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Abstract. For many real-life engineering optimization problems, the
cost of one objective function evaluation can take several minutes or
hours. In this context, a popular approach to reduce the number of func-
tion evaluations consists in building a (meta-)model of the function to
be optimized using the points explored during the optimization process
and replacing some (true) function evaluations by the function values
given by the meta-model. In this paper, the local-meta-model CMA-ES
(lmm-CMA) proposed by Kern et al. in 2006 coupling local quadratic
meta-models with the Covariance Matrix Adaptation Evolution Strat-
egy is investigated. The scaling of the algorithm with respect to the
population size is analyzed and limitations of the approach for popu-
lation sizes larger than the default one are shown. A new variant for
deciding when the meta-model is accepted is proposed. The choice of the
recombination type is also investigated to conclude that the weighted
recombination is the most appropriate. Finally, this paper illustrates the
influence of the different initial parameters on the convergence of the
algorithm, for multimodal functions.

Key words: Optimization, Covariance Matrix Adaptation - Evolution
Strategy (CMA-ES), Meta-models

1 Introduction

Many real-world optimization problems are formulated in a black-box scenario
where the objective function to optimize f : R

n 7→ R may have noise, mul-
tiple optima and can be computationally expensive. Evolutionary algorithms
(EAs) are stochastic population based optimization algorithms that are usually
a good choice to cope with noise and multiple optima. For expensive objective
functions–several minutes to several hours for one evaluation–a strategy is to
couple EAs with meta-models: a model of f is built, based on “true” evaluations
of f , and used during the optimization process to save evaluations of the expen-
sive objective function [1]. One key issue when coupling EAs and meta-models
is to decide when the quality of the model is good enough to continue exploiting
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this model and when new evaluations on the “true” objective functions should
be performed. Indeed, performing too few evaluations on the original objective
function can result in suboptimal solutions whereas performing too many of
them can lead to a non efficient approach.

The covariance matrix adaptation ES (CMA-ES) [2, 3] is an EA recognized as
one of the most powerful derivative-free optimizers for continuous optimization3.
At each iteration of CMA-ES, the evaluation of candidate solutions on the objec-
tive function are performed. However, from those evaluations only the ranking
information is used. In consequence the algorithm is invariant to transforma-
tions on f preserving the ranking. CMA-ES was coupled with local meta-models
by Kern et al. [4]. In the proposed algorithm, lmm-CMA, the quality of the
meta-model is appraised by tracking the change in the exact ranking of the best
individuals. The lmm-CMA algorithm has been evaluated on test functions us-
ing the default population size of CMA-ES for unimodal functions and for some
multimodal functions and has been shown to improve CMA-ES [4].

In this paper, we analyze the performance of lmm-CMA when using popu-
lation sizes larger than the default one. We show that tracking the exact rank-
change of the best solutions to determine when to re-evaluate new solutions is
a too conservative criterion and leads to a decrease of the speedup with respect
to CMA-ES with increasing population size. Instead we propose a less conser-
vative criterion that we evaluate on test functions. This paper is structured as
follows. Section 2 gives an overview of CMA-ES and lmm-CMA. In Section 3,
we evaluate lmm-CMA-ES for population size larger than the default one. In
Sections 4.1 and 4.2, we propose a new variant of lmm-CMA. In Section 4.3, the
influence of the recombination type on the new variant is tested. The influence
of initial parameters is analyzed in Section 4.4.

2 CMA-ES with local meta-models

The Covariance Matrix Adaptation ES CMA-ES is a stochastic optimiza-
tion algorithm where at each iteration g, a population of λ points is sampled
according to a multivariate normal distribution. The objective function of the
λ points is then evaluated and the parameters of the multivariate normal dis-
tribution are updated using the feedback obtained on the objective function.
More specifically, let (mg, g ∈ N) be the sequence of mean values of the mul-
tivariate normal distribution generated by CMA-ES, constituting the sequence
of estimate of the optimum and let (σg, g ∈ N) and (Cg, g ∈ N) be respectively
the sequences of step-sizes and covariance matrices. Assume that mg, σg,Cg are
given, new points or individuals are sampled according to:

x
g
i = mg + σgNi(0,Cg), for i = 1 . . . λ , (1)

where (Ni(0,Cg))1≤i≤λ are λ independent multivariate normal distributions
with zero mean vector and covariance matrix Cg. Those λ individuals are ranked

3 See http://coco.gforge.inria.fr/doku.php?id=bbob-2009-results.
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according to f :
f(xg

1:λ) ≤ . . . f(xg
µ:λ) ≤ . . . f(xg

λ:λ) (2)

where we use the notation x
g
i:λ for ith best individual. The mean mg is then up-

dated by taking the weighted mean of the best µ individuals, mg+1 =
µ
∑

i=1

ωix
g
i:λ ,

where in general µ = λ
2 and (wi)1≤i≤µ denote strictly positive and normalized

weights, i.e., satisfying
µ
∑

i=1

ωi = 1. The default weights are equal to:

ωi =
ln(µ + 1) − ln(i)

µ ln(µ + 1) − ln(µ!)
, for i = 1 . . . µ. (3)

Furthermore σg and Cg are updated as well after evaluation and we refer to [3]
for the equation updates. All updates rely on the ranking determined by Eq. 2
only and not on the exact value of the objective functions such that the CMA-ES
is invariant when optimizing f or g ◦ f where g : R 7→ R is a strictly increasing
mapping. The default population size λ equals 4 + ⌊3 ln(n)⌋.

Locally weighted regression During the optimization process, a database,
i.e., a training set is built by storing, after every evaluation on the true objective
function, points together with their objective function values (x, y = f(x)). We
will later then show that some points whose evaluation is asked by the optimizer
are not evaluated on the true objective function. Assuming that the training set
contains a sufficient number m of couples (x, f(x)), for each individual in the
population, denoted now q ∈ R

n, locally weighted regression builds an approxi-
mate objective function using (true) evaluations stored in the training set. Kern
et al [4] have tested several types of models for the objective function (linear,
quadratic, ...) and have investigated the impact of the choice of the model com-
plexity and recommend to use a full quadratic meta-model that we will hence
consider in this paper. The full quadratic meta-model is built based on minimiz-

ing the following criteria w.r.t. the vector of parameters β ∈ R
n(n+3)

2 +1 of the
meta-model at q:

A(q) =
m

∑

j=1

[

(

f̂ (xj , β) − yj

)2

K

(

d (xj ,q)

h

)]

, (4)

where f̂ is the meta-model defined by

f̂ (x, β) = βT
(

x2
1, · · · , x

2
n, · · · , x1x2, · · · , xn−1xn, x1, · · · , xn, 1

)T
, (5)

with x = (x1, . . . , xn). The kernel weighting function K (.) is defined by K(ζ) =
(1−ζ2)21{ζ<1} where 1{ζ<1} is one if ζ < 1 and zero otherwise, and d denotes the
Mahalanobis distance with respect to the current covariance matrix C between

2 individuals defined as d (xj ,q) =

√

(xj − q)
T

C−1 (xj − q) , and h is the

bandwidth defined by the distance of the kth nearest neighbor data point to q

where k = n (n + 3) + 2 .
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Table 1. Test Functions and their corresponding initial intervals and standard devia-
tions. The starting point is uniformly drawn from the initialized interval.

Name Function Init. σ0

Noisy Sphere fNSphere(x) = (
n

P

i=1
x2

i ) exp (ǫN (0, 1)) [−3, 7]n 5

Schwefel fSchw(x) =
n

P

i=1
(

i
P

j=1
xj)

2 [−10, 10]n 10

Schwefel1/4 f
Schw1/4 (x) = (fSchwefel (x))

1
4 [−10, 10]n 10

Rosenbrock fRosen (x) =
n−1
P

i=1

“

100.
`

x2
i − xi+1

´2
+ (xi − 1)2

”

[−5, 5]n 5

Ackley fAck (x) = 20 − 20 exp
“

−0.2

s

1
n

n
P

i=1
x2

i

”

+ e − exp( 1
n

n
P

i=1
cos (2πxi)) [1, 30]n 14.5

Rastrigin fRast (x) = 10n +
n

P

i=1

`

x2
i − 10. cos (2πxi)

´

[1, 5]n 2

1 approximate f̂ (xk) , k = 1 . . . λ
2 rank the µ best individuals ranking0

3 evaluate f for the ninit best individuals, add to the training set

4 for nic := 1 to
“

λ−ninit
nb

”

do

5 approximate f̂ (xk) , k = 1 . . . λ
6 rank the µ best individuals rankingnic

7 if (rankingnic 6= rankingnic−1) then

8 evaluate f for the nb best unevaluated individuals, add to the training set
9 else

10 break

11 fi

12 od

13 if (nic > 2) then ninit = min(ninit + nb, λ − nb)
14 elseif (nic < 2) then ninit = max(nb, ninit − nb)

Fig. 1. The approximate ranking procedure, performed once the training set contains
a sufficient number of evaluations to build the meta-model. ninit and nb are initialized
respectively to λ and max[1, ( λ

10
)] .

Approximate Ranking Procedure The lmm-CMA-ES algorithm is using
the approximate ranking procedure in order to decide when the quality of the
model built is satisfactory [5]. This procedure heavily exploits the ranked-based
property of the CMA-ES algorithm. Fig. 1 gives the implementation of this pro-
cedure proposed in [4]. Initially, a number ninit of best individuals based on the
meta-model are evaluated using the true objective function and then added to
the training set. A batch of nb individuals is evaluated until satisfying the meta-
model acceptance criterion: keeping the ranking of each of the µ best individuals

based on the meta-model unchanged for two iteration cycles. Hence, (ninit,g +
nic nb) individuals are evaluated every generation where nic represents the num-
ber of iteration cycles needed to satisfy the meta-model acceptance criterion.
We note that ninit and nb are initialized respectively to λ and max[1, ( λ

10 )]. The
parameter ninit is adapted depending on the number of iteration cycles nic: ninit
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Table 2. Success performance SP1, i.e., the average number of function evaluations
for successful runs divided by the ratio of successful runs, standard deviations of the
number of function evaluations for successful runs and speedup performance spu, to
reach fstop = 10−10 of lmm-CMA and nlmm-CMA. The ratio of successful runs is
denoted between brackets if it is < 1.0. Results with a constant dimension n = 5 and
an increasing λ are highlighted in grey.

Function n λ ǫ lmm-CMA spu nlmm-CMA spu CMA-ES

fRosen 2 6 291 ± 59 2.7 252 ± 52 3.1 779 ± 236
4 8 776 ± 102 [0.95] 2.8 719 ± 54 [0.85] 3.0 2185 ± 359 [0.95]
5 8 1131 ± 143 2.7 1014 ± 94 [0.90] 3.0 3012 ± 394 [0.90]
5 16 1703 ± 230 [0.95] 2.0 901 ± 64 3.7 3319 ± 409
5 24 2784 ± 263 1.4 1272 ± 90 [0.95] 3.0 3840 ± 256
5 32 3364 ± 221 1.3 1567 ± 159 2.9 4515 ± 275
5 48 4339 ± 223 1.3 1973 ± 144 2.9 5714 ± 297
5 96 6923 ± 322 1.2 3218 ± 132 2.5 7992 ± 428
8 10 2545 ± 233 [0.95] 2.1 2234 ± 202 [0.95] 2.4 5245 ± 644

fSchw 2 6 89 ± 9 4.3 87 ± 7 4.4 385 ± 35
4 8 166 ± 8 5.4 166 ± 6 5.4 897 ± 51
8 10 334 ± 9 6.2 333 ± 9 6.2 2078 ± 138

16 12 899 ± 40 5.9 855 ± 30 6.2 5305 ± 166
f
Schw1/4 2 6 556 ± 25 2.4 413 ± 25 3.3 1343 ± 72

4 8 1715 ± 87 1.7 971 ± 36 2.9 2856 ± 135
5 8 2145 ± 69 1.6 1302 ± 31 2.7 3522 ± 136
5 16 3775 ± 137 1.3 1446 ± 31 3.4 4841 ± 127
5 24 5034 ± 142 1.2 1825 ± 45 3.4 6151 ± 252
5 32 6397 ± 174 1.2 2461 ± 43 3.2 7765 ± 227
5 48 8233 ± 190 1.2 3150 ± 58 3.2 10178 ± 202
5 96 11810 ± 177 1.2 4930 ± 94 2.9 14290 ± 252
8 10 4046 ± 127 1.5 2714 ± 41 2.2 5943 ± 133

fNSphere 2 6 0.35 124 ± 14 2.7 109 ± 12 3.1 337 ± 34

4 8 0.25 316 ± 45 2.3 236 ± 19 3.1 739 ± 30
8 10 0.18 842 ± 77 1.8 636 ± 33 2.4 1539 ± 69

16 12 0.13 2125 ± 72 1.3 2156 ± 216 1.3 2856 ± 88
fAck 2 5 302 ± 43 [0.90] 2.6 227 ± 23 3.5 782 ± 114 [0.95]

5 7 1036 ± 620 2.0 704 ± 23 [0.90] 3.0 2104 ± 117 [0.85]
10 10 2642 ± 93 [0.90] 1.4 2066 ± 119 [0.95] 1.8 3787 ± 151 [0.95]

fRast 2 50 898 ± 160 [0.95] 2.7 524 ± 48 [0.95] 4.7 2440 ± 294 [0.75]
5 70 19911 ± 599 [0.15] 0.6 9131 ± 135 [0.15] 1.3 11676 ± 711 [0.50]
5 140 6543 ± 569 [0.80] 1.6 4037 ± 209 [0.60] 2.6 10338 ± 1254 [0.85]
5 280 10851 ± 1008 [0.85] 1.3 4949 ± 425 [0.85] 2.9 14266 ± 1069
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Fig. 2. Speedup of nlmm-CMA (△) and lmm-CMA (�) on (a) fSchw1/4 , (b) fRosen and
(c) fRast for dimension n = 5.

is increased if (nic > 2) (Line 13 in Fig. 1) and decreased if (nic < 2) (Line 14
in Fig. 1).

3 Evaluating lmm-CMA on increasing population size

3.1 Experimental procedure

The lmm-CMA and the other variants tested are evaluated on the objective
functions presented in Table 1 corresponding to the functions used in [4] except
two functions: (1) the function fSchw1/4 where we compose the convex quadratic
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function fSchw by a strictly increasing mapping g : x ∈ R 7→ x1/4, introduced be-
cause we suspect that the results on fSchw are artificial and only reflect the fact
that the model used in lmm-CMA is quadratic and (2) the noisy sphere function
fNSphere whose definition has been modified following the recommendations of
[6]. We have followed the experimental procedure in [4] and performed for each
test function 20 independent runs using an implementation of lmm-CMA based
on a java code of CMA-ES4 randomly initialized from initial intervals defined
in Table 1 and with initial standard deviations σ0 in Table 1 and other stan-
dard parameter settings in [3]. The algorithm performance is measured using
the success performance SP1 used in [7]. SP1 is defined as the average number
of evaluations for successful runs divided by the ratio of successful runs, where a
run is considered as successful if it succeeds in reaching fstop = 10−10. Another
performance measure that might be used was the expected running time ERT
[8] which is defined as the number of function evaluations conducted in all runs
(successful and unsuccessful runs) divided by the ratio of successful runs. In this
paper, we opt for SP1 since the stopping criteria for unsuccessful runs were not
properly tuned which can affect the performance comparison. We have repro-
duced the results for the lmm-CMA presented in [4, Table 3]. Those results are
presented in Table 25.

3.2 Performances of lmm-CMA with increasing population size

In lmm-CMA, a meta-model is accepted if the exact ranking of the µ best in-
dividuals remains unchanged. However, this criterion is more and more diffi-
cult to satisfy when the population size λ and thus µ(= λ/2) increases. We
suspect that this can have drastic consequences on the performances of lmm-
CMA. To test our hypothesis we perform tests for n = 5 on fRosen, fSchw1/4 with
λ = 8, 16, 24, 32, 48, 96 and for fRast for λ = 70, 140, 280. The results are pre-
sented in Fig. 2 and rows highlighted in grey in Table 2. On fRosen and fSchw1/4 ,
we observe, as expected that the speedup with respect to CMA-ES drops with
increasing λ and is approaching 1. On fRast, we observe that the speedup for
λ = 140 is larger than for λ = 280 (respectively equal to 1.6 and 1.3).

4 A new variant of lmm-CMA

We propose now a new variant of lmm-CMA, the new-local-meta-model CMA-
ES (nlmm-CMA) that tackles the problem detected in the previous section.

4.1 A new meta-model acceptance criteria

We have seen that requiring the preservation of the exact ranking of the µ best
individuals is a too conservative criterion–for population sizes larger than the

4 See http : //www.lri.fr/∼hansen/cmaes inmatlab.html.
5 Experiments have been performed with k = n(n + 3) + 2 indicated in [4]. However

we observed some differences on fRosen and fSchwwith this value of k and found out
that k = n(n+3)

2
+ 1 allows to obtain the results presented in [4, Table 3]. We did

backup this finding by using the matlab code provided by Stefan Kern.
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1 approximate f̂ (xk) , k = 1 . . . λ
2 determine the µ best individuals set : set0
3 determine the best individual : elt0
4 evaluate f for the ninit best individuals, add to the training set

5 for nic := 1 to
“

λ−ninit
nb

”

do

6 approximate f̂ (xk) , k = 1 . . . λ
7 determine the µ best individuals set : setnic

8 determine the best individual : eltnic

9 if (ninit + nic nb < λ

4
)

10 if ((setnic 6= setnic−1) or (eltnic 6= eltnic−1)) then

11 evaluate f for the nb best unevaluated individuals, add to the training set
12 else

13 break

14 fi

15 elseif (eltnic 6= eltnic−1) then

16 evaluate f for the nb best unevaluated individuals, add to the training set
17 else

18 break

19 fi

20 od

21 if (nic > 2) then ninit = min(ninit + nb, λ − nb)
22 elseif (nic < 2) then ninit = max(nb, ninit − nb)

Fig. 3. The new approximate ranking procedure, performed once the training set con-
tains a sufficient number of evaluations to build the meta-model. ninit and nb are
initialized respectively to λ and max[1, ( λ

10
)] .

default one–to measure the quality of meta-models. We therefore propose to
replace this criterion by the following one: after building the model and ranking
it, a meta-model is accepted if it succeeds in keeping, both the ensemble of
µ individuals and the best individual unchanged. In this case, we ignore any
change in the rank of each individual from the best µ individuals, except for
the best individual which must be the same, as long as this individual is still
an element of the µ best ensemble. Another criterion is added to the acceptance
of the meta-model: once more than one fourth of the population is evaluated,
the model is accepted if it succeeds to keep the best individual unchanged. The
proposed procedure is outlined in Fig. 3. Considering only changes in the whole
parent set, without taking into account the exact rank of each individual, and
setting an upper limit on the number of true objective function evaluations was
first proposed in [9]. The new variant is called nlmm-CMA in the sequel.

4.2 Evaluation of nlmm-CMA

The performance results of nlmm-CMA are presented in Table 2 together with
the one of lmm-CMA. Table 2 shows that on fRast, the nlmm-CMA speedup is in
between 2.5 and 5 instead of 1.5 and 3 for lmm-CMA and on fAck, nlmm-CMA
outperforms lmm-CMA with speedups between 1.5 and 3.5 for nlmm-CMA and
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Table 3. SP1, standard deviations of the number of function evaluations for successful
runs and speedup performance spu, to reach fstop = 10−10 of nlmm-CMA, nlmm-CMAI

(intermediate recombination and default initial parameters), nlmm-CMA1(default re-
combination, initial values of ninit and nb set to 1) and nlmm-CMA2(default recombi-
nation type, ninit = 1 and nb = 1 during the whole optimization process). The ratio
of successful runs is denoted between brackets if it is < 1.0.

Function n λ ǫ nlmm-CMA spu nlmm-CMAI spu nlmm-CMA1 spu nlmm-CMA2 spu

fRosen 2 6 252 ± 52 3.1 357 ± 67 2.2 250 ± 80 3.1 229 ± 53 3.4
4 8 719 ± 54 [0.85] 3.0 833 ± 100 2.6 596 ± 55 3.7 575 ± 68 3.8
8 10 2234 ± 202 [0.95] 2.4 2804 ± 256 [0.95] 1.9 2122 ± 133 2.5 2466 ± 207 [0.85] 2.1

fSchw 2 6 87 ± 7 4.4 110 ± 10 3.5 75 ± 8 5.2 73 ± 7 5.3
4 8 166 ± 6 5.4 220 ± 15 4.1 138 ± 6 6.5 136 ± 5 6.6
8 10 333 ± 9 6.2 423 ± 15 4.9 374 ± 16 5.6 380 ± 21 5.5

16 12 855 ± 30 6.2 947 ± 24 5.6 794 ± 27 6.7 786 ± 37 6.8
f
Schw1/4 2 6 413 ± 25 3.3 550 ± 29 2.4 411 ± 20 3.3 398 ± 16 3.4

4 8 971 ± 36 2.9 1320 ± 76 2.2 938 ± 32 3.1 909 ± 30 3.1
8 10 2714 ± 41 2.2 2714 ± 257 2.2 2668 ± 40 2.2 2677 ± 36 2.2

fNSphere 2 6 .35 109 ± 12 3.1 135 ± 19 2.5 92 ± 11 3.7 87 ± 9 3.9

4 8 .25 236 ± 19 3.1 306 ± 40 2.4 216 ± 16 3.4 219 ± 16 3.4
8 10 .18 636 ± 33 2.4 788 ± 47 2.0 611 ± 35 2.5 619 ± 45 2.5

16 12 .13 2156 ± 216 1.3 2690 ± 421 1.1 2161 ± 148 1.3 2195 ± 142 1.3
fAck 2 5 227 ± 23 3.5 329 ± 29 [0.85] 2.4 226 ± 21 [0.95] 3.5 208 ± 19 3.8

5 7 704 ± 23 [0.90] 3.0 850 ± 43 [0.90] 2.5 654 ± 35 [0.95] 3.2 652 ± 32 [0.95] 3.2
10 10 2066 ± 119 [0.95] 1.8 2159 ± 58 1.8 2394 ± 52 [0.80] 1.6 1925 ± 44 2.0

fRast 2 50 524 ± 48 [0.95] 4.7 796 ± 68 [0.75] 3.1 569 ± 26 [0.35] 4.3 1365 ± 28 [0.10] 1.8
5 140 4037 ± 209 [0.60] 2.6 5265 ± 313 [0.55] 2.0 13685 ± 257 [0.10] 0.8 7910 ± 82 [0.10] 1.3

between 1.4 and 3 for lmm-CMA. On these functions, nlmm-CMA is significantly
more efficient. For the other tested functions fRast, fSchw and fSchw1/4 , nlmm-
CMA is marginally more efficient than the standard lmm-CMA. In Fig. 2 and
highlighted rows in Table 2, we evaluate the effect of increasing λ on nlmm-CMA
using the same setting as in Section 3.2. Using population sizes larger than the
default one, nlmm-CMA improves CMA-ES by a factor between 2.5 and 3.5 for
all tested functions fRosen, fSchw1/4 and fRast. Therefore, nlmm-CMA maintains
a significant speedup for λ larger than the default one contrary to lmm-CMA
which offers a speedup approaching to 1 for fRosen and fSchw1/4 and a decreasing
speedup (from 1.6 to 1.3) when λ increases (from 140 to 280) for fRast.

4.3 Impact of the recombination type

The choice of the recombination type has an important impact on the efficiency
of ES in general [10] and CMA-ES in particular [2, 3]. In the previous section,
all the runs performed use the default weighted recombination type defined by
Eq. 3. In the new variant of lmm-CMA, the meta-model acceptance criterion does
not take into account the exact rank of each individual except the best one. By
modifying the meta-model acceptance criteria of lmm-CMA, a possible accepted
meta-model may be a meta-model that preserves the µ best individuals set and
the best individual but generates a ranking far from the “true” ranking, i.e., the
one based on the true objective function. We now compare nlmm-CMA using
weighted recombination where weights are defined in Eq. 3 and intermediate
recombination where weights are all equal to 1/µ: nlmm-CMAI . Results are
presented in Table 3. The algorithm nlmm-CMA outperforms nlmm-CMAI in
all cases suggesting that even if the exact ranking is not taken into account
for assessing the quality of the meta-model in nlmm-CMA , this ranking is not
random and has still an amount of information to guide CMA-ES.
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4.4 Impact of initial parameters

In the tests presented so far, the initial parameters of the approximate ranking
procedure (ninit, nb) were initialized at the beginning of the optimization pro-
cess to (λ, max[1, ( λ

10 )]). Every generation g, the number of initial individuals
evaluated ninit is adapted (increased or decreased) depending on the meta-model
quality (Lines 21 and 22 in Fig 3). The number of evaluations performed every
generation is (ninit,g + nic,g × nb). We quantify now the impact of the initial
values of (ninit and nb) on the total cost of the optimization process. The al-
gorithm nlmm-CMA is compared to a similar version where initial parameters
are chosen as small as possible, i.e., ninit and nb are equal to 1. Moreover, we
consider two cases: (1) with update denoted nlmm-CMA1, i.e., where initial pa-
rameters are adapted depending on the iteration cycle number (Lines 21 and
22 in Fig 3), and (2) without update denoted nlmm-CMA2, i.e., parameters are
equal to 1 during the entire optimization process (omitting lines 21 and 22 in
Fig. 3). We note that in case (1), the number of evaluations for each generation
g is (ninit,g + nic,g × nb) where ninit,0 = 1 and nb = 1. In case (2), every gener-
ation, lmm-CMA evaluates (1 + nic,g) individuals. The results on different test
functions are summarized in Table 3.

On the unimodal functions fSchw, fSchw1/4 , setting ninit and nb as small as
possible in every generation, is marginally more efficient than the default def-
inition of initial parameters on small dimensions except for dimension n = 8
and λ = 10. On fRosen, nlmm-CMA2 is the most efficient compared to other
approaches, except for dimension n = 8 and λ = 10 which can be justified by
a higher number of unsuccessful runs compared to other approaches. On the
multimodal function fAck, modifying the initial parameter ninit does not have
an important impact on the speedup of lmm-CMA (between 1.5 and 4). How-
ever on fRast, using a small initial ninit decreases considerably the probability
of success of the optimization, from 0.95 to between 0.35 and 0.10 for dimension
n = 2 and λ = 50, and from 0.60 to 0.10 for dimension n = 5 and λ = 140.
Evaluating only an individual every iteration cycle does not cause, in general,
any changes in the ranking of the µ best individuals and therefore it causes a
premature acceptance of the meta-model. Hence, with a small initial parameters,
the optimization process can easily get stuck in local minima. However, setting
a sufficiently large initial ninit and a batch size nb proportional to λ prevents
the algorithm from a premature acceptance of the meta-model. These results
confirm the initial parameters choice suggested in [4].

5 Summary

In this work, we have investigated the performances of the lmm-CMA algorithm
coupling CMA-ES with local meta-models. On fRosen and fSchw1/4 , we have
shown that the speedup of lmm-CMA with respect to CMA-ES drops to one
when the population size λ increases. This phenomenon has been explained by
the too restrictive condition used to stop evaluating new points dedicated at
refining the meta-model, namely requiring that the exact ranking of the µ = λ/2
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best solutions is preserved when evaluating a new solution on the exact objective
function. To tackle this problem, we have proposed to relax the condition to: the

set of µ best solutions is preserved and the best individual is preserved. The
resulting new variant, nlmm-CMA outperforms lmm-CMA on the test functions
investigated and the speedup with CMA-ES is between 1.5 and 7. Moreover,
contrary to lmm-CMA it maintains a significant speedup, between 2.5 and 4,
when increasing λ on fRosen, fSchw1/4 and fRast. The study of the impact of the
recombination weights has shown that the default weights of CMA-ES are more
appropriate than equal weights. The influence of two parameters, nb and ninit,
corresponding to the number of individuals evaluated respectively initially and
in each iteration cycle has been investigated. We have seen that setting those
parameters to 1 during the whole optimization process can marginally improve
the performances on uni-modal functions and some multimodal test functions.
However it increases the likelihood to be stuck in local minima for the Rastrigin
function suggesting that the default parameter for lmm-CMA are still a good
choice for nlmm-CMA.
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