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Abstract The emergence of Grim Trigger as the dominant strategy in the 
Iterated Prisoner Dilemma (IPD) on a square lattice is investigated for players 
with finite memory, using three different kinds of imitation rule: the traditional 
imitation rule where the entire data base of the opponent’s moves is copied, and 
the two more realistic partial imitation rules that copy only a subset of 
opponent’s moves based on information of games played. We find that the 
dominance of Grim Trigger is enhanced at the expense of some well known 
strategies such as tit-for-tat (TFT) when a player has access only to those moves  
observed in past games played with his opponents. The evolution of the clusters 
of Grim Trigger in the early stage of the games obeys a common pattern for all 
imitation rules, before these clusters of Grim Triggers coalesce into larger 
patches in the square lattice. A physical explanation for this pattern evolution is 
given. Implication of the partial imitation rule for IPD on complex networks is 
discussed. 
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1. Introduction 

Evolutionary game [1-4] provides a rich playground for the simulation of multi-agent 
systems with complex dynamics revealed through the evolving patterns of various 
strategies used by the players. These spatial-temporal patterns are of interest to many 
scientists working in various fields, ranging from computer science, physics, ecology 
and biology. One of the most studied games by political scientists and sociologists is 
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the Prisoner's Dilemma, as it provides a simple model of the difficulties of 
cooperation [5-7] in a world populated by egoists.  In the Prisoner Dilemma game 
(PD) two players can choose to cooperate (C) or defect (D). Each player will gain a 
payoff depending jointly on his choice and the opponent’s choice. Cooperation yields 
a payoff R (S) if the opponent cooperates (defects) and defection yields T (P) if the 
opponent cooperates (defects). We call R the Reward for cooperation, S the Sucker’s 
payoff, T the Temptation to defect and P the Punishment. Typically,  T>R>P>S and 
2R>T+P. The Prisoner Dilemma game is a non zero sum game because one player’s 
loss does not equal the opponent’s gain. For player without memory, the best strategy 
for a selfish individual is to defect, although this will result in mutual defection and 
lead to the worst collective effect for the society. In this PD game, the expectation of 
defection (D) is greater than the expectation of cooperation (C), independent of the 
opponent’s strategy, even though cooperation yields a higher total payoff for the 
society.  In order to further investigate the emergence of cooperation, a variant of the 
PD game is the spatial PD game (SPDG), which describes the evolution pattern for a 
set of players fixed on a lattice, with each player playing the PD game with nearest 
neighbors. Since now there is a spatial restriction on the players, cooperators can 
support each other [8,9] and enhance the survival of cooperators [10,11].  For the 
SPDG, the problem can be mapped onto the statistical mechanics of the two-state 
Potts model Hamiltonian  [2,12] that describes the total income of player i  by 
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Here jS
�

 is the state vector for the player j who is the neighbor of player i and the 
state vector can be either one of the two unit vectors { },C D

G G . The summation runs 
over all the neighbors of the player i sitting at node i, while the neighborhood is 
defined by the topology of the given network.  In the PD game, complication arises 
for players with the ability to remember a fixed number of the most recent events and 
supply each player with a set of answers to respond to every possible given history of 
the game. We call such an answer a “Move”.  The finite history of the responses of 
the players is recorded.. The rule that describes what move should be used given a 
particular history of interaction is called a “Strategy”. A complete strategy should 
include an answer to every possible situation. Players will adapt their strategies, 
imitating other more successful players following certain “Imitation Rule”. Although 
each player at a particular lattice site has a favorite strategy at time t, he may change 
to a different strategy at a later time as he realizes from his opponents (his neighbors 
in SPDG) a better choice. Consequently, the lattice at a particular time can be labeled 
by a colorful collection of strategies defined on the N sites of the lattice, 
corresponding to the favorite strategy of the N players at that time. The evolution of 
this pattern of strategies is one of the main topics of analysis in our present work. 
Memory is the key that leads to the possible switch of strategy of player i to a new 
strategy after observing the success of his neighbors, who are his opponents. Without 
memory, player i will not be able to remember the move of his successful neighbor j, 



thereby imitating the strategy of player j. Now, the key idea of our model comes from 
the modification of the traditional imitation rule used in the past research on the PD 
game. The usual imitation rule assumes that the player will copy the complete 
strategy  of his idol, who is a more successful opponent in his encounter. However, if 
only a subset of the complete strategy of the idol has been used, then it is unrealistic 
for the player to copy the whole strategy, including the subset  that has never been 
observed. A realistic modification on the imitation rule is to copy only those subsets 
of the complete strategy that have been observed. The modification of the traditional 
imitation rule is necessitated by the fact that all players can only have finite memory. 
This observation motivates us to consider a new imitation rule called “partial 
imitation rule”, as it permits the player to imitate at most the subset of the strategy his 
idol has used. In real life, a player cannot even remember all the observed moves of 
his idol. We will formulate our model in Section 2 and the imitation rule in Section 3. 
The results are discussed in Section 5.  

2. Memory Encoding 

A two-player PD game yields one of the four possible outcomes because each of the 
two independent players has two possible moves, cooperate (C) or defect (D).  To an 
agent i, the “outcome” of playing a PD game with his opponent, agent j, can be 
represented by an ordered pair of moves SiSj. Here Si can be either C for “cooperate” 
or D for “defect”. In any one game between them: {SiSj} takes on one of these four 
outcomes {CC,CD,DC,DD}. For n games, there will be a total of 4n possible 
scenarios. A particular pattern of these n games will be one of these 4n scenarios, and 
can be described by an ordered sequence of length 2n of the form Si1Sj1…SinSjn.. This 
particular ordered sequence of outcomes for these n games is called a history of 
games between these two players, which consists of n pairs of outcome {SiSj}, with 
the leftmost pair being the first game played, while the rightmost pair being the 
outcome of the last gamed played, or the most recent outcome. (We use capital S to 
denote the value of either C or D in the history. For example, an ordered sequence of 
move pairs DDDDDDCC represents that the two players cooperate right after the past 
three mutual defection {DD},{DD},{DD}.) We use the convention that the outcome 
{SiSj}, corresponds to Si  being the move made by agent i, who is the player we 
address, and  Sj  is the move made by agent j, the opponent of our player. Depending 
on the player we address, the representation of the same history is not unique. In 
SPDG, agent j is one of the neighbors of agent i.    We say that a player has a memory 
of fixed-length m, when this player can remember exactly the  outcomes of the most 
recent m games.  A “Memory” is a sub-sequence of a history. For example, for an 
agent i with two-game memory (m=2), will only has a “Memory” DDCC given a 
history represented by DDDDDDCC. We encode the memory by a bit string using the 
convention that cooperation is represented by 1 and defection by 0. Thus, the memory 
DDCC can be represented by the binary number 0011 or the decimal number 3. The 
number of all the possible memory, given that the agent can memorize the outcomes 
of the last m games, is 4m. (Here 4 refers to the four possible outcomes of one game 



which is 00,01,10, and 11).  To start the game, let’s Consider a non-trivial example 
when m=3. In this case there are 64=4m=3 possible histories of the strategies used by 
the two players.  We need to reserve 1 bit for the first move of our player:{D,C}, and 
use two more bits for the second move of our player when confronted with the two 
possibilities of the first move of the opponent {D,C}. (Our player can choose C or D 
when the opponent’s first move is D, and our player also can choose C or D when the 
opponent’s first move is C. Thus we need two more bits for our player). To account 
for the four possible scenarios of the last two moves of the opponents: 
{DD,DC,CD,CC}, we need to reserve 4 more bits to record the third move of our 
player. Thus, for a PD game played by prisoners who can remember 3 games, a player 
will need 1+2+4=7 bits to record his first three moves [13]. After this initial stage, the 
strategy for our player will need to respond to the game history with a finite memory. 
Since there are a total of 64=4m=3 possible Memory, i.e., 64 possible outcomes of the 
last three games, our player will need 64 more bits. In conclusion, the length of the 
strategy sequence is 7+64=71 and there are a total of 71 212 2.4 10×∼  possible 
strategies. Thus the strategy space for a m=3 game is very large. Let’s now denote the 
ensemble of m-step memory as Mm, then the total number of bits required to encode 
the possible strategy sequence is b(m)=2m-1+4m and the total number of possible 
strategies is |Mm|=2b(m). For m=1, the enumeration of the encoding of the possible 
strategies shows that there are 32 possible strategies. This can be seen from Table 1 
below.  

              Table 1. Representation of Strategy Sequence in M1 

Memorized History The first move DD DC CD CC 

Players’ strategy S0 S1 S2 S3 S4 

 
The strategy in M1  can be denoted by S0|S1S2S3S4.  Here the first move is S0.  If the 
memory is DD, then the move is S1. If the memory is DC, then the move is S2. If the 
memory is CD, then the move is S3. If the memory is CC, then the move is S4.  

 

3. Imitation Rule 

     The standard imitation rule for the spatial PD game without memory is that the 
focal agent i will adopt the pure strategy of a chosen neighbor depending on payoff. 
The generalized imitation rule for PD game with memory is adopting the entire set of 
the complete strategy. We call such imitation rule the traditional imitation rule (tIR). 
In this way, tIR impose that condition that every agent has complete information 
about the entire set of the strategy of all its neighbors. Such assumption of complete 
information is unrealistic since the focal agent only plays a few games with its 
neighbors while the space of strategies used by the neighbor is generally 
astronomically larger than F. A more realistic situation is that the focal agent i only 



has partial information about the strategy of his neighbors.  In this paper, every agent 
only knows a subset of the strategy used by a chosen neighbor. For a pair of players 
(i,j), playing F games, the focal player i will only observed a set (Sj(i,j)) of moves 
actually used by agent j. This set Sj(i,j) is usually much smaller than the entire set of 
possible moves corresponding to the strategy of agent j. With this partial knowledge 
of the moves of the neighbors, the new imitation rule for agent i is called the partial 
imitation rule. We now give an example to illustrate the difference between partial 
imitation rule and the traditional one for one step memory. Let’s consider an agent i 
with C|DDDD strategy confronts another agent j with the Tit-for-Tat strategy 
(S0|S1S2S3S4=C|DCDC) and agent i decides to imitate the agent j’s strategy. In tIR, we 
assume that agent i somehow knows all the five bits of Tit-for-Tat though in the 
confrontation with agent j only four bits at most of Tit-for-Tat have been used. On the 
other hand, with partial imitation rule (pIR), when a C|DDDD agent confronts a Tit-
for-Tat agent, the C|DDDD will know only four bits of Tit-for-
Tat(S0|S1S2S3S4=C|DCDC), i.e., S0=C, S1=D, S2=C, S3=D, since S4  is not applicable 
as we do not run into S4 situation since it corresponds to the last pair of moves is CC 
and our agent  i  always  use D. . Thus, when agent i imitates agent j using pIR, agent 
i will become (C|DDDC), which corresponds to a Grim Trigger instead of Tit-for-Tat 
(C|DCDC). We call this new imitation rule the type 1 partial imitation rule, denoted 
by pIR1.     
     In a more relaxed scenario, we can slightly loosen the restriction on the access of 
our focal agent i to the information of neighbors’ strategy. If we denote the subset of 
agent j’s sequence of moves used during the confrontation between agent i and agent j 
as Sj(i,j), then we can assume that agent i knows the larger subset of strategy of agent 
j described by   

                                           )( ( , )( , )
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where Ω(j) denotes the nearest neighbors of agent j. Note that this set of sequences of 
moves used by agent j is substantially larger than Sj(i,j), but still should generally be 
much smaller than the entire set of strategies of player j. In pIR1, we provide agent i 
information on agent j defined by the set Sj(i,j). We now introduce a second type of 
partial imitation rule, denoted by pIR2, if we replace Sj(i,j) by the larger set Gj(i,j).   

Let’s illustrate pIR2 with an example.  Consider an always-cooperating agent i 
(C|CCCC) confronting a Grim Trigger (C|DDDC) agent j, who has four neighbors. 
One of them of course is the always cooperating agent i.  Let’s assume that the 
remaining three neighbors of agent j are always-defecting (D|DDDD). Let’s call these 
three neighbors agent a, b, and c. In the confrontation between agent i (who is 
C|CCCC) and agent j (Grim Trigger), agent j uses only S0 and S4 of Grim Trigger. 
However, in the confrontation between agent j (Grim Trigger) and its three neighbors 
(agent a b and c, who are D|DDDD), agent j will use S0, S1 and S3 of Grim Trigger. 
With pIR1, agent i imitates agent j, but the result is still C|CCCC as they will use C 
for S0 and S4 of Grim Trigger based on the set Sj(i,j). Now, for pIR2, agent i imitates 
agent j and changes from C|CCCC to the new strategy of agent i as C|DCDC, which is 
TFT. This is not a Grim Trigger. Finally, if we use tIR, the traditional imitation rule, 
we of course will replace agent i with Grim Trigger (C|DDDC).  We see from this 



example, the result of tIR, pIR1 and pIR2 are all different. For tIR, agent i will change 
from C|CCCC to C|DDDC. For pIR1, agent i will remain C|CCCC. For pIR2, agent i 
will change from C|CCCC to C|DCDC.  

4.  Results of Monte Carlo Simulation 

In this paper, agents will be placed on a fixed square lattice of size LxL, with periodic 
boundary condition. Each agent only interacts with its four nearest neighbors. For one 
“confrontation” we randomly choose an agent i and a neighbor j of i and let them play 
a number (F) of games with each other. The reason that we decide that in one 
confrontation between agent i and j, they have to play F(>1) games is that memory 
effect will not be evident unless there is some repeated encounter between the two 
players to let them learn about the selected strategies used. In order to test the 
strategies for different F, we introduce a probability parameter p for a player to stop 
playing games with his chosen opponent. We further define one generation of the PD 
game on the square lattice when all LxL confrontations are completed. With this 
stopping probability p, one effectively control the average number of games played 
between pair of players, thereby determining F.  According to our Hamiltonian in 
Eq.(1), the payoff of agent i after playing a game with agent j is given by the 
interaction term   

T
i jS A S
�� �

.  After F games between these two agents, we obtain the 
average payoff U(i) and U(j) of agent i and j over these games in this confrontation. 
The payoff parameters used are T=5.0, R=3.0, P=1.0, S=0.0.  Agent i will then 
imitate agent j with probability  ( ) 1( ( ) ( ))( ) 1 U i U j

i jP S S eβ
−−→ = + . Here, 1 / β  

represents the thermal noise level. We use β =100.  
   In order to verify the correctness of our program on SPDG, we first test our 
algorithm using the traditional imitation rule. We initialize our strategy sequence with 
each element assigned “cooperation (C)” or “defection (D)” at equal probability and 
our results of the simulation shown in Fig.1a is very similar to the published result of 
Baek and Kim (Fig.3a in [14]). Here, Tit-For-Tat (TFT) and Grim-Trigger (GT) 
dominate at long time. These two strategies together with Pavlov and C|CCDC are the 
only four surviving strategies in the long run. We then use the same program but with 
the partial imitation rule. In Fig.1(b), we use partial imitation rule 1 (pIR1) and in 
Fig.1(c), we use pIR2. In both cases, only GT dominates and the concentration of 
TFT is dramatically reduced to the level of Pavlov and C|CCDC. Results are 
independent of the lattice size.  Next, we should note that the number of games 
between two players in one encounter is controlled by the probability p to end one 
confrontation between the players. Our numerical experiments show that p affects the 
concentrations of all the strategies regardless of the imitation rule used. When p=1, 
agents will always cooperate or defect without making use of the memory mechanism 
as the game ends with certainty. When p is smaller than 1, there is a finite probability 
(1-p) that the agents continue playing games, thereby making use of their memory to 
activate the various moves of their strategies. In general, we should choose p 



sufficiently small so that the number of games played is sufficiently large and 
memory effect is evident. As our main concern is on the effect of using partial 
imitation rule on the dominance of various strategies, we use p=0.05 so that there are 
about 20 games played between neighbors.  Indeed, we have verified that the general 
results of our analysis are not sensitive to the values of p, provided that it is below 0.2.  

 

(a) (b) 

 

(c) 

Fig.1. Concentration of important strategies in SPDG on 100x100 square lattice with M1. Result 
is averaged over 1000 independent simulations, with β =100 using (a) traditional Imitation 
Rule (tIR ), (b) partial Imitation Rule 1 (pIR1),  and (c)  partial Imitation Rule 2 (pIR2) .  
 

In Fig.2, we show a particular run of the Monte Carlo simulation starting with a 
randomized initial configuration of players, using three kinds of imitation rules: tIR, 
pIR1, and pIR2. The time that we make the snapshot are t=5,10 and 20. The white 
clusters are the players adopting the GT strategies. These clusters grow till they begin 
to merge into larger connected clusters.  In order to understand the evolution of 
strategies and the emergence of the dominant clusters of GT, we introduce the 
following measures for the characterization of the topology of the GT clusters. At a 
given time, the total number of players adopting the GT strategies can be measured by 
the total area of the square lattice occupied by GT. Let this total area be A(t). We can 
also count the length of the boundary between GT and non GT players, and let’s 
denote this boundary as L(t). If we have a single cluster of GT, we can approximate 
the relation between L(t) and A(t) using a disk of radius R(t), so that

2( ) ( ), ( ) 2 ( )A t R t L t R tπ π= = . Now, if there are n equal size disks of GT clusters 
of radius R(t), then we have 2( ) ( ), ( ) 2 ( )n nA t n R t L t n R tπ π= = . Therefore the number of 
GT clusters can be estimated to be  ( )2( ) ( ) 4 ( )n nn t L t A tπ= .Since both the total area 

2( ) ( )nA t n R tπ=  and boundary length ( ) 2 ( )nL t n R tπ= are measurable, we can obtain the 
approximate number of GT clusters. Once we obtain n(t), we can obtained the average 
area of the GT clusters by dividing the total area of GT by n(t): ( ) ( ) / ( )a t A t n t= . Here 
the total area of GT clusters is denoted by ( ) ( )nA t A t≡ .   
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Fig. 2.  Evolution patterns of the GT clusters for (a) tIR (b) pIR1 and (c) pIR2 imitation rules 
at time measured by generation number t=5,10, and 20. 
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Fig.3. (a) Evolution of the total area occupied by players using GT strategies in the 
100x100 square lattice. Time is measured by generation number. (b) Average area 
per GT clusters vs total area of the GT clusters. It shows a collapse of data for three 
different imitation rules. 
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In Fig.3a, we summarize the results by plotting the average total area of GT players in 
the 100x100 square lattice as a function of time. We perform this analysis of the GT 
clusters based on the evolution patterns of the SPDG simulation results using different 
imitation rules as shown in Fig.2.In Fig.3b, we observe an interesting universal curve 
relating the average area a(t) of a GT cluster and the total area A(t) of GT clusters.      
We see that for all three imitation rules, the data collapse onto the same curve. The 
collapse of the data is better at small total area, corresponding to the early stage of 
evolution shown in Fig.3a: for tIR, the time is less than 25, for pIR2, the time is less 
than 30, and for pIR1, the time is less than 60. Since the measurement of time is 
different for different imitation rules, it is easier to measure time of evolution using 
the total area occupied by GT players. Therefore, the data collapse for the three 
imitation rules shown in Fig.3b indicates some intrinsic scaling relation of the 
dynamics of the game. Indeed, for tIR, the saturation of the average area of GT 
clusters in Fig.3a occurs sooner at time around 25, since there is a complete 
knowledge of the opponent’s moves before imitation. This saturation effect comes 
from the coalescence of the various GT clusters to form larger and irregular shaped 
GT clusters. This phenomenon is shown clearly in Fig.2 for a particular run of the 
evolution of the GT patterns. When the imitation rule is partial, the knowledge of the 
possible moves by the GT player is less, so the time needed for the saturation of the 
average area in Fig.3a will be longer for games with partial imitation rule. The fact 
that the time for saturation for pIR1 is more than pIR2 is then clear, since there is less 
information on the moves known to the player using pIR1 than pIR2, so saturation 
occurs sooner in pIR2 than in pIR1. When the information on the moves of one’s 
opponent is less available, it will take more time to realize the advantage of the GT 
strategy, so that the time for saturation of the average area is longer. Thus, in Fig.2, 
we see that at time t=10, the white clusters for pIR1 (Fig.2b), which has less 
information on the opponent’s moves, are generally smaller than the white clusters for 
pIR2 (Fig.2c), which has more information. For tIR (Fig.2a), there is complete 
information, so GT clusters are even larger. After saturation, the system enters into a 
state of dynamic equilibrium.   

5. Conclusion 

The memory of the players has important implication on the PD game. In view of the 
fact that the traditional imitation rule is unrealistic in assuming that a player can copy 
all the moves of the opponent, we introduce two kinds of partial imitation rules, 
different by the size of subset of moves observed in past games, and we find very 
different evolution patterns of various strategies. One major difference is that GT now 
becomes dominant, and TFT succumbs to the same miserable level of usage as Pavlov. 
We also observe a universal scaling of the average area of the cluster of GT for all 
three different imitation rules. This observation implies that there is some hidden 
scaling relation on the dynamics of SPDG with memory, and the level of partial  
imitation, as demonstrated by pIR1 and pIR2, corresponds to different region of the 
universal scaling curve. One generalization that we will further our investigation is to 



relate the sequence of partial imitation rule to the propagation of information on the 
moves of an opponent through his interaction with his nearest neighbors, (pIR1 and 
pIR2), and next nearest neighbors and so on. In this way, a social network based on 
the propagation of information on the history of moves by this opponent can be 
established. It will be a very interesting problem to relate this to “rumors propagation” 
in complex networks.  Finally, our analysis indicates that more realistic players in PD 
game will prefer using GT than TFT, when they use memory and access local 
information about the opponent before imitation. This result has important implication 
of previous studies on PD game as partial knowledge of the opponents’ moves should 
be the norm rather than the exception in real life. 
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