Skip to main content

Multilevel Cellular Automata as a Tool for Studying Bioinformatic Processes

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The signature feature of Cellular Automata is the realization that “simple rules can give rise to complex behavior”. In particular how fixed “rock-bottom” simple rules can give rise to multiple levels of organization. Here we describe Multilevel Cellular Automata, in which the microscopic entities (states) and their transition rules themselves are adjusted by the mesoscale patterns that they themselves generate. Thus we study the feedback of higher levels of organization on the lower levels. Such an approach is preeminently important for studying bioinformatic systems. We will here focus on an evolutionary approach to formalize such Multilevel Cellular Automata, and review examples of studies that use them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. de Boer, P. Hogeweg, The role of speciation in spatial coevolutionary function approximation. In Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, http://doi.acm.org/10.1145/1274000.1274007 (2007) pp. 2437–2441

  2. M.C. Boerlijst, P. Hogeweg, Selfstructuring and selection: Spiral waves as a substrate for prebiotic evolution, ed. by C.G. Langton, C. Taylor, J.D. Farmer, S. Rasmussen, Artificial Life II (Addison Wesley, 1991), pp. 255–276

    Google Scholar 

  3. M.C. Boerlijst, P. Hogeweg, Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites. Physica D, 48(1), 17–28 (1991)

    Article  MATH  Google Scholar 

  4. K.C. Clarke, S. Hoppen, L. Gaydos, A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plann. B 24, 247–262 (1997)

    Article  Google Scholar 

  5. J.P. Crutchfield, M. Mitchell, The evolution of emergent computation. Proc. Natl. Acad. Sci. 92(23), 10742–10746 (1995)

    Article  MATH  Google Scholar 

  6. T. Dobzhansky, Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach., 35, 125–129 (1973)

    Article  Google Scholar 

  7. J.A. Glazier, A. Balter, N.J. Poplawski, II. 1 Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg Model. Single-Cell-Based Models in Biology and Medicine (Birkhauser Verlag, Basel/Switzerland, 2007), p. 79

    Google Scholar 

  8. J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phy. Rev. E 47(3), 2128–2154 (1993)

    Article  Google Scholar 

  9. J.E. Hanson, J.P. Crutchfield, Computational mechanics of cellular automata: An example. Physica D, 103(1–4), 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1–3), 228–234 (1990)

    Article  Google Scholar 

  11. P. Hogeweg, Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27(1), 81–100, 1988

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Hogeweg, Multilevel evolution: replicators and the evolution of diversity. Physica D 75(1–3), 275–291 (1994)

    Article  MATH  Google Scholar 

  13. P. Hogeweg, On searching generic properties of non generic phenomena: An approach to bioinformatic theory formation. In Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life, MIT Press, Cambridge, MA (1998), p. 286

    Google Scholar 

  14. P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203, 317–333 (2000)

    Article  Google Scholar 

  15. P. Hogeweg, From population dynamics to ecoinformatics: Ecosystems as multilevel information processing systems. Ecol. Inform. 2(2), 103–111 (2007)

    Article  Google Scholar 

  16. J.D. van der Laan, P. Hogeweg, Predator-prey coevolution: Interactions across different timescales. In Proceedings: Biological Sciences, (1995) pp. 35–42

    Google Scholar 

  17. A.F.M. Marée, V.A. Grieneisen, P. Hogeweg, II. 2 The cellular potts model and biophysical properties of cells, tissues and morphogenesis. Single-Cell-Based Models in Biology and Medicine, (Birkhauser Verlag, Basel/Switzerland, 2007), p. 107

    Google Scholar 

  18. A.F.M. Marée, P. Hogeweg, How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. 98(7), 3879 (2001)

    Article  Google Scholar 

  19. J. von Neumann, A.W. Burks Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, IL, 1966)

    Google Scholar 

  20. L. Pagie, P. Hogeweg, Evolutionary consequences of coevolving targets. Evol. Comput. 5(4):401–418 (1997)

    Article  Google Scholar 

  21. L. Pagie, P. Hogeweg, Information integration and red queen dynamics in coevolutionary optimization. In Proceedings of the 2000 Congress on Evolutionary Computation, CEC, IEEE Press, (2000), http://ieeexplore.ieee.org/xpl/tocresult.jsp? pp. 1260–1267

  22. N. Takeuchi, P. Hogeweg, Evolution of complexity in RNA -like replicator systems. Biol. Direct 3, 11 (2008)

    Article  Google Scholar 

  23. T. Zhou, J.M. Carlson, J. Doyle, Mutation, specialization, and hypersensitivity in highly optimized tolerance. Proc. Natl. Acad. Sci. 99(4), 2049 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulien Hogeweg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hogeweg, P. (2010). Multilevel Cellular Automata as a Tool for Studying Bioinformatic Processes. In: Kroc, J., Sloot, P., Hoekstra, A. (eds) Simulating Complex Systems by Cellular Automata. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12203-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12203-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12202-6

  • Online ISBN: 978-3-642-12203-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics