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Adaptive Noisy Optimization

Philippe Rolet and Olivier Teytaud

TAO (Inria), Lri, Cnrs Umr 8623, Univ. Paris-Sud, F-91405 Orsay, France

Abstract. In this paper, adaptive noisy optimization on variants of the
noisy sphere model is considered, i.e. optimization in which the same
algorithm is able to adapt to several frameworks, including some for
which no bound has never been derived. Incidentally, bounds derived
by [16] for noise quickly decreasing to zero around the optimum are
extended to the more general case of a positively lower-bounded noise
thanks to a careful use of Bernstein bounds (using empirical estimates
of the variance) instead of Chernoff-like variants.

1 Introduction

Noisy optimization is a critical part of optimization since many real-world appli-
cations are noisy. It is sometimes called “stochastic optimization” [IT7IT36IT4],
but “stochastic optimization” now often refers to the optimization of determin-
istic fitness functions by stochastic algorithms. Therefore we will here use “noisy
optimization”. Noisy optimization often distinguishes between (i) cases in which
the variance of the noise quickly decreases to zero around the optimum and (ii)
cases in which the variance of the noise is lower bounded. In the literature, var-
ious theoretical analyses of complexity bounds can be found for (i), while works
covering (ii) are scarce. This paper is concerned with an algorithm covering both
frameworks. Various works [8J9/T] have investigated noisy optimization from a
theoretical point of view, often with a rough mathematical analysis and some-
times with rigorous arguments (as e.g. [I2I16]). In particular, some recent pa-
pers investigated the use of bandit algorithms [10], inspired from the multi-armed
bandit framework (see e.g. [2]), that rely on concentration inequalities such as
Hoeffding confidence bounds. The following work proposes a rigorous runtime
analysis of noisy expensive optimization based on such a bandit algorithm, in
frameworks that are not covered by previously published papers. Specifically, it
is shown that the same algorithm can be optimal (within logarithmic factors)
for several families of fitness functions simultaneously, extending results of [16]
to a quite broader class of noisy fitnesses. The paper is organized as follows.
Section [2] defines the framework and introduces some notations. Section [3 states
lower bounds that have been derived for this framework in the extant literature,
and briefly discusses possible expectations. Section [ presents races, a central
tool for our subsequent results. Section [l introduces the algorithm and proves
an upper bound on its runtime. Section [G] provides straightforward extensions of
this analysis and pinpoints possible further work.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 592-{601] 2010.
© Springer-Verlag Berlin Heidelberg 2010



Adaptive Noisy Optimization 593

2 Framework

The black-box optimization framework is described in Algorithm [ (similar to
[16], but for wider families of fitness functions): the algorithm can request fitness
values at any point of the domain, and no other information on the fitness
function is available. The paper is interested in expensive optimization: it is
assumed that obtaining a fitness value is much more costly than running the
optimization algorithm. Therefore, the complexity is measured by the number
of requests to the fitness. Let X be a domain, and f : X x X — [0, oo[ such that
V(x,z*) € X2, f(x,2%) > f(x*,2*). The class of fitness functions we consider is
{z — f(z,t)|t € X}, thus each fitness f(.,t) is parameterized by the (unknown)
location of its optimum, ¢t. The goal is to find the optimum ¢ (also referred
to as * in the sequel) of f(.,t), by observing noisy measurements of f(.,t) at
requested points ;. In the following, ¢ is not handled stochastically, i.e. the lower
bounds are not computed in expectation w.r.t. all the possible fitness functions
yielded by different values of ¢. Rather, the worst case on ¢t will be considered. For
simplicity, we only deal with deterministic algorithms; the extension to stochastic
algorithms is straightforward by including a random seed in the algorithm.

Noisy measurements of the fitness at point x are modeled by a random variable
Rand(zx) satisfying

Rand(z) € [0,1], E[Rand(z)] = f(z,z") (1)

This noise model fits, among others, the goal of finding for a given algorithm
a set of parameters minimizing the probability of failure. It notably raises two
issues: (i) since few assumptions on the distribution law are made, one cannot
use the fact that the probability mass of Rand(z) is centered on f(z,a*) ( it
would be the case in i.e. a gaussian noise model). (ii) it is not limited to values
worse than those at the optimum as in previous analyses[I2]. Importantly, while
[1] emphasized that for many algorithms a residual error remains, ours is truly
consistent (i.e. ||z, — z*|| —oo 0) as shown in Theorem [II of section [l
Note that the second equation implies:

Var[Rand(z)] < E[Rand(z)]. (2)

A simple example (from [16]) is Rand(z) = 1 with probability f(x,z*) and 0
otherwise. It is worth noticing that the algorithm considered for proving conver-
gence and upper bound on convergence rates is invariant by addition of a constant.
Therefore, our analysis is not restricted to Rand(x) € [0, 1] since Eq. 2 could be
adapted to Var[Rand(x)] < f(z)—inf, inf Rand(u) (inf here stands for “essential
infimum”). [I6] were interested in the sphere function ( f(z,z*) = ||z — z*||), a
special case in which the variance promptly decreases to 0 around the optimum.
In the sequel, wider classes of fitness functions will be studied:

Scaled sphere function. f(z,z*) = M|z — z*|| (case that might be handled
similarly to [16]).
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Algorithm 1. Noisy optimization framework. Opt is a deterministic optimiza-
tion algorithm; it takes as input a sequence of visited points and their measured
fitness values, and outputs a new point to be visited. Noisy fitness values are
noted y! since they depend on the fitness f(.,#)’s optimum ¢ . The goal is to
find points 2 of the domain such that f(z,t) is as small as possible. Algorithm
Opt is successful on target function f(.,t) if Loss(t, Opt) is small.

Parameter: N, number of fitness evaluations
for n € [[0, N — 1]] do
Tnt1 = Opt(z1, ..., Tn, Yty .., yh)
yh 41 is a draw of random variable Rand(z,+1) (see Eqs M)
end for
Loss(t,Opt) = f(xn,t)

Scaled and translated sphere function: (noted S-T sphere from here
on). f(z,z*) = M|z — 2*|| + ¢ (not covered by [16], and fundamentally harder
since the variances does not decrease to 0 around the optimum).

Transformed sphere. f(z,2*) = g(||]x — 2*||) for some increasing mapping g
from [0, co[ onto a subset of [0, 1].

We consider, in all these cases, a domain X whose diameter satisfies
SUP(, yyex2 [T —yl| < 1, and 2* € X, so that these settings are well defined.
Straightforward extensions are discussed in section [0 In the paper, [[a,b]] =
[a,b] N. If (a,b) € (RP)2, then [a,b] = {x € RP Vi € [[1,D]],a; < x; < b;}.

3 Lower Bounds

In this section we discuss the lower bounds for each of the three models described
above. The goal of the rest of the paper will be to show that these bounds are
reached within logarithmic factors. Sections 4 and [l will describe an algorithm
which has these guaranteed results on the models discussed above. Interestingly,
the algorithm is the same for all models.

Scaled sphere function. In this setting, a direct consequence of [16] is that
the distance between the optimum and its approximation is at best O(1/n) after
n iterations (for any algorithm). Theorem B] (sec. Bl) shows that this rate can be
reached within logarithmic factors.

S-T sphere. Nothing has been poved in this case, to the best of our knowl-
edge. No formal proofs on the matter will be given here; however, here are
some intuitive ideas on the behavior of the lower bound. With the S-T sphere
function, the variance can be lower bounded by some positive constant c:
inf, Var[Rand(z)] > ¢ > 0. Therefore, evaluating a point n times leads to a
confidence interval on its mean whose length is roughly /¢/n. As a consequence,
the precision for an estimate of fitness with n evaluations cannot be less than
©(1/+/n). Since the precision on the fitness space is linear as a function of the pre-
cision in the search space, it is reasonable to believe that ||z;} — ;|| = ©(1/y/n)
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is the best achievable rate. This rate can be reached by our algorithm, as shown
in section [ (Theorem [2)).

Monotonically transformed sphere. If the transformation function ¢ is an
arbitrary monotonically increasing function, the problem can be made arbitrarily
difficult. Therefore, we will only have to show that we guarantee convergence.
This consistency will be proved in next section (Theorem [I]).

4 Hoeffding/Bernstein Bounds; Their Application to
Races

This section recalls some concentration inequalities necessary to analyze the com-
plexity of the algorithm that will be used to prove upper bounds on convergence
rates. These inequalities are aimed at quantifying the discrepancy between an
average and an expectation. Here, we focus on bounded random variables. The
well-known Hoeffding bounds [I1] were the first to generalize bounds on bino-
mial random variables to bounded random variables. For some of our purposes,
an improved versions of these bounds accounting for the variance[534], known
as Bernstein’s bound, will be required. Writing a detailed survey of Hoeffding,
Chernoff and Bernstein’s bounds is beyond the scope of this paper. We will only
present the Bernstein bound, within its application to races. A race between two
or more random variables aims at distinguishing with high confidence random
variables with better expectation from those with worse expectation.
Algorithm 2] presents a Berstein race for 3 random variables—it is called a
Bernstein race because it makes use of the Bernstein confidence bound. The
Bernstein race in this paper will be used to distinguish between points x; of the
domain X, based on random variables Rand(z;). At the end of the race, 3T

Algorithm 2. Bernstein race between 3 points. Eq. Bl is Bernstein’s inequal-
ity for estimating the precision for empirical estimates (see e.g. [, pl124]). &;
is the empirical estimate of the standard deviation of point xz;’s associated ran-
dom variable Rand(x;) (it is 0 in the first iteration, which does not alter the
algorithm’s correctness). f(z) is the average of the fitness measurements at z.

Bernstein(a1, a2, as,d’)
T=0
repeat
T—T+1
Evaluate the fitness of points x1, 2, z3 once, i.e. evaluate the noisy fitness at each
of these points.
Evaluate the precision:

3272 R 3272
E(T>:3log( o )/T+m?xai\/210g( ¥ )/T (3)

until Two points (good ,bad) satisfy f(bad) — f(good) > 2¢ — return (good, bad)




596 P. Rolet and O. Teytaud

evaluations have been performed, therefore T is referred to as the halting time
in the sequel. The reason why ¢’ is used in Alg. @l as the confidence parameter
instead of & will appear later on. Let us define A as

A =sup{ERand(x1), ERand(x2), ERand(x3)}
— inf{ERand(z1), ERand(x2), ERand(x3)}.

It is known[15] that if A >0,

— with probability 1 — ¢’, the Bernstein race is consistent:
ERand(good) < ERand(bad). (4)

— the Bernstein race halts almost surely, and with probability at least 1 — &',
the the halting time T verifies

1
T < Klog (m) /A? where K is a universal constant. (5)

— if, in addition,
A > Csup{ERand(z1), ERand(z2), ERand(zs3)}, (6)
then the Bernstein race halts almost surely, and with probability at least
1 —¢’, the halting time T verifies

1
T < K'log (m) /A where K’ depends on C only. (7)

The interested reader is referred to [I5] and references therein for more.

5 Upper Bounds for Noisy Optimization

Algorithm Bl (based on the Bernstein race discussed above) will be used for
proving our upper bounds. This algorithm was proposed in [16], with a weaker
version of races. In the present work, the race was improved so that it can
deal with more general settings than those of [16]. Informally, the algorithm
(adapted from [I6] for the case of variance not decreasing to zero around the
optimum) is as follows. The domain is a hyper-rectangle [z, , 2] of RP. Define
the azes of a hyper-rectangle as the lines parallel to any edge of the hyper-
rectangle, and containing the center of the hyper-rectangle. At iteration n, the
algorithm considers the axis on which the hyper-rectangle is the largest (any
rule for breaking ties is allowed). Three points are placed along this axis, one
at the center of the hyper-rectangle, and the two others at the two intersections
between the axis and the hyper-rectangle’s frontier.

Then, the algorithm uses the Bernstein race for selecting a point good,, and
a point bad, among these three points, such that the good,, point is closer to
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Algorithm 3. Algorithm for optimizing noisy fitness functions. Bernstein
denotes a Bernstein race, as defined in Algorithm The initial domain is
[z5,2¢] € RY. § is the confidence parameter.

n <0
while True do
c = argmax;(z;}); — (x5, )i // Pick the coordinate with highest uncertainty
o = (z)e — (n)e
for i € [[1, 3]] do
a'y — Lz, + ). // Consider the middle point
(') — (7)) + Szt —an)e. //except that the ¢ coordinate may take
// 3 different values
end for
(good, bad,) = Bernstein(z'y, z'2, x5, %). // a good and a bad point
Let H, be the halfspace {x € R?; ||z — good,|| < ||z — bad,||}.
Split the domain: [z, , 2}, ] = Hn N [z, 27}].
n«—n+1
end while

the optimum than the bad,, point. The Bernstein race described in section [ by
algorithm [ guarantees this with confidence 1 — &' [

In the transformed sphere models under analysis, E Rand(z) is increasing as
a function of ||z — z*||, thus the optimum is in the hyper-rectangle H = {z €
RP; ||z — good,|| < ||z — bad,|| with probability 1 — §. The first lemma for our
proofs is given below:

Lemma 1. Let § > 0, and let fitness f be an increasing transformation of the
sphere function x — ||x—z*|| A Let Rand(zx) be the noisy answer to an evaluation
of f as defined above. If, in algorithm[3, the Bernstein race halts at all steps until
iteration n, then:

3 n N B N B 3 n/D] N B
1) e —aoll <llaw —arll < { 5 llzg — o I, (8)

and (Vi < n,ERand(good;) < ERand(bad;)) = z* € [z, , ], 9)

n

and for some constant K depending on the dimension only,

x* € [z, 7] = I(good,, bad,,) € {:10’,11,96’2 x’i}Q, (10)

no

[ = bady || > ||2* — goodn|| + K[|z — || (11)

! Note that this particular kind of race is not interested in knowing how good remain-
ing points (other than good, and bad,) are. It might be that in our case the third
point is even closer to the optimum, but the point of this race is not to determine
the closest point, it is to provide two points such that one is closer than the other.

2 The transformed sphere covers models of the S-T sphere, and of the scaled sphere.
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Due to length constraints, the proof of this lemma is not given here. A very
similar lemma is used for the case of a variance decreasing to zero around the
optimum, in [16]. O

A consequence of this lemma is the following convergence guarantee:
Theorem 1 (Consistency of Algo. 3] for the transformed sphere). In

the transformed sphere model, Algo. [3 ensures z,, — z* and x} — x* with
probability at least 1 — 9.

Proof

Eq. @ of the previous lemma implies that ||z} — z || — 0. We will now show
that with probability 1 — 4, z* € [z;,,x;}] by establishing the left-hand side of
Eq. @ by induction. This will be sufficient to prove theorem [I1

— The induction hypothesis H(n) is as follows:

n+1
. s 66 .
With probability at least 1 — ,;_1 W’VZ < n,ERand(good;) < ERand(bad;).

— H(0) : 2* € [zy , 2] by definition.
— Let us assume H(n — 1) for n > 0. For clarity, the statement Vi <
n, ERand(good;) < ERand(bad;) is written G(n).

P(G(n)) = P(G(n — 1),ERand(good,,) < ERand(bad,,))
= P(ERand(good,,) < ERand(bady,) | G(n —1))P(G(n — 1))

"L 66 66
= 1—§ — Y1 - — 1
( P 7T2]€2)< 7T2(?’L+1)2) ( 2)
n+1
64
>1-— —

which proves H(n). The first term of eq. [I2 is the application of H(n — 1).
The second term is a property of the Bernstein race described in Algo. [2]
and used in Algo. Bl

It only remains to observe that Y ;= (66/(7i)?) = 6 to conclude. O

The number of iterations is of course log-linear (log(||lx; — z*||)/n is upper
bounded by a negative constant), but the number of evaluations per iteration
might be arbitrary large. More precise (faster) results, for the other (simpler)
models will now be considered.

Theorem 2 (Hoeffding rates for the S-T sphere model). Consider the S-
T sphere model, and a fized dimension D. The number of evaluations requested by

Algo. 3 for reaching precision e with probability at least 1— 0 is O(M).
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Proof. Eq. Il ensures that
A, = Sup{ERand(x’,ll), ERand(x’i), ERand(x’i)}

— inf{ERand(z’.), ERand(z’>), ERand(z'>)}
> [lz* = bady|| — 2" — goody||

verifies A, = Q2(||z;7 — z,||). Therefore, applying the concentration inequality
[l the number of evaluations in the n*” iteration is at most

0 (108 (s ) Mlow —i1?) (13)

Now, let us consider the number N (¢€) of iterations before a precision ¢ is reached.
Eq. Bl shows that there is a constant k& < 1 such that

e < |l —ay || < RN (14)

Injecting Eq. [4 in Eq. [[3] shows that the cost (the number of evaluations) in
the last call to the Bernstein race is

Boundasi(€) = O ( log (W‘L“) /62) . (15)

)
Since N(e) = O(log(1/¢)), Boundast = O(log(log(1/€')/0)). For a fixed dimen-
sion D, there exists k' > 1 such that the cost of the (N(e) — i) iteration is at
most
O([Boundyqst/(K')']) (16)

because the algorithm ensures that after D iterations, ||z} — z;, || decreases by
at least 3/4.

The sum of the costs for N(e) iterations is therefore the sum of
O(Boundyst /(K')?) for i € [[0,N(e) — 1]], that is O(Bound.st/(1 — k') =
O(Boundjast) (plus O(N (€)) for the rounding associated to the [...] in Eq. [I6).

The overall cost is therefore O(Boundjqs: +1og(1/€)). This yields the expected
result. 0

Theorem 3 (Bernstein rates for the scaled sphere model). Consider the
scaled sphere model, and a fixed dimension D. Then, the number of evaluations

log(log(1/)/9) )

requested for reaching precision € with probability at least 1—4 is O( c

Proof. The proof follows the lines of the proof of Theorem [2] except for one
point. As well as for Theorem[2, we use the fact that for the scaled sphere model
(and in fact also for the S-T sphere model), Eq. [[] holds, which implies (with
A, = sup; ERand(x’},) — inf; ERand(z'}))

An = 0(||z3 =z |- (17)
However, for the scaled sphere model, we can also claim

sup ERand(a",,) = O(||z} — @, |). (18)
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Eqgs. [T and [I§ lead to Eq.
Furthermore, Eq. [l implies that Eq. Il can be replaced by

Boundjasi(€) = O ( log (WM) /e) . (19)

The summation as in the proof of Theorem [l now leads to an overall cost
O<10g(10g(1/5)/5)). 0

€

6 Discussion

We considered the optimization of noisy fitness functions, where the fitness in x
is randomized, with values in [0, 1], and expected value f(z,z*) where z* is the
optimum. The following models were studied: (i) Sphere function: f(z,z*) =
|l — z*||; (i) Scaled sphere function: f(z,z*) = A||x — 2*||; (ili) S-T sphere
function: f(z,z*) = M|z — 2*|| + ¢; (iv) Transformed sphere: f(z,2*) = g(||z —
2*||). The first case only was in the state of the art. The same algorithm (using
Bernstein’s inequality) ensures that with probability 1 — ¢, the optimum z* is
in a set of diameter d,, (after n fitness evaluations), which provably decreases as
shown in Table[Il There are some straightforward extensions, the main one being
that convergence rates only depends on f(x,2*) for x close to z*: all f such that
f(z,z*) = O(]|x — z*||) lead to the same asymptotic rate as the scaled sphere;
and all f such that f(z,2*) — ¢ = O(||lx — 2*||) lead to the same asymptotic
rate as the scaled and translated sphere function. Therefore, it is likely that the
proposed approach is much more general than variants of the sphere model as
formally considered here. It has been shown in [I6] that some links exist between
the rates for f(z,z*) = ||lz—z*|| and f(z,2*) = ||z —2*|; these links will not be
developed here. The main further works are: (i) formalizing the lower bound for
the case of the scaled and translated sphere function; (ii) experiment real-world
algorithms or adapted version of real-world algorithms (as e.g. [10]) on these
fitness functions.

Table 1. Precision 6, (diameter of the region in which might be the optimum) as
a function of the number n of fitness evaluations. The O(.) means that logarithmic
factors are present. Dependencies in ¢ can be found in detailed results; the dependency
in the dimension can be computed from the proofs, but we guess they are not optimal.
The constants depend on A and on the dimension; ¢ has no impact on the constant for
the scaled and translated sphere function.

Model Precision ||z, — z,! ||
Sphere function O(1/n)
Scaled sphere function O(1/n)
Scaled and translated sphere function O(1//n)
Transformed sphere o(1)
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