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Abstract, The selection of the most appropriate Evolutionary
Algorithm for a given optimization problem is a difficult task. Hybrid
Evolutionary Algorithins are a promising alternative to deal with this
problem. By imeans of the combination of different heuristic optimiza-
tion approaches, it is possible to profit fromm the benefits of the best
approach, avoiding the limitations of the others. Nowadays, there is an
active research in the design of dynamic or adaptive hybrid algorithms.
However, little research has been done in the automatic learning of the
best hybridization strategy. This paper proposes a mechanism to learn a
stratepy based on the analysis of the results from past executions. The
proposed algorithm has been evaluated on a well-known benchmark on
continuous optimization. The obtained results suggest that the proposed
approach is able to learn very promising hybridization strategies.

1 Introduction

The selection of the most appropriate Evolutionary Algorithm (EA) for a given
optimization problem is a difficult task, sometimes considered an optimization
problem itself [2].

Even though the No Free Lunch Theorem asserts that “any twe algorithms
are equivalent when their performance is averaged across all possible problems”,
in practice, and being constrained to certain types of problems, the performance
of some particular algorithms is better than others. In most of the cases, the
selection of the most appropriate algorithm is carried out by the execution of
several alternative algorithms {advised by the literature or the own experience)
and then choosing the one reporting the best results.

Supported by these arguments, hybrid evolutionary techniques are a promis-
ing alternative to deal with these situations. By combining different heuristic
optimization approaches, it is possible to profit from the benefits of the hest
approach, avoiding the limitations of the others. These hybrid algorithms also
hold the hypothesis that the combination of several techniques can outperform
the sole usage of its composing algorithms. This hypothesis is based on the idea
that the comparative performance of the algorithms is not the same along the
whole optimization process. Moreover, it is possible to identify different best
petrforming algorithms for different phases of the optimization process.



Nowadays, there is an active research in the design of dynamic or adaptive
hybrid algorithms. However, this paper introduces a different perspective, barely
explored in the literature. This contribution proposes a mechanism to learn the
best hybrid strategy from the analysis of the results from past executions. The
idea of using past executions to induce the most appropriate hybridization tech-
nique is particularly useful in those scenarios in which an optimization problem is
solved multiple times. These multiple executions could include slightly different
conditions that actually have an influence in the position of the optimal value,
but do not change the main characteristics of the fithess landscape in which this
optimization process searches, Many industrial problems have this characteristic
in which the fithess function is mainly the same, but the particular conditions
or other input parameters are changed on each execution, e.g., the optimization
of engineering structures evaluated under different stress conditions.

A rather naive solution to this approach is the design of an alternating strat-
egy, based on the generation number or the fitness values. Nevertheless, this idea
does not consider that reaching a given fitness value or a particular generation
number is achieved via a stochastic process. This process does not ensure that
the same generations or the same fithess values reached by an algorithm actually
represent the same situation of the search process in two different executions.
Any successful strategy would need not only this general parameters, but also
other statistical or introspective information of the evolving population, in order
to identify a situation similar to one previously learned.

This paper presents a new hybrid Evolutionary Algorithm that learns the best
sequence of techniques according not only to their performance but also to other
statistical /informative parameters of the evolved population. This new algorithm
has been evaluated using a well-known benchmark of continuous optimization
functions and its results have been validated using non-parametric tests.

The rest of the paper is organized as follows: Section 2 presents an overview of
several hybrid algorithms, Section 3 details the proposed algorithm. In Section 4
the experimental scenario is described in detail. Section 5 presents and comments
on the results obtained and lists the most relevant facts from this analysis.
Finally, Section 6 contains the concluding remarks obtained from this work.

2 Related Work

In this section, some of the most relevant work on High-level relay hybrid (HRH)
algorithms will be reviewed. The HRH terminology was introduced in [7], one of
the first attempts to define a complete taxonomy of hybrid metaheuristics. This
taxonomy is a combination of a hierarchical and a flat classification structured
into two levels. The first level defines a hierarchical classification in order to
reduce the total number of classes, whereas the second level proposes a flat
classification, in which the classes that define an algorithin may be chosen in
an arbitrary order. From this taxonomy, four basic hybridization strategies can
be derived: (a) LRH (Low-level relay hybrid): One metaheuristic is embedded
into a single-solution metaheuristic. (b) HRH (High-level relay hybrid): Two



metaheuristics are executed in sequence. {¢} LTH (Low-level teamwork hybrid):
One metaheuristic is embedded into a population-based metaheuristic. (d) HTH
(High-level teamwork hybrid): Two metaheuristics are executed in parallel. For
this work, we have focused on the HRH group, the one the algorithm proposed
in this paper belongs to.

There has been an intense research in HRH models in the last vears combining
different types of metaheuristics. In the following paragraphs some of the most
recent and representative approaches will be reviewed.

The DE algorithm is one of the evolutionary algorithms that has been recently
hybridized following the HRH strategy. For example, it has been combined with
Evolutionary Programming (EP) in [9]. The EP algorithm is executed for each
trial vector created by the DE algorithm which is worse than its assaciated target
vector. DE has also been combined with PSO [3]. In this case, the PSO algorithm
is executed as the main algorithm but, from time to time, the DE algorithm is
launched to move particles from already explored areas to new positions. The
particles preserve their velocity when they are moved by the DE in order to
minimize the perturbation in the general behavior of the PSO algorithm.

There have also been some studies that have tried to use adaptive learning for
combining the algorithms. In [6], the authors propose two adaptive strategies, one
heuristic and one stochastic, to adapt the participation of several local searches
when combined with a Genetic Agorithm (GA). In both strategies, there is
a learning phase in which the performance of each local search is stored and
used in later generations in order to select the local search to apply. In [1,10]
several local searches are combined with a metaheuristic algorithm using also
an adaptive scheme. The application of each algorithm is based on a population
diversity measure which varies among the studies. When applied to the DE
algorithm, this strategy prevents the stagnation problems of the DE by reducing
the excessive difference of the best individual and the rest of the population.

Finally, as far as the authors are concerhed, no other study has ever tried
to focus on doing a post-execution learning of the best patterns for combining
the algorithms of a HRH algorithm. Therefore, this contribution proposes a new
approach, based on this idea, to try to exploit the potential synergies between
different. search strategies.

3 Contribution

In this study, we propose the hypothesis that it is possible, based on the behavior
of previous executions, to learn a hybridization strategy for the algorithms of
an HRH algorithm in order to select the most appropiate algorithm for each
iteration of the execution.

For this task, a new methodology for executing HRH algorithims has been de-
veloped. Briefly, the methodology “observes” the execution of a HRH algorithm
and stores some information about each state of the execution along with the
information (for that state) of the performance of the algorithms involved in the
hybrid algorithm. With this information, the methodology is able to construct a



madel and use it as a hybridization strategy of a new algorithm which will try in
future executions to select the most appropiate algorithm for each state found.

The main steps of this proposal are depicted in Figures 1.a and 1.b. As pre-
viously mentioned, the methodology starts the execution of a HRH algorithm
which, as all hybrid algorithms, has a hybridization strategy that determines the
combination of the algorithms involved in the hybrid. Let P; be the population of
iteration ¢ and the active algorithm the one selected by the hybridization strat-
esy for executing at that iteration. First, the active algorithm is executed over
P; for M evaluations (period of evaluations) generating the population fﬁﬁ}’"i.
In order to compare its performance, the remaining algorithms are also executed
with the same starting population F;, generating a new population Pf+ p for
each j algorithm. The algorithm that produces the individual with the highest
score from P2 and all P/, populations is granted a win. Since the involved
algorithms are stochastic, this process needs to be repeated several times in or-
der to obtain a more reliable measure of the performance. After N repetitions
starting with the same population F;, the methodology generates a data record
which stores the information of the state and the number of wins of each of the
involved algorithms. The state of an iteration is determined by some extracted
measures from both the population and the hybridization strategy. The execu-
tion continues with the population of the active algorithm of the last repetition
and continues this process until the stop criterion is satisfied.

After a number of executions, a broad data set of data records, which store
the performance of the algorithms over different states, is obtained. Then, the
records are preprocessed, filtering out those which have the same number of wins
for all the algorithms and adding a class attribute which contains the algorithm
with the highest number of wins. The resultant data set is used as input for
a machine learning algorithm (c4.5 in this study), which returns a set of rules
that determine the best algorithm to apply at each state. This model is used to
construct the proposed smartHRH algorithm which, at each iteration, analyzes
the state and selects (according to the model} the most appropriate algorithm.

Since the proposed methodology can be applied to any HRH algorithm, the
described process can also he successively applied to the smartHRH algorithm
to refine the learned model. To infer the model of each version of smartHRH, the
previous data sets of data records are also considered. Bach data set participates
with the same number of records, therefore, the maximmm number which are
sampled is determined by the smallest data set.

Although the proposed process can be started with any HRH algorithm, an
HRH algorithm which tries to select the best combination of algorithms has
been used as the initial algorithm. This algorithm, called baseHRH, uses the
information of the number of wins described earlier in order to select the best
algorithin for a specific state. It follows the same steps of Figure 1.a but continues
the execution with the population of the last attempt of the algorithm that
obtained the greatest number of wins. This way, the initial set of records used
for learning come from a potentially good sequence of algorithms.



(a)

Each algorithm is executed for M evaluations
Finally, the execution

- Then the max scores are continues with the
PR compared. The one with last population of the
/7 the maximum score gets a active algorithm
% J} =D | et

cHive
6" s | 2 ]

29 e !

Repeat N times After N attempts,

anew data record

is created with
several measures
Age |Score [algl #evals |alg2 #evals | Algl Alg2 and the n# of wins
L nwine nwins of the algorthms
2 |o23 (1200 50 2 0.23
On each execution the
(b) algorithm generates a \
set of records | e Jmeors ] ot mwins
e(’g\ I 1 o1 a
o
Exec #2 .. m " Age | Score nwins | sig2 nwina | ..
HRH |=——= >I T - . | i |‘w 7 I I The records with
10 ne 2 1 1 1 -
Algorithim » the same nwins per
. {L algorithm are
filtered
‘*'*’sog I Hgn | Sesen | g nwine
1,
e,{'% I 2z ae 5 )

4} The class atribute
is generated based
Age | Soore [ algt awins | alge nwins | daes | on the nwins
T e | e | 1 |w | difference

- smanHAH
Machine
Leaming | => ( Model | ==
Algorithm Model

Fig. 1. Generation of the data records and learning procedure

4 Experimentation

For this experimentation, the benchmark from the workshop on FEwolutionary
Algorithms and other Metaheuristics for Continuous Optimization Problems -
A Secalability Test held at the ISDA 2009 Conference has heen considered. This
benchmark defines 11 eontinuous optimization functions. The first 6 functions
were originally proposed for the *Special Session and Compelition on Large Scale
Global Optimization” held at the CEC 2008 Congress [8]. The other 5 funetions



Table 1, Functions Table 2, DE Parameter Values

Id |[Name Parameter Values

f1 [Shifted Sphere Function Population size 25

f2 |Shifted Schwefel's Problem 2.21 CR 0.5

£3 |Shifted Rosenbrock’s Funetion F 0.5

fa [Shifted Rastrigin’s Function Crossover Op. | Exponential
f5 [Shifted Griewank's Funection Selection Op. [Tournament 2

f6 [Shifted Acklev's Function
7 |Schwefel’s Problem 2.22
f3 [Schwefel’s Problem 1.2

9 |Extended fio
f10|Bohachevsky

f11|Schaffer

have been specially proposed for the Workshop of the ISDA 2009 Conference.
These functions, presented in Tahble 1, have different degrees of difficulty and
can scale to any dimension. Detailed information about the selected benchmark
can be found at. the web page of the organizers of the workshop!.

The results reported in this section are the aggregation of 25 independent ex-
ecutions on 200 dimensional functions. The performance criterion is the distance
{error} between the best individual found and the global optimum in terms of
fitness value. Following the benchmark recommendations, the maximum number
of Fitness Evaluations has been fixed to 5000 x D, where D is the number of
dimensions. Due to the constraints of the framework employed, the maximum
reachable error without loosing precision is 1E—14.

The algorithms that were used for the new HRH algorithm are two which com-
bination obtained very competitive results on the workshop of the ISDA 2009
Conference [5]. These two are the DE algorithm and the first of the local searches
of the MTS algorithm [11]. The MTS algorithim was designed for multi-objetive
problems but it has also obtained very good results with large scale optimization
problems. In fact, it was the best algorithm of the CEC 03 competition [8]. The
DE algorithm is one of the recent algorithms that, due to its results, has quickly
gained popularity on continuous optimization. In the last IEEE competitions on
continuous optimization, a DE-based algorithm has always reached one of the best
three positions. Nevertheless, DE is subject to stagnation problems which could
heavily influence the convergence speed an the robustness of the algorithm [4].
Therefore, the idea of combining them is to assist the explorative power of DE by
an exploitative local search which has proven to obtain some of the best results.
The reason for selecting only the first of the three local searches of the MTS is
that, in a previous study by the authors on the same set of functions, this local
search was the one that achieved the best results. Besides, we have slightly modi-
fied this local search so that, at each iteration, it only explores a subset of randomly

! http:/ /sci2s.ugr.es/programacion /workshop/Scalability. il
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selected dimensions (75% of the total). This modification has achieved a similar
performance with a 25% less of evaluations on a preliminary analysis allowing the
hybrid algerithm to spend mare evaluations in the DE algorithm. The parameters
used for the DE are the same ones of a hybrid algorithm presented at the ISDA
2009 Conference [5] and are presented in Table 2. Any measure could be used for
specifying a state but, for the experiments, the following were selected: maximum
age, number of evaluations, total and average number of evaluations per algo-
rithm, number of activations of each algorithm and the ration of ohe against the
other, number of evaluations of the best individual without improvement and
the best score.

Finally, the period of evaluations used to compare the performance of both
algorithms has been set to 1250 evaluations, a value that obtained good results
in a set of previcus tests.

For analyzing the results, the following algorithms were executed over the
benchmark: the DE algorithm, the first local search of the MTS algorithms (L51),
a randomHRH algorithm which, at each iteration, selects an algorithm based on
a binomial distribution of p = 1/2, the baseHRH algorithm used for obtaining
the first model described in Section 3 and the best sartHRH algorithm. Up to
eight versions of smartHRH algorithms were obtained per function. From those
eight, the one with the best average score was selected. Then, the algorithm was
executed again using the same model of this best execution in order to be fair
with the remaining algorithims,

5 Analysis of the Results

Table 3 presents the results of the average score of the 25 executions. The best
values for each function are highlighted in the table. It can be seen that the
smartHRH algorithm obtains the best results in 9 out of 11 functions, reaching
the global optimum? in 8 functions. It can also be seen that the smartHRH algo-
rithm outperforms the other HRH algorithms (random and base) in most of the
functions. In order to obtain a better comparison, each algorithm was compared
against each other using the non-parametric Wilcoxon sighed-rank test. Each
cell Dy ; in Table 4 displays the functions for which the results of algorithm ¢
were signicantly better than those of algorithm j with a p — value < 0.05. Here,
the smartHRH algorithm is also the clear winner obtaining better results than
any other algorithm in at least four functions whereas it only looses against ran-
domHRH in 2 and against DE and randomHRH in £3. In these two functions,
the DE algorithm is better than the L51 algorithm at only certain stages of the
evolution and only when allowed to execute for more evaluations than the ones
used for the comparison of the algorithms (1250 in this case). If selected at these
stages, the DE algorithm is able to reach better regions of the search space that
cauld solve premature convergence problems or accelerate the convergence to
the global optimum. Since the initial data does not provide any information to
predict the long-term benefits of selecting an algorithm (due to the length of

2 As mentioned earlier with a precission of 1E—14,



Table 3. Average Score Values

Function|DE LS1 baseHRH [|randomHRH|simartHRH
f1 6.78E—01 |0.00E4+00(0.00E4+00|0.00E+00 |0.00E400
2 7.71IE+01 [5.99E+01 [1.58E401 |5.34E4+00 [1.34E+01

£3 2.46E4-02]6.98E4+03 [3.25E403 |1.26E+03 7.63E403

f4 1.33E400 [0.00E400]4, T8E—01 [1.60E401 0.00E400
4] 1.72E-01 |3.25E-03 [4.63E-03 [9.86E-04 0.00E+00
6 9.77TE—02 |[LO0OE—12 [1.00E—12 |[1.00E—12 0.00E4+00
7 0.00E4-00|0.00E4+00(0.00E4+00|0.00E+00 |0.00E4+00
3 1.9TE4+05 |4.78E+00 [4.54E4+00 |3.30E400 4.52E+00
i 0.00E4-00|5.23E4+02 [3.9TE—-06 [8.16E+01 0.00E4+00
f10 0.00E4-00|0.00E4+00(0.00E4+00|1.06E—08 0.00E400
f11 0.00E4+00|4.91E+02 |8.41E-06 |7.80E+01 0.00E+00

Table 4. Comparison between alporithins

algorithm  |baseHRH[smartHRH|DE |LS1 randomHRH
baseHRH 1.2.4,8/2,9.11 4.8,9,10,11
smartHR. 56911 1.2.4,8(2,5,6,9,11]4,5,6,3,9,10,11
DE 3,569,113 3,5,6,9,1113,4,5,6,9,10,11
L51 1,248 4.8
randomHBH|[2,3,5,6,8 (2,3 1.2 2,3.5,9,11

the period of evaluations), no record of the DE algorithm is generated and no
transition to this algorithm is made in the smartHRH algorithm.

In the remaining functions, the smartHRH algorithm is able to detect the
best strategy for obtaining the best results. For some functions, the smartHRH
decides to execute only one of the algorithms (the best one for that function)
whereas for others it combines them in order to obtain more stable results or
to reach better solutions. For example, in £5, all the algorithms reach the global
optimum in some of their executions, whereas the smartHRH algorithm is the
only one to achieve this goal in all of its executions. In 16, the combination of
both algorithms allow the smartHRH algorithm to reach the global optimum
in all of its executions whereas none of the other algorithms is able to reach it
in any of its executions. An example of the evolution of the score of a single
execution of the algorithms over the {6 function is displayed in Figure 2. The
DE algorithm is not displayed because it quickly converges to poor regions of
the search space. It can be seen that the smartHRH algorithm has discovered a
beneficial pattern (executing the DE algorithm after several evaluations of the
L31 algorithm) which allows it to reach the global optimum.

An example of the rules generated by the algorithm for functions f5 and f6
is presented in Table 5. As mentioned hefore, for f6, the algorithm extracts a
simple pattern based on the number of evaluations which allows it to reach the
global optimum in all the executions. In 5, the evolution of the algorithms is not
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Fig. 2. Comparison of the evolution of the score

Table 5. Rules obtained for functions f5 and f6
fa
conditions algorithm|support |precision
if #activationsy. <=9 and
A€ maz <=1899 and
avgrevalsay <= 68126 1s1 600 (.99
alse if avgnevals;y <= 37662 de 169 0.93
else if #activations, <=2 and
SCOTEmar <= (.99 de 64 .64
alse Is1 65 (.83
f6
conditions algorithm|support|precission
if #evaluations <= 88925 Is1 804 1.0
else de 358 (.99

always the same and has different patterns. For this reason, the induced model
has more rules of higher complexity.

6 Conclusions

In this work, a new hybrid algorithm that learns the best sequence of algorithms
has been presented. This learning process uses the information of several param-
eters of the population, the hybridization and the performance of the algorithms
in order to determine the future hybridization strategy. For the experimentation,
the benchmark from the workshop on continuous optimization of the ISDA 2009
Conference has been considered. The results have been analyzed and compared
with statistical tests. The analysis has proven that the new algorithm is able



to obtain the best overall results, reaching the global optimum in 9 out of 11
functions. This is a first study for validating that the proposed approach can
learn very promising hybridization strategies for an HRH algorithm over a set
of well-known functions. It must be taken into account that the objective of this
study is not to compete against the best algorithms on continuous optimization,
since it would not be fair due to the extra number of evaluations used in the
learning phase and the per function tuning of the proposed algorithm. As future
work we plan to apply this approach to scenarios in which a slightly different op-
timization problem needs to be solved multiple times. Therefore, the smartHRH
algorithm could be trained with several instances of the problem so the resultant
algorithm could obtain better results on unseen instances.
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