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Abstract. Multi-stage financial decision optimization under uncertainty
depends on a careful numerical approximation of the underlying stochas-
tic process, which describes the future returns of the selected assets
or asset categories. Various approaches towards an optimal generation
of discrete-time, discrete-state approximations (represented as scenario
trees) have been suggested in the literature. In this paper, a new evolu-
tionary algorithm to create scenario trees for multi-stage financial opti-
mization models will be presented. Numerical results and implementation
details conclude the paper.
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1 Introduction

Stochastic programming is a versatile method to model and solve decision prob-
lems under uncertainty. See [1] for an overview of the area of stochastic pro-
gramming, and [2] for stochastic programming languages, environments, and
applications.

We consider the following generalized formulation of a multi-stage stochastic
financial optimization model. The decision taker faces a discrete-time decision
horizon t = 1, . . . , T , and a set of investment assets (or asset categories) A
with uncertain future returns Va. These uncertain returns are represented by
a stochastic process discretized into a multi-variate, multi-stage scenario tree.
This scenario tree is used to build either a deterministic equivalent model for-
mulation, which can be solved using off-the-shelf solvers, or to use a stochastic
decomposition algorithm to obtain numerical solutions of the problem. The ob-
jective function consists of a risk-return bi-criteria functional, whereby the aim
is to maximize the expected wealth and to minimize some risk functional F of
the wealth at the terminal stage T . This resembles the classical Markowitz-style
asset allocation [3], see also the multi-stage generalization presented by [4]. The
chosen risk factor does not necessarily have to be the variance, e.g. other coher-
ent risk measures as shown by [5] or similar probability-based measures might
be better suited for different risk management purposes, and can be integrated
into the model. Both dimensions - expectation and risk - are weighted using a
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risk-aversion parameter κ, which can be adapted to the needs of the investor
and to the current market situation. The main decision is concerned with the
amount of budget ba to be invested into each asset (or asset category) a, as the
portfolio is rebalanced at each stage t = 2, . . . , T − 1. There is no rebalancing at
terminal stage T . Furthermore, additional investment budget B is available at
each stage up to T − 1, which is deterministically determined in advance in this
basic model. An important constraint is that the amount of purchases p in each
stage cannot exceed the sum of the amount of sales s plus the additional budget
available at the respective stage.

Given the above problem specification, we may formulate our multi-stage
stochastic programming model as shown in Eq. 1. The numbers in square brack-
ets represent the stage(s) at which the respective constraint is active.

maximize E(
∑

a∈A
ba, T ) + κF(

∑
a∈A

ba, T )
subject to

∑
a∈A

ba = B [1]

ba ≤ Vab
(−1)
a + pa − sa ∀a ∈ A [2, . . . , T − 1]∑

a∈A
pa ≤

∑
a
sa +B [2, . . . , T − 1]

ba ≤ Vab
(−1)
a ∀A [T ]

ba, pa, sa ≥ 0 ∀A [1, . . . , T ]

(1)

The multi-stage recourse decision can be observed in the second and the fourth
constraint: Va represents the future asset return of asset (or asset category) a

in the respective stage (on the scenario tree) and is multiplied by the invested

budget b
(−1)
a of the previous stage.

The parameters which have to be specified by the decision taker are the
asset returns Va, which are stochastic and need to be tree-approximated, as well
as the deterministic budget B. The stochastic decision variables, which will be
calculated via numerical optimization solver include the current (investment)
budget ba, purchases pa, as well as sales sa of each asset a out of the given
investment universe A at each stage t. This model represents the basic building
block and can be arbitrarily extended to the needs of the decision taker, e.g. by
integrating dynamic risk measures, see e.g. [6].

However, the crucial part of the whole stochastic programming workflow is
to generate a multi-stage scenario tree, i.e. the Va, which represents a careful
approximation of the uncertainty of the asset (or asset category) returns, such
that a sensible risk management can be based on it.

This paper is organized as follows. Multi-stage scenario tree generation will
be briefly sketched in Section 2. A new evolutionary algorithm to create multi-
stage scenario trees is presented in Section 3. Section 4 summarizes selected
numerical results and the implementation, while Section 5 concludes the paper.

2 Multi-stage scenario tree generation

That scenario tree should represent the uncertain structure of the reality as close
as possible, because the quality of the tree severely affects the quality of the so-
lution of the multi-stage stochastic decision model, such that any approximation



scheme should be done in consideration of some optimality criteria, i.e. before a
stochastic optimization model is solved, a scenario optimization problem has to
be solved independently of the optimization model.

In the context of scenario optimization, optimality can be defined as the
minimization of the distance between the original (continuous or highly discrete)
stochastic process and the approximated scenario tree. Choosing an appropriate
distance may be based on subjective taste, e.g. moment matching as proposed
by [7], selected due to theoretical stability considerations (see [8] and [9]), which
leads to probability metric minimization problems as shown by [10] and [11], or it
may be predetermined by chosen approximation method, e.g. by using different
sampling schemes like QMC in [12] or RQMC in [13], see also [14]. It is important
to remark that once the appropriate distance has been selected, an appropriate
heuristic to approximate the chosen distance has to be applied, which affects the
result significantly.

Single-stage scenario generation, i.e. an optimal approximation of a multi-
variate probability distribution without any tree structure can be done via var-
ious sampling as well as clustering techniques. The real algorithmic challenge of
multi-stage scenario generation is maintaining a tree structure while still min-
imizing the overall distance. Only in rare cases, this problem can be solved
without the application of heuristics. See [15] for a general overview of algorith-
mic aspects of multi-stage scenario generation, and [16] for details on financial
multi-stage scenario generation.

3 Evolutionary multi-stage scenario tree generation

The list of successful applications of evolutionary algorithms for solving financial
problems is quickly growing, see especially [17], [18], [19], [20], and the references
therein. This motivates for creating an evolutionary algorithm for the process of
optimal multi-stage stochastic financial scenario generation.

We assume that there is a finite set S of multi-stage, multi-variate scenario
paths, which are sampled using the preferred scenario sampling engine selected
by the decision taker. Stages will be denoted by t = 1, . . . , T where t = 1
represents the (deterministic) root stage (root node), and T denotes the terminal
stage. Therefore, the input consists of a scenario path matrix of size |S|×(T−1).
Furthermore, the desired number of nodes of the tree in each stage is required,
i.e. a vector n of size (T − 1).

For the rest of the paper we will focus on the uni-variate case. However,
the extension to the multi-variate case does not pose any structural difficulties
besides that a dimension-weighting function for calculating the total distance on
which the optimality of the scenario tree approximation is based on has to be
defined.

A crucial part in designing a multi-stage scenario tree generator based on
evolutionary techniques is finding a scalable genotype representation of a tree -
both in terms of the numbers of stages as well as the number of input scenarios.
The approach taken in this paper is using a real-valued vector in the range [0, 1]



and mapping it to a scenario tree given the respective node format n. The length
of the vector is equal to the number of input scenarios s = |S| plus the number
of terminal nodes nT . Thus, the presented algorithm is somewhat limited by
the number of input scenarios. This means that input scenarios should not be
a standard set of mindlessly sampled scenario paths, but rather a thoughtfully
simulated view on the future uncertainty. This should not be seen as a drawback,
as it draws attention to this often neglected part of the decision optimization
process.

To map the real-valued vector to a scenario tree, which can be used for a
subsequent stochastic optimization, two steps have to be fulfilled. First, the real-
valued numbers are mapped to their respective node-set given the structure n

of the tree, and secondly, values have to be assigned to the nodes. There are
different approaches to determine the center of the node-sets, which also affects
the distance calculation, see below for more details.

It should be noted, that a random chromosome does not necessarily lead to a
valid tree. This is the case if the number of mapped nodes is lower than the num-
ber of nodes necessary given by nt of the respective stage t. If an uniform random
variable generator and a thoughtful node structure is used, which depends on
the number of input scenarios, invalid trees should not appear frequently, and
can be easily discarded if they do appear.

Consider the following example of the mapping procedure. For demonstration
purposes, we only take one stage into account. We do have 10 input scenarios
(asset returns), each equipped with the same probability p = 0.1, which might
be the output of some sophisticated asset price sampling procedure, e.g.

(0.017,−0.023,−0.008,−0.022,−0.019, 0.024, 0.016,−0.006, 0.032,−0.023).

We want to separate those values optimally into 2 clusters, which then repre-
sent our output scenarios and take a random chromosome, which might look as
follows:

(0.4387, 0.3816, 0.7655, 0.7952, 0.1869, 0.4898, 0.4456, 0.6463, 0.7094, 0.7547)

If we map this vector to represent 2 centers we obtain: (1, 1, 2, 2, 1, 1, 1, 2, 2, 2).
Now we need to calculate a center value, e.g. the mean, and have to calcu-
late the distance for each value of each cluster to its center, e.g. we obtain
center means (0.0032,−0.0055), which represent the resulting scenarios, each
with a probability of 0.5. The l1 distance for each cluster is (0.0975, 0.0750),
so the objective function value is 0.1725. Now flip-mutate chromosome 9, i.e.
(1 − 0.7094) = 0.2906, such that input scenario 9 (return = 0.032) will now be
part of cluster 1 instead of cluster 2. We obtain new scenarios (0.0080,−0.0149)
with probabilities (0.6, 0.4). The objective function value is 0.1475 (or 0.1646 if
you weight the distances with the corresponding output scenario probability),
i.e. this mutation led to a better objective value.

It should be noted that this mapping is rather trivial in the single-stage
case, but this simple approach leads to a powerful method for the tedious task
of constructing multi-stage scenario trees for stochastic programming problems,



because the nested probability structure of the stochastic process is implicitly
generated.

For multi-stage trees, a crucial point is finding a representative value for the
node-sets determined in the first step of the mapping. There exists a range of
methods, which can be used for the determination of centers, i.e. mapping all
values of a node-sets to one node. The distance of the approximation, which is
used for the calculation of the objective function, will also be affected by this
method. Some selected methods are summarized below:

– Median. A straight-forward solution is to use the median of the values.

– Extreme. If the mean of the values is below the stage mean, the lowest value
of the set will be selected, if it is above the stage mean, the highest value
is selected. This can prove useful if one aims at capturing extremes, which
already might have been flattened out by the scenario path simulation.

– Mixture. Using the median approach might be smoothing the tail values
too much, while the extreme approach neglects normal market phases. To
overcome this, a mixture model can be defined, i.e. by splitting the range of
stage values into three sections and using the minimum or maximum value
of the node-set if the mean of it is in the lowest or highest section, or using
the median if the node-set mean lies in the intermediate section.

– Random. A randomly selected value will used. While this method gener-
ally leads to balanced results, decision takers might not favor this non-
reproducible approach.

To visualize the differences of these approaches, see Fig. 1. The same scenario
generation procedure was used both for the left and the right part of the Figure,
i.e. the same set of input scenarios, the same evolutionary algorithm parameters,
and the same tree structure n = [10, 40]. The only difference was choosing either
the extreme node-to-value mapping (left) and the median mapping (right). It
is clear that these two trees will lead to different decisions. The set of input
scenarios will be specified in detail in the next section, see the visualization of
the scenario paths in Fig. 2 below.

The evolutionary algorithm chosen is based on the commonly agreed standard
as surveyed by [21]. Thereby, the following evolutionary operators have been
implemented and used:

– Elitist selection (o1).

– N -point crossover, with N = 1 (o2) and N = 2 (o3).

– Intermediate crossover with a random intermediate probability, which is dif-
ferent for each chromosome (o4).

– Mutation/Flip: Invert an initially specified number of m chromosomes by
1− c, where c is the current value (o5).

– Mutation/Random: An initially specified number of m chromosomes will be
randomly mutated (o6).

– Random addition: Randomly sampled chromosomes, also used for creating
the initial population (o7).
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Fig. 1. Difference between Extreme (left) and Median (right) node-value map-
ping.

For each of crossover operator, one parent is taken from the o8% best of the
previous population, and one entirely randomly. For each mutation operation
one of the best o9% will be randomly used. These nine values o1, . . . , o9 will
be used for the description of numerical results and specify the percentage of
the given population size, e.g. (20, 10, 10, 10, 15, 15, 20, 10, 30) means that 20%
of each new population are created by applying elitist selection and random
addition, while 10% of each new population are created by crossovers (1-point
crossover, 2-point crossover, intermediate crossover) and 10% by mutations (flip
as well as random), where the crossovers are conducted with one parent randomly
selected from the top 10% and the other parent randomly selected from the
whole previous population and the mutation is executed on one the top 30%
chromosomes from the previous population.

4 Numerical results

The code was implemented using MatLab 2008b without using further toolboxes.
Input scenarios have been estimated and simulated using a GARCH(1,1) time
series model using historical data from the NASDAQ composite index. The input
scenarios are shown in Fig. 2.

The results presented below have been calculated with the following param-
eters: The initial population consists of 1000 randomly selected chromosomes.
The population size during the evolutionary process has been set to 300, and a
maximum of 300 iterations is calculated, using the above set of 200 scenarios in
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Fig. 2. The set of input scenarios used for numerical results (s = 200).

two stages. The mutation parameter m was set to 2. The tree structure has been
[10, 40] for all runs and each run takes around 4− 5 minutes to solve on an up-
to-date desktop computer, which is excellent, when compared to other heuristic
global optimization techniques, which often report a scenario generation time of
many hours of computation.

The first results show the convergence of different evolutionary operators.
We compare four different operator structures:

– Using all operators = (20, 10, 10, 20, 10, 10, 20, 10, 30), see Fig. 3,

– no crossover nor mutation = (50, 0, 0, 0, 0, 0, 50, 10, 30), see Fig. 3,

– no mutation operators = (20, 20, 20, 30, 0, 0, 10, 10, 30) see Fig. 4, and

– no crossover operators = (30, 0, 0, 0, 30, 30, 10, 10, 30) see Fig. 4.

The convergence graphs contain the minimum objective function value as
well as the population mean. Each test has been repeated 10 times, and the
graphs show the mean of the two values, as well as the minimum and maximum
per iteration.

In all calculations above, the same tree structure has been used, i.e. n =
[10, 40]. Of course, the method works for arbitrary scenario trees structures as
shown in Fig. 5 for trees with a structure of n = [5, 20], n = [10, 40], n = [20, 80],
and n = [40, 120] respectively. It should be noted that for any realistic application
the evolutionary parameters have to be adapted to the specific instance of the
scenario tree needed for the given stochastic optimization model.
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Fig. 3. Convergence of operator structure (20, 10, 10, 20, 10, 10, 20, 10, 30) (left)
and (50, 0, 0, 0, 0, 0, 50, 10, 30) (right).
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Fig. 4. Convergence of operator structure (20, 20, 20, 30, 0, 0, 10, 10, 30) (left) and
(30, 0, 0, 0, 30, 30, 10, 10, 30) (right).
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Fig. 5. Scenario trees with n = [5, 20], [10, 40], [20, 80], and [40, 120].

5 Conclusion

In this paper an evolutionary multi-stage scenario tree generation method has
been presented. It could be shown that multi-stage financial scenario generation
can be successfully done by applying pure evolutionary optimization techniques.
The results motivate for an extension of the implemented code for multi-variate
scenario input paths and other features.
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