2).

Now, the algorithm guesses the root r of the out-branching, and verifies that there indeed
is some out-branching of D rooted at r. This guessing step, together with the following
observation, allows us to search for out-trees rooted at r instead of out-branchings of D.

Lemma 2 ([8]). Let D be a digraph and r be a node of D such that there is an r-out-branching
of D. Then, for any r-out-tree T with at least k internal nodes there is an r-out-branching T ′

with at least k internal nodes containing T as a subtree.

When looking for r-out-trees with at least k internal nodes, it is sufficient to restrict ourselves
to r-out-trees with at most 2k nodes. The reason for this is that if some internal node sees
at least two leaves of the r-out-tree, then one of the leaves can be removed without changing
any internal nodes into leaves. We formalize this as an observation.

Lemma 3 ([8]). Let D be a digraph and r be a node of D. If there is an r-out-tree T with
at least k internal nodes then there is an r-out-tree T ′ on at most 2k nodes with at least k
internal nodes.

With the described preliminary steps, we have arrived at the following problem, which we call
Rooted Directed k-Internal Out-Tree (k-RDIOT). Input is a digraph D, node r and
integer k. The digraph D has n = O(k2) nodes and the objective is to decide whether there
is an r-out-tree with at least k internal nodes and at most 2k nodes in total.

Our algorithm splits the original problem into two smaller sub-problems by means of a
proper separator, guesses the “shape” of the intersection of the out-branching with each side of
the separator and solves each subproblem recursively. There are two aspects of sub-problems
which do not show up in the original problem. First of all, the solution to a subproblem
is not necessarily an out-tree: it is an out-forest in general. Still, the union of such forests
must induce an r-out-tree. In order to take this fact into account, we introduce the notion of
signatures.

Definition 1. Let T = (NT , AT) be an R-out-forest, and Z ⊆ NT be a set of nodes such that
R ⊆ Z. The signature ζZ(T) of T with respect to Z is the R-out-forest C = (Z,Q) where
there is an arc from a vertex u ∈ R to a vertex v ∈ Z \ R if and only if there is a path from
u to v in T . All vertices of Z \R are leaves of C.

5

Notice that the signature of an out-forest is always a set of stars and singletons. In our
recursive steps we will guess the signature of the out-forest we are looking for with respect to
Z, where the set Z includes r and all the separators guessed from the original problem down
to the current subproblem.

Second, in order to obtain two independent sub-problems, we need to make sure that
separator nodes that are internal on both sides of the separator only get counted once. To
achieve this we guess a subset Y of the separator nodes, and do not count the internal nodes
of the out-forest in Y . Altogether, a subproblem can be defined as follows.

Directed Rooted Out-Forest (DROF). Input is a tuple (D,R,C, Y, k∗, t) where
D = (N,A) is a digraph, C = (Z,Q) is an R-out-forest with node set Z for R ⊆ Z ⊆ N ,
Y ⊆ Z is a node set and k∗ and t are integers. The objective is to find an R-out-forest
T in D with at least k∗ internal nodes outside Y and at most t nodes outside Z such
that T contains Z and ζZ(T) = C.

The input instance (D, k) of k-RDIOT is equivalent to an DROF instance (D,R,C, Y, k, 2k),
where t = 2k, C is the single node r and Y = ∅. Our algorithm for k-RDIOT initially con-
structs a DROF instance equivalent to the input k-RDIOT instance as described above. That
k-RDIOT instance is solved recursively in the following way. Consider a given subproblem
(D,R,C, Y, k∗, t). If t ≤ log k, that is the number of vertices outside Z in the out-forest
sought for is small enough, we solve the problem by brute force. In particular, we enumerate
all the possible R-out-forests in D on at most |Z| + t nodes and check whether they satisfy
the conditions of DROF.

Suppose now t > log k, and that (D,R,C, Y, k∗, t) is a “yes”-instance. Then there is an
R-out-forest T = (NT , AT) that satisfies the conditions of DROF. By the Sharp Separation
Theorem there is a partitioning of NT into (NT

L , S,N
T
R) such that |S| = log k, |NT

L \Z| ≤ t/2,
|NT

R \ Z| ≤ t/2 and there are no arcs between NT
L and NT

R in T . Define Z ′ = Z ∪ S and
AZ′ to be the arcs of T [Z ′]. The algorithm guesses the separator S ⊆ N and for each of the(O(k2)

log k

)
guesses for the separator it generates a random family of 3 · 2t · |Z ′|O(|Z′|) pairs of

sub-problems, that is instances of DROF PL and PR, which are solved recursively.
If for some pair PL and PR, the algorithm returns that both PL and PR are “yes” in-

stances, then the algorithm returns that (D,C, Y, k∗, t) is a “yes”-instance as well. If the
algorithm loops through all guesses of S and all the 3 · 2t · |Z ′|O(|Z′|) pairs and for each pair
the algorithm returns that at least one sub-problem is a “no”-instance, the algorithm returns
that (D,C, Y, k∗, t) is a “no”-instance. To conclude the description of the algorithm we need
to describe how the pairs (PL,PR) are generated.

Before describing how the pairs are generated, define the out-forests TL = T [Z ′ ∪ NT
L]

and TR = T [Z ′ ∪ NT
R] \ AZ′ . Also, let YR be Y plus all the internal nodes of TL in Z ′ and

YL = (Z ′ \ YR) ∪ Y . Now, tL and tR are the number of nodes outside Z ′ in TL and TR

respectively. Finally k∗L and k∗R are the number of internal nodes in TL outside YL and the
number of internal nodes in TR outside YR respectively.

We next describe how a random pair (PL,PR) is generated. The algorithm generates the
pairs in 3 ·2t groups, each group with |Z ′|O(|Z′|) pairs. For each group the algorithm partitions
the node set N \ Z ′ into two parts (NL, NR) uniformly at random. For each partitioning,
the algorithm guesses CL = ζZ′(TL), CR = ζZ′(TR), YL, YR, k∗L, k∗R, tL and tR. Each set of
guesses makes one pair (PL,PR) of instances, where PL = (D[NL∪Z ′], RL, CL, YL, k

∗
L, tL) and

6

PR = (D[NR ∪ Z ′], RR, CR, YR, k
∗
R, tR). It is easy to see that the number of possible guesses

is at most |Z ′|O(|Z′|).
The algorithm makes the guesses in a special way, making sure that if both PL and PR

are “yes”-instances then (D,C, Y, k∗, t) is a “yes”-instance as well. In particular, it makes
sure that the arc sets of CL and CR are disjoint, that CL ∪ CR is an out-forest and that
ζ(CL ∪ CR) = C. Also, the algorithm makes sure that YL ∪ YR = Z ′ and that Y ⊆ YL and
Y ⊆ YR. Finally, it makes sure that t∗L + t∗R− |Z ′| = t∗ and that k∗L + k∗R = k∗. This concludes
the description of the algorithm.

Lemma 4. There is a one-sided-error Monte-Carlo algorithm for k-Internal Out-Branching
running in time O(16k+o(k) + nO(1)). When the instance is a “yes”-instance, the algorithm
incorrectly returns “no” with probability at most 1/4.

Proof. Consider the algorithm above. It is enough to prove correctness and analyze the running
time for the part of the algorithm that solves DROF. We first prove that when the algorithm
answers yes, the answer is correct. We prove this by induction on t. If t < log k then the al-
gorithm resolves the problem in a brute force manner and hence correctness follows. Suppose
now that t ≥ log k. Since the algorithm returned yes it made a guess for S, a random partition-
ing of N \Z ′ (where Z ′ = Z∪S) and guessed a pair PL = (D[NL∪Z ′], RL, CL, YL, k

∗
L, tL) and

PR = (D[NR∪Z ′], RR, CR, YR, k
∗
R, tR) such that the algorithm returned that both PL and PR

are “yes”-instances of DROF. By the induction hypothesis there are out-forests TL = (NT
L , A

T
L)

of D[NL] and TR = (NT
R , A

T
R) of D[NR] with at least k∗L and k∗R inner nodes outside YL and

YR respectively, such that CZ′(TL) = CL and CZ′(TR) = CR. We prove that T = TL ∪ TR is
an out-forest that satisfies the conditions of DROF.

Since the arc sets of CL and CR are disjoint, CL ∪ CR is an out-forest and CZ′(TL) = CL

and CZ′(TR) = CR, T = TL ∪ TR is an out-forest. Since ζZ(CL ∪ CR) = C it follows that
ζZ(T) = ζZ(TL ∪ TR) = C. The number of nodes in T is tL + tR − Z ≤ t and since Y ⊆ YL,
Y ⊆ YR and YL∪YR = Z ′ the number of inner nodes of T avoiding Y is at most k∗L +k∗R ≥ k∗.
Hence the input instance is indeed a “yes”-instance.

Now, we prove that if a given subproblem (D,R,C, Y, k∗, t) is a “yes”-instance, then the
probability that the algorithm returns “no” is pt ≤ 1/4. We prove this by induction on t,
and if t < log k the algorithm solves the problem by brute force and correctness follows. If
t ≥ log k, consider an out-forest T that satisfies the conditions of DROF. Consider the run of
the algorithm where the separator S is guessed correctly.

Now, there are two possible reasons why the algorithm fails to answer “yes”. Reason (a)
is that the random partition (NL, NR) of N ∪ Z ′ could be done in the wrong way, that is
NT

L 6⊆ NL or NT
R 6⊆ NR. Reason (b) is that even though NL and NR are guessed correctly,

in the iteration of the algorithm where the guesses for CL = ζZ′(TL), CR = ζZ′(TR), YL, YR,
k∗L, k∗R, tL and tR are correct, the algorithm could fail to recognize either PL or PR as “yes”
instances.

The probability of the first event is at most 1 − 2−t. Recall that tL, tR ≤ t/2, since the
algorithm uses a perfectly balanced separator to split NT \ Z ′. Hence, by the union bound,
the probability of event (b) is at most 2−t 2pt/2. Altogether pt satisfies

pt ≤
(
1− 2−t + 2−t+1pt/2

)3·2t

.

7

Therefore, by the inductive hypothesis,

pt ≤
(
1− 2−t + 2−t+1/4

)3·2t

=
((

1− 1/2t+1
)2t+1)1.5

≤ e−1.5 ≤ 1
4
.

Consider now the running time of the algorithm. Observe that in the beginning t = 2k and
that t always drops by a factor of one half in the recursive steps. Furthermore the algorithm
stops when t drops below log k. Hence the recursion depth is at most log(2k). For each new
level of the recursion the size of Z ′ increases by log 2k. Hence |Z ′| never grows over log2(2k). In
the base case we try all possible subsets of A of size |Z|′+t. Since D has at most O(k2) vertices
it has at most O(k4) arcs and hence in the base we need to try at most O(

(
k4

log2 2k

)
) = O(2o(k))

different possibilities, each of which can be checked in O(kO(1)) time.
Consider now the recursive step. There are

(O(k2)
log 2k

)
choices for the separator. For each

choice of the separator the number of random partitions tried is 3 · 2k. For each random
partition, |Z ′|O(|Z′|) = O(2log3 k) pairs (PL,PR) of instances are generated. Let T (n, t) be the
running time of the DROF algorithm on an instance where D has n nodes and the number
of nodes in the tree searched for that are not in Z ′ is t. Then the following recurrence holds.

T (n, t) ≤ nO(log3 2k) · 3 · 2t · (2T (n, t/2) + nO(1))

≤ nO(t log3 2k)2k · T (n, t/2)

= O((nO(t log3 2k))log k · 2
“Plog t

i=0
t

2i

”
) = O(4t · nO(log4 k)).

Since we first run the kernelization algorithm from [18], the k-RDIOT instance we solve
recursively has O(k2) nodes. Since t = 2k in the instance of DROF we construct from this
k-RDIOT instance, the total running time for the algorithm is bounded from above by O(42k ·
(k2)O(log4 k) + nO(1)) = O(16k+o(k) + nO(1)). ut

3.2 Derandomization via Universal Sets

Our algorithm for k-Internal Out-Branching can be derandomized using the method
presented by Chen et al. [6], which is based on the construction of (n, k)-universal sets [28].

Definition 2 ([28]). An (n, k)-universal set F is a set of functions from {1, . . . , n} to {0, 1},
such that for every subset S ⊆ {1, . . . , n}, |S| = k, the set F|S = {f |S | f ∈ F} is equal to
the set 2S of all the functions from S to {0, 1}.

Theorem 4 ([28]). There is a deterministic algorithm with running time O(2kkO(log k)n log n)
that constructs an (n, k)-universal set F such that |F| = 2kkO(log k) log n.

We can exploit Theorem 4 to derandomize our algorithm. It is sufficient to construct an
(n, k)-universal set F , and use F to decompose the host graph H, rather than doing that
randomly.

Lemma 5. There is a deterministic algorithm for k-Internal Out-Branching running in
time O(16k+o(k) + nO(1)) and requiring O(4kkO(log k)) space.

8

Proof. Consider the deterministic variant described above of the algorithm from previous
section. The properties of the universal set guarantee that, on YES instances, the guesses for
NL and NR are correct on at least one of the sub-problems generated by the algorithm. The
correctness follows.

The running time analysis is analogous to Lemma 4, where the factor 3 · 2t is replaced by
2ttO(log t), that is the size of the universal set required. ut

Lemmas 4 and 5 together imply Theorem 2.

4 Degree Constrained Spanning Tree

In this section we present our O(2n+o(n))-time algorithm for the Degree Constrained
Spanning Tree problem (DCSS). We recall that in this problem we are given an undirected
graph G = (V,E), and a list of desirable degrees D(v) for each vertex v. The aim is finding a
spanning tree T of G which maximizes the number of hits, i.e. the number of vertices v with
dT (v) ∈ D(v).

Our algorithm is based on the divide-and-conquer approach, and has several similarities
with the algorithm for k-Internal Spanning Tree. The main differences are that the random
partitioning and kernelization parts are no longer required, and that the Sharp Separation the-
orem is used to divide the problem into very unbalanced subproblems. Consider a subproblem
on the graph H = (V,E). In the divide step we guess a proper (logarithmic-size) separator S
of the optimum solution, and the corresponding two sides VL and VR of the partition. Set S is
chosen such that VL is sufficiently small to make the guessing of S, VL and VR cheap enough.
The existence of S is guaranteed by our Sharp Separation Theorem. The two sub-problems
induced by VL ∪ S and VR ∪ S are then solved recursively.

Just as for the case of k-Internal Spanning Tree there are two aspects of sub-problems
which do not show up in the original problem. First of all, the solution to a subproblem is not
necessarily a spanning tree: it is a spanning forest in general. Still, the union of such forests
must induce a tree. In order to take this fact into account, we introduce a constraint forest
C = (Z,Q), defined over a proper subset of nodes Z ⊆ V . The set Z includes all the separators
guessed from the original problem down to the current subproblem. The components of C
describe which pairs of nodes of Z must and must not be connected in the desired forest.

Second, in order to obtain two independent maximization sub-problems, we need to guess
the degree of the separator nodes in the optimum solution, and force the solution to have that
degree on those nodes. This is modeled via an auxiliary function A : V → 2{1,...,n}. For z ∈ Z,
A(z) is a singleton set containing the mentioned guessed degree, while A coincides with D on
the remaining nodes. We remark that it might be that A(z) 6⊆ D(z) for some z ∈ Z, since
not all the nodes of Z need to be hits in the optimum solution. Altogether, a subproblem
(H,C,A) can be defined as follows.

Degree-Constrained Cut & Connect (DCCC). Given a graph H = (V,E), a
forest C = (Z,Q), Z ⊆ V , and a function A : V → 2{1,...,n}, |A(z)| = 1 for z ∈ Z. Find
a spanning forest F of H maximizing the number of hits, i.e. |{v ∈ V : dF (v) ∈ A(v)}|,
such that:
(i) every connected component of F contains at least one vertex of Z;
(ii) for any u, v ∈ Z, u and v are connected in C if and only if they are connected in F

9

(iii) dF (z) ∈ A(z) for all z ∈ Z.

Observe that the original Degree Constrained Spanning Tree instance (G,D) is
equivalent to a Degree-Constrained Cut & Connect instance where H = G, C =
({z}, ∅) for an arbitrary vertex z of G, A(z) = {dOPT (z)} where dOPT (z) is the degree of z in
an optimum solution OPT , and A(v) = D(v) for any vertex v 6= z. We remark that we can
guess dOPT (z) by trying all the possibilities.

We give a memoization based algorithm for DCST. Initially the algorithm encodes the
input problem into a DCCC problem as described above. The latter problem is then solved
recursively. The solution to each subproblem generated is stored in a memoization table, which
is used to avoid to solve the same subproblem twice.

Let us describe the recursive algorithm for DCCC. Consider a given subproblem P =
(H,C,A), with H = (V,E) and C = (Z,Q). If |V | ≤ n/ log2 n, the problem is solved in a
brute force manner by enumerating all the spanning forests F of H. Otherwise, the algorithm
splits the problem in two smaller independent sub-problems PL = (HL, CL,AL) and PR =
(HR, CR,AR), which are solved recursively. The desired solution F is obtained by merging
the two solutions obtained for the two sub-problems.

We next describe how PL and PR are obtained. Consider the optimum solution OPT =
OPT (H,C,A) to (H,C,A). For x = n/ log2 n, by the Sharp Separation Theorem there is a
separator S of OPT , |S| ≤ t log n = log n, which splits V \ S in two subsets VL and VR, with
|VL| ≤ x and |VR| ≤ |V | − x. Let Z ′ = S ∪ Z. The algorithm guesses S, VL and VR, and sets
HL = H[VL ∪ Z ′] and HR = H[VR ∪ Z ′].

Consider the forest C ′ obtained from OPT by iteratively contracting the edges with one
endpoint not in Z ′. Note that, if we further contract C ′ on vertices S \Z, we must obtain the
forest C. Each edge of C ′ corresponds to a path in H whose vertices belong entirely either
to VL ∪ Z ′ or to VR ∪ Z ′. (In order to simplify the algorithm, we assume that edges between
adjacent nodes of Z ′ belong to the first class). Let QL and QR be the edges of the first and
second type, respectively. The algorithm guesses C ′, QL and QR, and sets CL = (Z ′, QL) and
CR = (Z ′, QR).

It remains to specify AL and AR. Consider the two forests OPTL and OPTR, on vertex
set VL ∪ Z ′ and VR ∪ Z ′, respectively, obtained from OPT by inserting every edge of OPT
with both endpoints in VL ∪ Z ′ in OPTL, and all the remaining edges in OPTR. Note that
dOPT (z′) = dOPTL

(z′) + dOPTR
(z′) for all z′ ∈ Z ′. The algorithm guesses dOPTL

(z′) (resp.,
dOPTR

(z′)) for all z′ ∈ Z ′, and sets AL(z′) = {dOPTL
(z′)} (resp., AR(z′) = {dOPTR

(z′)}).
Moreover, it sets AL(v) = A(v) (resp, AR(v) = A(v)) for all the remaining nodes v.

Summarizing the discussion above, the following recurrence holds, where the maximum,
computed with respect to the number of hits, is taken over all the possible choices of (HL, CL,AL)
and (HR, CR,AR) such that the pair of feasible solutions to the smaller instances can be com-
bined to a feasible solution for the original instance (H,C,A).

OPT (H,C,A) = arg max{OPT (HL, CL,AL) ∪OPT (HR, CR,AR)}. (1)

In particular, the maximum considers all the possible choices of the separator S and of the
partition (VL, VR), of the forest C ′ and of the partition (QL, QR) of its edges, and of the
degrees dOPTL

(z′) and dOPTR
(z′).

10

Proof. (Theorem 3) Consider the algorithm above. Its correctness follows from the correctness
of Recurrence (1) and of the brute force algorithm.

Consider now the running time of the algorithm. In order to upper bound it, it is sufficient
to multiply the number of table entries by the largest time needed to fill in one entry, given
that the entries of the corresponding sub-problems are already filled in. It is crucial to observe
that, when we apply Recurrence 1, in each recursive call the size of V decreases by at least
n/ log2 n whereas the size of Z increases by at most log n. Hence, in any recursive call made
by the algorithm we have that |Z| ≤ log3 n.

There are O(2n) possible subgraphs H of G. The number of possible subsets Z is O(nlog3 n),
and for each Z the number of possible forests C is O((log3 n)O(log3 n)). Eventually, for a given
Z, it must be A(v) = D(v) for all v /∈ Z. Hence there are O(nlog3 n) such mappings, i.e. one
for each choice of the degree assigned to each z ∈ Z. Altogether, the number of table entries
is O(2n · nlog3 n · (log3 n)O(log3 n) · nlog3 n) = O(2n+o(n)).

When a table entry is computed by brute force, we have |V | ≤ n/ log2 n. Hence the
brute-force computation takes O((n/ log2 n)n/ log2 n) = O(2o(n)) time, i.e. the time needed
to enumerate all the spanning forests of the input graph. Suppose now that a table entry is
computed by applying Recurrence 1. Recall that |S| ≤ log n. The number of possible choices for
VL and S are O(nn/ log2 n) and O(nlog n) respectively. Moreover, there are O((log3 n)O(log3 n))
choices for the forest C ′ and for the partition (QL, QR) of its edges. Eventually, there are
O(nO(log3 n)) choices for the degrees dOPTL

(z′) and dOPTR
(z′). Therefore the total time spent

to generate the sub-problems is O(nn/ log2 n · nlog n · (log3 n)O(log3 n) · nO(log3 n)) = O(2o(n)).
We can conclude that the running time of the algorithm isO(2n+o(n))O(2o(n)) = O(2n+o(n)).

ut

Remark: The approach used to prove Theorem 3 can be applied to find spanning subgraphs
of treewidth t satisfying degree constraints in time O(2n+o(n)) for every fixed constant t.
In addition to the degree constraints one could require the spanning subgraph to belong
to a minor-closed graph family. Our approach is also easily generalizable to handle super-
polynomial edge weights.

5 Conclusion

In this paper we proved a new, simple separation theorem for graphs of bounded treewidth,
which turns out to be a useful tool in the design of divide-and-conquer algorithms, both
exact (exponential) and parameterized. We demonstrated the applicability of our theorem by
giving an algorithm for k-Internal Out-Branching running in O(16k+o(k) + nO(1)) time
and an algorithm for the Degree Constrained Spanning Tree problem running in time
O(2n+o(n)). It would be interesting to find further applications of our separation result in the
fields of exact and parameterizws algorithms.

References

1. N. Alon, P. Seymour, and R. Thomas, A separator theorem for non-planar graphs. J. Amer. Math. Soc.,
3 (1990), 801–808.

2. S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree. SIAM J.
Algebraic Discrete Methods, 8 (1987), 277–284.

11

3. A. Björklund, T. Husfeldt, Inclusion–Exclusion Algorithms for Counting Set Partitions. In FOCS (2006),
575–582.

4. A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto, Fourier meets Möbius: Fast Subset Convolution. In
STOC (2007), 67–74.

5. H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc., 209 (1998),
1–45.

6. J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved Algorithms for Path, Matching, and Packing Problems.
In SODA (2007), 298-307.

7. N. Christofides, An Algorithm for the Chromatic Number of a Graph, Computer Journal, 14(1): 38–39,
(1971).

8. N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh and A. Yeo, Algorithm for Finding k-Vertex
Out-trees and its Application to k-Internal Out-branching Problem. In COCOON (2009), 37–46

9. R. Diestel, Graph Theory. Springer (2005).
10. H. Fernau and D. Raible, S. Gaspers, A. A. Stepanov, Exact Exponential Time Algorithms for Max Internal

Spanning Tree. CoRR abs/0811.1875 (2008).
11. F. V. Fomin, F. Grandoni, D. Kratsch, A Measure & Conquer Approach for the Analysis of Exact Algo-

rithms. To appear in J. ACM. Preliminary version in ICALP’05 and SODA’06.
12. F. V. Fomin, F. Grandoni, D. Kratsch, Solving Connected Dominating Set Faster than 2n, In Algorithmica,

52 (2008), 153–166.
13. F. V. Fomin, F. Grandoni and D. Kratsch, Faster Steiner Tree Computation in Polynomial-Space. In ESA

(2008), LNCS 5193, 430–441.
14. F. V. Fomin, S. Gaspers, S. Saurabh and S. Thomassé. A Linear Vertex Kernel for Maximum Internal

Spanning Tree. CoRR abs/0907.3208 (2009).
15. M. Fürer and B. Raghavachari, Approximating the minimum-degree steiner tree to within one of optimal.

J. Algorithms, 17 (1994), 409–423.
16. S. Gaspers, S. Saurabh, and A. A. Stepanov, A Moderately Exponential Time Algorithm for Full Degree

Spanning Tree. In TAMC (2008), LNCS 4978, 479-489.
17. M. X. Goemans, Minimum bounded degree spanning trees. In FOCS (2006), 273–282.
18. G. Gutin, I. Razgon and E. J. Kim,Minimum Leaf Out-Branching Problems. In AAIM 2008, 235–246.
19. M. Held and R. M. Karp, A dynamic programming approach to sequencing problems. Journal of SIAM,

10 (1962), 196–210.
20. J. Kneis, D. Molle, S. Richter, and P. Rossmanith, Divide-and-color. In WG (2006), LNCS 4271, 58–67.
21. R. M. Karp, Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett., 1

(1982), 49–51.
22. S. Khuller, R. Bhatia, and R. Pless, On local search and placement of meters in networks. SIAM J.

Comput., 32 (2003), 470–487.
23. S. Kohn, A. Gottlieb, and M. Kohn, A generating function approach to the traveling salesman problem.

In proceedings of the annual ACM conference, (1977), 294–300.
24. M. Koivisto, An O(2n) Algorithm for Graph Colouring and Other Partitioning Problems via Inclusion-

Exclusion. In FOCS (2006), 583–590.
25. E. L. Lawler, A Note on the Complexity of the Chromatic Number Problem. Inform. Proc. Letters, 5 (3)

(1976), 66–67.
26. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs. SIAM J. Appl. Math., 36 (1979),

177–189.
27. , Applications of a planar separator theorem. SIAM J. Comput., 9 (1980), 615–627.
28. M. Naor, L. J. Schulman and A. Srinivasan, Splitters and Near-Optimal Derandomization. In FOCS (1995),

182–193.
29. J.Nederlof, Fast polynomial-space algorithms using Mobius inversion: Improving on Steiner Tree and re-

lated problems. In ICALP(1) (2009), 713–725.
30. E. Prieto and Christian Sloper, Reducing to Independent Set Structure – the Case of k-Internal Spanning

Tree. Nord. J. Comput, 12 (3) (2005), 308–318
31. R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture Series in Mathematics

and its Applications, Oxford University Press, Oxford, (2006).
32. B. Reed, A. Vetta and K. Smith, Finding Odd Cycle Transversals, Operations Research Letters, 32, 229–301

(2004).
33. M. Singh and L. C. Lau, Approximating minimum bounded degree spanning trees to within one of optimal.

In STOC (2007), 661–670.
34. R. Williams, Finding a path of length k in O∗(2k) time. Inform. Proc. Letters, 109(6) (2009), 315–318.

12

