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Abstract. The selection of the most appropriate Evolutionary 
Algorithm for a given optimization problem is a difñcult task. Hybrid 
Evolutionary Algorithms are a promising alternative to deal with this 
problem. By means of the combination of different heuristic optimiza­
tion approaches, it is possible to profit from the benefits of the best 
approach, avoiding the hmitations of the others. Nowadays, there is an 
active research in the design of dynamic or adaptive hybrid algorithms. 
However, little research has been done in the automatic learning of the 
best hybridization strategy. This paper proposes a mechanism to learn a 
strategy based on the analysis of the results from past executions. The 
proposed algorithm has been evaluated on a well-known benchmark on 
continuous optimization. The obtained results suggest that the proposed 
approach is able to learn very promising hybridization strategies. 

1 Introduction 

The selection of the most appropriate Evolutionary Algorithm (EA) for a given 
optimization problem is a difñcult task, sometimes considered an optimization 
problem itself [2], 

Even though the No Free Lunch Theorem asserts tha t LLany two algorithms 
are equivalent when their performance is averaged across all possible prohlems11. 
in practice, and being constrained to certain types of problems, the performance 
of some particular algorithms is bet ter than others. In most of the cases, the 
selection of the most appropriate algorithm is carried out by the execution of 
several alternative algorithms (advised by the literature or the own experience) 
and then choosing the one reporting the best results. 

Supported by these arguments, hybrid evolutionary techniques are a promis­
ing alternative to deal with these situations. By combining different heuristic 
optimization approaches, it is possible to proñt from the beneñts of the best 
approach, avoiding the hmitat ions of the others. These hybrid algorithms also 
hold the hypothesis tha t the combination of several techniques can outperform 
the solé usage of its composing algorithms. This hypothesis is based on the idea 
that the comparative performance of the algorithms is not the same along the 
whole optimization process. Moreover, it is possible to identify different best 
performing algorithms for different phases of the optimization process. 



Nowadays, there is an active research in the design of dynamic or adaptive 
hybrid algorithms. However, this paper introduces a different perspective, barely 
explored in the literature. This contribution proposes a mechanism to learn the 
best hybrid strategy from the analysis of the results from past executions. The 
idea of using past executions to induce the most appropriate hybridization tech-
nique is particularly useful in those scenarios in which an optimization problem is 
solved múltiple times. These múltiple executions could include slightly different 
conditions that actually have an influence in the position of the optimal valué, 
but do not change the main characteristics of the ñtness landscape in which this 
optimization process searches. Many industrial problems have this characteristic 
in which the ñtness function is mainly the same, but the particular conditions 
or other input parameters are changed on each execution, e.g., the optimization 
of engineering structures evaluated under different stress conditions. 

A rather na'ive solution to this approach is the design of an alternating strat­
egy, based on the generation number or the ñtness valúes. Nevertheless, this idea 
does not consider that reaching a given ñtness valué or a particular generation 
number is achieved via a stochastic process. This process does not ensure that 
the same generations or the same ñtness valúes reached by an algorithm actually 
represent the same situation of the search process in two different executions. 
Any successful strategy would need not only this general parameters, but also 
other statistical or introspective information of the evolving population, in order 
to identify a situation similar to one previously learned. 

This paper presents a new hybrid Evolutionary Algorithm that learns the best 
sequence of techniques according not only to their performance but also to other 
statistical/informative parameters of the evolved population. This new algorithm 
has been evaluated using a well-known benchmark of continuous optimization 
functions and its results have been validated using non-parametric tests. 

The rest of the paper is organized as follows: Section 2 presents an overview of 
several hybrid algorithms. Section 3 details the proposed algorithm. In Section 4 
the experimental scenario is described in detail. Section 5 presents and comments 
on the results obtained and lists the most relevant facts from this analysis. 
Finally, Section 6 contains the concluding remarks obtained from this work. 

2 Related Work 

In this section, some of the most relevant work on High-level relay hybrid (HRH) 
algorithms will be reviewed. The HRH terminology was introduced in [7], one of 
the ñrst attempts to deñne a complete taxonomy of hybrid metaheuristics. This 
taxonomy is a combination of a hierarchical and a flat classiñcation structured 
into two levéis. The ñrst level defines a hierarchical classiñcation in order to 
reduce the total number of classes, whereas the second level proposes a flat 
classiñcation, in which the classes that deñne an algorithm may be chosen in 
an arbitrary order. From this taxonomy, four basic hybridization strategies can 
be derived: (a) LRH (Low-level relay hybrid): One metaheuristic is embedded 
into a single-solution metaheuristic. (b) HRH (High-level relay hybrid): Two 



metaheuristics are executed in sequence. (c) LTH (Low-level teamwork hybrid): 
One metaheuristic is embedded into a population-based metaheuristic. (d) HTH 
(High-level teamwork hybrid): Two metaheuristics are executed in parallel. For 
this work, we have focused on the HRH group, the one the algorithm proposed 
in this paper belongs to. 

There has been an intense research in HRH models in the last years combining 
different types of metaheuristics. In the following paragraphs some of the most 
recent and representative approaches will be reviewed. 

The DE algorithm is one of the evolutionary algorithms that has been recently 
hybridized following the HRH strategy. For example, it has been combined with 
Evolutionary Programming (EP) in [9]. The EP algorithm is executed for each 
trial vector created by the DE algorithm which is worse than its associated target 
vector. DE has also been combined with PSO [3]. In this case, the PSO algorithm 
is executed as the main algorithm but, from time to time, the DE algorithm is 
launched to move partióles from already explored áreas to new positions. The 
partióles preserve their velocity when they are moved by the DE in order to 
minimize the perturbation in the general behavior of the PSO algorithm. 

There have also been some studies that have tried to use adaptive learning for 
combining the algorithms. In [6], the authors propose two adaptive strategies, one 
heuristic and one stochastic, to adapt the participation of several local searches 
when combined with a Genetic Agorithm (GA). In both strategies, there is 
a learning phase in which the performance of each local search is stored and 
used in later generations in order to select the local search to apply. In [1,10] 
several local searches are combined with a metaheuristic algorithm using also 
an adaptive scheme. The application of each algorithm is based on a population 
diversity measure which varies among the studies. When applied to the DE 
algorithm, this strategy prevenís the stagnation problems of the DE by reducing 
the excessive difference of the best individual and the rest of the population. 

Finally, as far as the authors are concerned, no other study has ever tried 
to focus on doing a post-execution learning of the best patterns for combining 
the algorithms of a HRH algorithm. Therefore, this contribution proposes a new 
approach, based on this idea, to try to exploit the potential synergies between 
different search strategies. 

3 Contribution 

In this study, we propose the hypothesis that it is possible, based on the behavior 
of previous executions, to learn a hybridization strategy for the algorithms of 
an HRH algorithm in order to select the most appropiate algorithm for each 
iteration of the execution. 

For this task, a new methodology for executing HRH algorithms has been de-
veloped. Briefly, the methodology "observes" the execution of a HRH algorithm 
and stores some information about each state of the execution along with the 
information (for that state) of the performance of the algorithms involved in the 
hybrid algorithm. With this information, the methodology is able to construct a 



model and use it as a hybridization strategy of a new algorithm which will try in 
future executions to select the most appropiate algorithm for each state found. 

The main steps of this proposal are depicted in Figures 1.a and l.b. As pre-
viously mentioned, the methodology starts the execution of a HRH algorithm 
which, as all hybrid algorithms, has a hybridization strategy that determines the 
combination of the algorithms involved in the hybrid. Let P¿ be the population of 
iteration i and the active algorithm the one selected by the hybridization strat­
egy for executing at that iteration. First, the active algorithm is executed over 
Pi for M evaluations (period of evaluations) generating the population P^^je. 
In order to compare its performance, the remaining algorithms are also executed 
with the same starting population P¿, generating a new population P?, M for 
each j algorithm. The algorithm that produces the individual with the highest 
score from P¡l?t^'e and all P?, M populations is granted a win. Since the involved 
algorithms are stochastic, this process needs to be repeated several times in or­
der to obtain a more reliable measure of the performance. After N repetitions 
starting with the same population P¿, the methodology generates a data record 
which stores the information of the state and the number of wins of each of the 
involved algorithms. The state of an iteration is determined by some extracted 
measures from both the population and the hybridization strategy. The execu­
tion continúes with the population of the active algorithm of the last repetition 
and continúes this process until the stop criterion is satisñed. 

After a number of executions, a broad data set of data records, which store 
the performance of the algorithms over different states, is obtained. Then, the 
records are preprocessed, ñltering out those which have the same number of wins 
for all the algorithms and adding a class attribute which contains the algorithm 
with the highest number of wins. The resultant data set is used as input for 
a machine learning algorithm (c4.5 in this study), which returns a set of rules 
that determine the best algorithm to apply at each state. This model is used to 
construct the proposed smartHRH algorithm which, at each iteration, analyzes 
the state and selects (according to the model) the most appropriate algorithm. 

Since the proposed methodology can be applied to any HRH algorithm, the 
described process can also be successively applied to the smartHRH algorithm 
to reñne the learned model. To infer the model of each versión of smartHRH, the 
previous data sets of data records are also considered. Each data set participates 
with the same number of records, therefore, the máximum number which are 
sampled is determined by the smallest data set. 

Although the proposed process can be started with any HRH algorithm, an 
HRH algorithm which tries to select the best combination of algorithms has 
been used as the initial algorithm. This algorithm, called baseHRH, uses the 
information of the number of wins described earlier in order to select the best 
algorithm for a speciñc state. It follows the same steps of Figure 1.a but continúes 
the execution with the population of the last attempt of the algorithm that 
obtained the greatest number of wins. This way, the initial set of records used 
for learning come from a potentially good sequence of algorithms. 
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Fig. 1. Generation of the data records and learning procedure 

4 Experimentation 

For this experimentation, the benchmark from the workshop on Evoluüonary 
Algorithms and other Metaheuristics for Continuous Optimization Problems -
A Scalability Test held at the ISDA 2009 Conference has been considered. This 
benchmark defines 11 continuous optimization functions. The first 6 functions 
were originally proposed for the 'Special Session and Cornpetition on Large Scale 
Global Optimization11 held at the CEC 2008 Congress [8]. The other 5 functions 



Table 1. Functions Table 2. DE Parameter Valúes 

Id 
fl 
f2 
f3 

f4 
f5 
f6 
f7 

f8 
f9 
flO 
f l l 

Ñame 

Shifted Sphere Funct ion 
Shifted Schwefel's P rob lem 2.21 
Shifted Rosenbrock's Funct ion 
Shifted Rastr igin 's Funct ion 
Shifted Griewank's Funct ion 
Shifted Ackley's Funct ion 
Schwefel's P rob lem 2.22 
Schwefel's P rob lem 1.2 
Ex tended / io 
Bohachevsky 
Schaffer 

Pa rame te r 

Popula t ion size 
CR 
F 
Crossover Op. 
Selection Op. 

Valúes 

25 
0.5 
0.5 

Exponent ia l 
Tournament 2 

have been specially proposed for the Workshop of the ISDA 2009 Conference. 
These functions, presented in Table 1, have different degrees of difficulty and 
can scale to any dimensión. Detailed information about the selected benchmark 
can be found at the web page of the organizers of the workshop1. 

The results reported in this section are the aggregation of 25 independent ex-
ecutions on 200 dimensional functions. The performance criterion is the distance 
(error) between the best individual found and the global optimum in terms of 
fitness valué. Following the benchmark recommendations, the máximum number 
of Fitness Evaluations has been fixed to 5000 x D, where D is the number of 
dimensions. Due to the constraints of the framework employed, the máximum 
reachable error without loosing precisión is 1E—14. 

The algorithms that were used for the new HRH algorithm are two which com-
bination obtained very competitive results on the workshop of the ISDA 2009 
Conference [5]. These two are the DE algorithm and the first of the local searches 
of the MTS algorithm [11]. The MTS algorithm was designed for multi-objetive 
problems but it has also obtained very good results with large scale optimization 
problems. In fact, it was the best algorithm of the CEC'08 competition [8]. The 
DE algorithm is one of the recent algorithms that, due to its results, has quickly 
gained popularity on continuous optimization. In the last IEEE competitions on 
continuous optimization, a DE-based algorithm has always reached one of the best 
three positions. Nevertheless, DE is subject to stagnation problems which could 
heavily influence the convergence speed an the robustness of the algorithm [4]. 
Therefore, the idea of combining them is to assist the explorative power of DE by 
an exploitative local search which has proven to obtain some of the best results. 
The reason for selecting only the first of the three local searches of the MTS is 
that, in a previous study by the authors on the same set of functions, this local 
search was the one that achieved the best results. Besides, we have slightly modi-
fied this local search so that, at each iteration, it only explores a subset of randomly 

1 http://sci2s.ugr.es/programacion/workshop/Scalability.html 

http://sci2s.ugr.es/programacion/workshop/Scalability.html


selected dimensions (75% of the total). This modiñcation has achieved a similar 
performance with a 25% less of evaluations on a preliminary analysis allowing the 
hybrid algorithm to spend more evaluations in the DE algorithm. The parameters 
used for the DE are the same ones of a hybrid algorithm presented at the ISDA 
2009 Conference [5] and are presented in Table 2. Any measure could be used for 
specifying a state but, for the experiments, the following were selected: máximum 
age, number of evaluations, total and average number of evaluations per algo­
rithm, number of activations of each algorithm and the ration of one against the 
other, number of evaluations of the best individual without improvement and 
the best score. 

Finally the period of evaluations used to compare the performance of both 
algorithms has been set to 1250 evaluations, a valué that obtained good results 
in a set of previous tests. 

For analyzing the results, the following algorithms were executed over the 
benchmark: the DE algorithm, the ñrst local search of the MTS algorithms (LSI), 
a randomHRH algorithm which, at each iteration, selects an algorithm based on 
a binomial distribution of p = 1/2, the baseHRH algorithm used for obtaining 
the ñrst model described in Section 3 and the best smartHRH algorithm. Up to 
eight versions of smartHRH algorithms were obtained per function. From those 
eight, the one with the best average score was selected. Then, the algorithm was 
executed again using the same model of this best execution in order to be fair 
with the remaining algorithms. 

5 Analysis of the Results 

Table 3 presents the results of the average score of the 25 executions. The best 
valúes for each function are highlighted in the table. It can be seen that the 
smartHRH algorithm obtains the best results in 9 out of 11 functions, reaching 
the global optimum2 in 8 functions. It can also be seen that the smartHRH algo­
rithm outperforms the other HRH algorithms (random and base) in most of the 
functions. In order to obtain a better comparison, each algorithm was compared 
against each other using the non-parametric Wilcoxon signed-rank test. Each 
cell Dij in Table 4 displays the functions for which the results of algorithm i 
were signicantly better than those of algorithm j with &p — valué < 0.05. Here, 
the smartHRH algorithm is also the clear winner obtaining better results than 
any other algorithm in at least four functions whereas it only looses against ran­
domHRH in f2 and against DE and randomHRH in f3. In these two functions, 
the DE algorithm is better than the LSI algorithm at only certain stages of the 
evolution and only when allowed to execute for more evaluations than the ones 
used for the comparison of the algorithms (1250 in this case). If selected at these 
stages, the DE algorithm is able to reach better regions of the search space that 
could solve premature convergence problems or accelerate the convergence to 
the global optimum. Since the initial data does not provide any information to 
predict the long-term beneñts of selecting an algorithm (due to the length of 

2 As mentioned earlier with a precission of 1E—14. 



Table 3. Average Score Valúes 

Function 
fl 
f2 
f3 
f4 
f5 
f6 
f7 
f8 
f9 
fio 
f l l 

DE 
6.78E-01 
7.71E+01 
2.46E+02 
1.33E+00 
1.72E-01 
9.77E-02 
0.00E+00 
1.97E+05 
0.00E+00 
0.00E+00 
0.00E+00 

LSI 
0.00E+00 
5.99E+01 
6.98E+03 
0.00E+00 
3.25E-03 
1.00E-12 
0.00E+00 
4.78E+00 
5.23E+02 
0.00E+00 
4.91E+02 

baseHRH 
0.00E+00 
1.58E+01 
8.25E+03 
4.78E-01 
4.63E-03 
1.00E-12 
0.00E+00 
4.54E+00 
3.97E-06 
0.00E+00 
8.41E-06 

randomHRH 
0.00E+00 
5.34E+00 
1.26E+03 
1.60E+01 
9.86E-04 
1.00E-12 
0.00E+00 
8.30E+00 
8.16E+01 
1.06E-08 
7.89E+01 

smartHRH 
0.00E+00 
1.34E+01 
7.63E+03 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
4.52E+00 
0.00E+00 
0.00E+00 
0.00E+00 

Table 4. Comparison between algorithms 

algorithm 
baseHRH 
smartHR 
DE 
LSI 
randomHRH 

baseHRH 

5,6,9,11 
3,5,6,9,11 

2,3,5,6,8 

smartHRH 

3 

2,3 

DE 
1,2,4,8 
1,2,4,8 

1,2,4,8 
1,2 

LSI 
2,9,11 
2,5,6,9,11 
3,5,6,9,11 

2,3,5,9,11 

randomHRH 
4,8,9,10,11 
4,5,6,8,9,10,11 
3,4,5,6,9,10,11 
4,8 

the period of evaluations), no record of the DE algorithm is generated and no 
transition to this algorithm is made in the smartHRH algorithm. 

In the remaining functions, the smartHRH algorithm is able to detect the 
best strategy for obtaining the best results. For some functions, the smartHRH 
decides to execute only one of the algorithms (the best one for that function) 
whereas for others it combines them in order to obtain more stable results or 
to reach better solutions. For example, in f5, all the algorithms reach the global 
optimum in some of their executions, whereas the smartHRH algorithm is the 
only one to achieve this goal in all of its executions. In f6, the combination of 
both algorithms allow the smartHRH algorithm to reach the global optimum 
in all of its executions whereas none of the other algorithms is able to reach it 
in any of its executions. An example of the evolution of the score of a single 
execution of the algorithms over the f6 function is displayed in Figure 2. The 
DE algorithm is not displayed because it quickly converges to poor regions of 
the search space. It can be seen that the smartHRH algorithm has discovered a 
beneñcial pattern (executing the DE algorithm after several evaluations of the 
LSI algorithm) which allows it to reach the global optimum. 

An example of the rules generated by the algorithm for functions f5 and f6 
is presented in Table 5. As mentioned before, for f6, the algorithm extracts a 
simple pattern based on the number of evaluations which allows it to reach the 
global optimum in all the executions. In f5, the evolution of the algorithms is not 
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Fig. 2. Comparison of the evolution of the score 

Table 5. Rules obtained for functions f5 and f6 

f5 
conditions 
if jfcactivationsde 
aQ€-rriax 

avgnevalsisi 
else if avgnevalsisi 
else if ^activationsí 
SCOTCjnax 

< = 9 
< = 1899 
< = 68126 
< = 37662 

s i < = 2 
< = 0.99 

and 
and 

and 

else 

algorithm 

lsl 
de 

de 
lsl 

support 

600 
169 

64 
65 

precisión 

0.99 
0.93 

0.64 
0.83 

f6 
conditions 
if ^evaluations < = 88925 
else 

algorithm 
lsl 
de 

support 
809 
358 

precission 
1.0 
0.99 

always the same and has different patterns. For this reason, the induced model 
has more rules of higher complexity. 

6 Conclusions 

In this work, a new hybrid algorithm that learns the best sequence of algorithms 
has been presented. This learning process uses the information of several param-
eters of the population, the hybridization and the performance of the algorithms 
in order to determine the future hybridization strategy. For the experimentation. 
the benchmark from the workshop on continuous optimization of the ISDA 2009 
Conference has been considered. The results have been analyzed and compared 
with statistical tests. The analysis has proven that the new algorithm is able 



to obtain the best overall results, reaching the global opt imum in 9 out of 11 
functions. This is a ñrst s tudy for validating tha t the proposed approach can 
learn very promising hybridization strategies for an HRH algorithm over a set 
of well-known functions. It must be taken into account tha t the objective of this 
s tudy is not to compete against the best algorithms on continuous optimization. 
since it would not be fair due to the extra number of evaluations used in the 
learning phase and the per function tuning of the proposed algorithm. As future 
work we plan to apply this approach to scenarios in which a slightly different op­
timization problem needs to be solved múltiple times. Therefore, the smar tHRH 
algorithm could be trained with several instances of the problem so the resultant 
algorithm could obtain bet ter results on unseen instances. 
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