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Abstract. In this work, we introduce a new distance function for data
representations based on first-order logic (atoms, to be more precise)
which integrates the main advantages of the distances that have been
previously presented in the literature. Basically, our distance simultane-
ously takes into account some relevant aspects, concerning atom-based
presentations, such as the position where the differences between two
atoms occur (context sensitivity), their complexity (size of these differ-
ences) and how many times each difference occur (the number of repeti-
tions). Although the distance is defined for first-order atoms, it is valid
for any programming language with the underlying notion of unifica-
tion. Consequently, many functional and logic programming languages
can also use this distance.

Keywords: First-order logic, distance functions, similarity, knowledge rep-
resentation.

1 Introduction

Distances (also called metrics) pervade computer science as a theoretical and
practical tool to evaluate similarity between objects. The definition of a distance
over a set of objects allows us to consider this set as a metric space. This gives
us a repertoire of tools and methods to work and analyse the objects therein.
Hence, there has been a considerable effort to define distances for any kind of
object, including complex or highly structured ones, such as tuples, sets, lists,
trees, graphs, images, sounds, web pages, ontologies, XML documents, etc.

The notion of distance between objects allow us to reason about the amount
of transformations needed to go from one object to another (and viceversa). A
distance is also a frequent formalisation of the notion of error: it is not the same
to output 3.3 instead of 3.4 than to output 3.3 instead of 15.2. In the area of
programming languages the notion of distance is still an awkward concept, since
objects which are (syntactically) different are just that, different objects, and
there is not much interest in measuring how much different they are. However,
potential applications of the use of distances exist in the areas of debugging (as
a measure of the magnitude of the error), termination (to find similar traces
or similar rewriting terms), program analysis (to find similar parts in the code
that could be generalised), and program transformation (to approximate the



distance between two terms). At a meta-level, the use of functional languages to
implement distances has been vindicated by [1].

Functional and logic programming languages, additionally, have many im-
portant applications as languages for object (knowledge) representation. Logic,
and logic programming in particular, is one of the most common formalisms to
represent (relational) knowledge. Likewise, functional programming is becoming
more and more usual too as a knowledge representation formalism, especially
with the use of XML documents and related functional-alike structures [4]. The
use of distances in the area of knowledge representation is commonplace.

Some of the areas where functional and logic programming have profusely
been used as a knowledge representation formalism are machine learning and
program synthesis, in intersecting areas known as Inductive Logic Programming
[17][13], Inductive Functional Logic Programming [9][10][6] or, more generally,
Inductive Programming [8].

Given that Inductive Programming overlaps machine learning, there has been
a remarkable interest in upgrading learning techniques to deal with program-
based representations. Among them, we find the so-called instance or distance-
based methods. The great advantage of these methods is that the same algorithm
or technique can be applied to different sorts of data, as long as a similarity
function has previously been defined over them [16]. It is widely-known that
the performance of these methods depends to a great extent on the similarity
function employed. Thus, it is convenient that the similarity functions satisfy
some well-defined properties such as positive definiteness or triangular inequality
in order to ensure consistent results [20]. Overall, this makes distance functions
a very appropriate tool to express (dis)similarity.

There has been a considerable effort to derive distances for any datatype,
including complex or structured datatypes. Hence, we find distances for sets,
lists, trees, graphs, etc. One challenging case in machine learning, but more
especially in the area of functional and logic programming, is the distance be-
tween first-order atoms and terms. Although atoms and terms can be used to
represent many of the previous datatypes (and consequently, a distance between
atoms/terms virtually becomes a distance for any complex/structured data),
they are specially suited for term-based or tree-based representations. In this
way, distances between atoms are not only useful in the area of inductive logic
programming (ILP) [17] (e.g. first-order clustering [3]), but also in other areas
where structured (hierarchical) information is involved such as learning from
ontologies or XML documents. For instance, if an XML document represents
a set of cars, or houses, or customers, we may be interested in obtaining the
similarities between the objects, or to cluster them according to their distances.
However, it is important to remark that a distance between atoms or terms is
not the same as a distance between trees (such as many other introduced in the
literature, see, e.g., the Bille’s survey [2]), since two subterms are just different
when the topmost element of their tree representation is different, while this is
not generally the case for trees.



In this work, we introduce a new distance between ground terms and atoms,
which integrates the advantages that some of the existing distances between
atoms have separately. In particular, we recover the context sensitivity of Nienhuys-
Cheng’s distance [18], which implies that the distance between two atoms de-
pends not only on their syntactic differences but also on the positions where these
differences take place. This becomes crucial for many applications where atoms
represent hierarchical information (e.g. an XML document). Additionally, and
like Nienhuys-Cheng’s distance, our distance is also a normalised function, which
is an interesting property to reduce the effect caused in the distance by noisy or
irrelevant information [15], and can easily be composed with other distances in
order to define metrics for more complex representations.

However, Nienhuys-Cheng’s proposal shows some disadvantages in that it
does not properly deal with repeated differences between atoms, which is indeed
a common property when handling this datatype, and also ignores the syntactic
complexity of these differences. This is considered by J. Ramon et al. distance
[20] but at the expense of disregarding context-sensitivity, normalisation and
composability.

Our approach does consider repetitions and complexity as J. Ramon et al.
do, but in a different way which allows us to preserve context-sensitivity, nor-
malisation and composability. This is so because we do not need to rely on
the least general generalisation operator (lgg) [19] in order to manage repeated
differences.

This paper is organised as follows. Section 2 introduces the notation and
some previous definitions that will be used in the following sections. Section
3 reviews and analyses these two previous distances proposed in the literature
which are related to our proposal. Our distance between ground terms/atoms is
formally defined in Section 4. An illustrative example is presented in Section 5 in
order to compare how our distance works in practice wrt. the two aforementioned
distances. Section 6 concludes the paper and relates to future work. Finally, note
that an important part of our work deals with proving that our proposal agrees
all the axioms a distance function is supposed to satisfy. Although the main
result is included in this work, the proofs of the main theorem and auxiliary
results can be found in [5].

2 Preliminaries

Let £ be a first order language defined over the signature X = (C, F, IT) where
C is a set of constants, and F (respectively IT) is a family indexed on N (non
negative integers) being F,, (I1,,) a set of n—adic function (predicate) symbols.
Atoms and terms are constructed from the X' as usual. An expression is either
a term or an atom. The root symbol and the arity of an expression t is given
by the functions Root(t) and Arity(t), respectively. Thus, letting ¢t = p(a, f(b)),
Root(t) = p and Arity(t) = 2. By considering the usual representation of ¢ as a
labelled tree, the occurrences are finite sequences of positive numbers (separated
by dots) representing an access path in ¢. We assume that every occurrence



is always headed by a (implicit) special symbol A, which denotes the empty
occurrence. The set of all the occurrences of ¢ is denoted by O(t). In our case,
O(t) = {)1,2,2.1}. We use the (indexed) lowercase letters o, 0,01,09,... to
represent occurrences. The length of an occurrence o, Length(o), is the number
of items in o (A excluded). For instance, Length(2.1) = 2, Length(2) = 1 and
Length(A) = 0. Additionally, if o € O(t) then t|, represents the subterm of ¢ at
the occurrence o. In our example, t|; = a, t|a = f(b), t|a.1 = b. In any case, we
always have that ¢|y = t. By Pre(o), we denote the set of all prefix occurrences of
o different from o. For instance, Pre(2.1) = {),2}, Pre(2) = {\} and Pre(\) =
(). Two expressions s and ¢ are compatible (denoted by the Boolean function
Compatible(s,t)) iff Root(s) = Root(t) and Arity(s) = Arity(t). Otherwise, we
say that s and ¢ are incompatible (—=Compatible(s,t)).

3 Related Work

As mentioned in the introduction, although distances for atoms can be used
for many applications, only two relevant proposals have been generally used to
compute distances between atoms.

In [18], Nienhuys-Cheng introduces a bounded distance for ground terms/atoms
which takes the depth of the symbol occurrences into account in such a way that
differences occurring close to the root symbols count more. Given two ground
terms/atoms s = so(s1,...,8,) and t = to(t1,. .., tn), this distance (denoted by
dp) is recursively defined as follows.

ifs=t
if =Compatible(s,t)
S, d(si,t;), otherwise

dN(S,t) =

Yl 2

For instance, if s = p(a,b) and t = p(c,d) then dy(s,t) = 1/4 - (d(a,c) +
d(b,d)) =1/41+1)=1/2.

A different approach is presented by J. Ramon et al. in [21]. Following [11],
the authors define a distance between (non-)ground terms/atoms based on the
syntactic differences wrt. their lgg. An auxiliary function, the so-called Size(t) =
(F,V), is required to compute this distance. Roughly speaking, F' counts the
number of predicate and function symbols occurring in ¢ and V is the sum of
the squared frequency of appearance of each variable in ¢. Finally, this distance
(denoted by dg) is formulated as follows. Given two terms/atoms s and ¢,

dr(s,t) = [Size(s) — Size(lgg(s,t))] + [Size(t) — Size(lgg(s,t))]
Thus, one of its particularities is that dr returns an ordered pair of integer values

(F,V) instead of a single value, that expresses how different two atoms are in
terms of function and variable symbols, respectively. For instance, if s = p(a, b)



and t = p(c,d) and knowing that lgg(s,t) = p(X,Y’), we have

Size(s) = (3,0)
Size(t) = (3,0)
Size(lgg(s,t)) = (1,2)

dir(s,) = [(3,0) ~ (1,2)] +[(3.0) — (1,2)] = (2,~2) + (2, ~2) = (4,~4)

With regard to these distances for atoms, some interesting properties are anal-
ysed next.

1. Context Sensitivity: it is the possibility of taking into consideration where
the differences between two terms/atoms occur. Intuitively, it means that the
distance between two atoms such as p(a) and p(b) should be greater than
the distance between p(f(a)) and p(f(b)), as these latter atoms have more
symbols (information) in common than the two previous ones. Or equiv-
alently, symbolic differences occurring at deeper positions count less since
they provide less information.

The Nienhuys-Cheng’s distance does not always satisfy this property. Note
that, by definition, the distance between atoms decreases as the differences
occur at deeper positions. For instance, in our example:

dn(p(a),p(b)) =1/2 dn(p(f(a)),p(f(b))) =1/4

Nevertheless, when differences occur at the same depth but in all of the argu-
ments of two terms/atoms (that is, the number of differences coincides with
the arity of the outermost symbol) then the distance behaves as if there was
only one difference. For instance, given the atoms e; = p(f(a1,...,an),g(a)),
ea = p(f(b1,...,bn),9(a)) and es = p(f(a1,...,as),g(b)) it would be ex-
pected that the distance between e; and ey were greater than the distance
between e; and eg3, since there are n differences between e; and ey whereas
there is only one difference between e; and e3. However,

dN(el,eg) = 1/8 dN(el,eg) = 1/8

As we have mentioned, the first component F' of the J. Ramon et al.’s dis-
tance counts the differences between the functors of the two atoms. This
component can be context-sensitive by giving different importance to com-
ponents in different positions. The authors do that by associating a set of
(m + 1) positive weights with each functor f € F,,, and a set of (n + 1)
positive weights with each predicate p € II,. In this way, the definition of
the F-component is parametrised by these weights (see Definition 4 in [21]).
Thus, J. Ramon et al.’s distance is not always context-sensitive (depending
on the weights used).

2. Normalisation: sometimes, it is useful to work with normalised distances. In
this sense, a distance function d which returns (non-negative) real numbers
can be easily normalised, for instance, using the expression d/(1+ d), which
is known that results in an equivalent distance [12]. However, a distance like
that of J. Ramon et al. is very difficult (or at least, not intuitive) to be
normalised since it returns a pair of integer numbers.



3. Repeated differences: this concerns the fact of handling repeated differences

between terms/atoms properly. Suppose that the atoms r = p(a,a), s =
p(b,b) and t = p(c,d) are given. Intuitively, it is reasonable to expect that
the atoms r and s come nearer than the atoms r and ¢ (or s and t), since r
and s share that their (sub)terms (a and b, respectively) occur twice whereas
no (sub)term is repeated in t.
Only J. Ramon et al.’s distance can handle repetitions since this distance
is defined via the lgg operator, which takes repetitions into consideration.
However, this possibility is lost when the Nienhuys-Cheng’s distance is used.
In our example,

dy(r,s)=1/2 dn(r,t) =1/2
dr(r,s) = (2,-2) dgr(r,t) = (3,—4)

4. Size of the differences: another interesting question to be treated is the com-
plexity (the size) of the differences occurring when two terms/atoms are com-
pared. Logically, it is expected that as the size of two terms/atoms increases,
its distance will become greater. This is so regarding the J. Ramon et al.’s
proposal, since it explicitly introduces a size function. However, Nienhuys-
Cheng’s disregards this important fact. For instance, given the atoms p(a),

p(b) and p(f(c)) then,

dy(p(a),p(b)) =1/2  dn(p(a),p(f(c))) =1/2
dr(p(a),p(b)) = (2,-2) dr(p(a),p(f(c))) = (3,-2)

5. Handling variables: variables become a useful tool when part of the struc-
ture of an object is missing. J. Ramon et. al’s proposal handles both constant
and variable symbols indistinctly in a very elegant way. As seen, Nienhuys-
Cheng’s distance is defined over ground terms/atoms and for this reason
needs some non-integrated extra concepts (least Herbrand model and Haus-
dorff distance) in order to deal with variable symbols.

6. Composability: A tuple is a widely used structure for knowledge representa-
tion in real applications, since examples are usually represented as tuples of
values of different data types (nominal, numerical, atoms, graphs, ...). For
example, a molecule can be described as a tuple composed by its breaking
temperature (a real number) and its description (expressed, for instance, as
a list of symbols). The property of composability allows us to define dis-
tance functions for tuples by combining the distance functions defined over
the basic types from which the tuple is constructed. Typically, the combi-
nation is made as a linear combination of the underlying distances, which
is well-known to be a distance. Therefore, composability requires that the
computed distances are expressed as real values in order to combine them.
Obviously, the Nienhuys-Cheng’s distance holds this condition. However, the
J. Ramon et. al’s distance computes a pair of numbers, so it is necessary to
first transform it into a real number before composing it. And, as we have
mentioned, converting J.Ramon et al’s distance into a single number seems

difficult.



7. Weights: in some cases, it may be convenient to give higher or lower weights
to some constants or function symbols, in such a way that the distance
between f(a) and f(b) could greater than the distance between f(c) and
f(d). In some other occasions it may be interesting to give more or less weight
to specific positions in a term over others. This latter case is more general
than the first one. Nienhuys-Cheng’s distance does not allow weights while
J.Ramon et al.’s does. Our proposal allows this possibility in an indirect way,
by the use of dummy function symbols. For instance, the distance between
f(a) and f(b) can be increased if we just rewrite them into f(d;(dz2(a))) and
f(d1(dz2(b))). The weight depends on the number of dummy symbols which
have been introduced.

H “Nienhuys—Cheng[ J. Ramon et al. [Our distance“
Context Not always Not always Yes
(depending on the weights used)

Normalisation Yes Not easy Yes
Repetitions No Yes Yes

Size No Yes Yes
Variables Indirectly Yes Indirectly
Composability Yes Difficult Yes
Weights No Yes Indirectly

Table 1. Advantages and drawbacks of several distances between terms/atoms.

This analysis about Nienhuys-Cheng’s and J. Ramon et al.’s distances suggests
to integrate both in a new distance that inherits the best of them. Table 1
compares these three distances in terms of the properties above: that is, context-
sensitivity (Context), ease of normalisation (Normalisation), handling repeated
differences (Repetitions), complexity of the differences (Size), handling vari-
able symbols (Variables) and the ability to be combined with other distances
(Composability). In the table, we have also included which of these properties
are satisfied and which are not by the distance we will define in the next section.

In the following sections we will show how these issues are accomplished in a
novel way, by: 4) understanding terms/atoms as rooted acyclic directed graphs,
i1) introducing a new size function which is i) weighted depending on the
context and the number of times the differences occur.

4 Distance between Atoms

As said, the distance function we present in this work takes into consideration
three fundamental issues concerning first-order atoms: namely, the complexity of
the syntactic differences between the atoms, the number of times each syntactic
difference occurs and finally, the position (or context) where each difference takes
place. This all is formalised next.



First, we precisely define what we mean by syntactical differences between
expressions.

Definition 1. (Syntactical differences between expressions) Let s and t
be two expressions, the set of their syntactic differences, denoted by O*(s,t), is
defined as:

O*(s,t) = {o € O(s) NO(t) : ~Compatible(s|o,t|o) and
Compatible(s|o,t|o), Vo' € Pre(o)}

For instance, with s = p(f(a),h(b),b) and t = p(g(c), h(d),d), then O*(s,t) =
{1,2.1,3}. Additionally, observe that if ~Compatible(s,t) then O*(s,t) = {A}.

The complexity of the syntactic differences between s and ¢ is calculated on
the number of symbols the subterms (in s and t) at the occurrences o € O*(s, t)
are composed of. For this purpose, we introduce a special function called Size’
which is defined next.

Definition 2. (Size of an expression) Given an expressiont = to(t1,...,t,),
we define the function Size’(t) = $Size(t) where,

1,n=0

Size(to(tla cee 7tn)) = { 1 + Z?:l Siz;(ti) n>0
PGS

For instance, considering s = f(f(a),h(b),b), then Size(a) = Size(b) = 1,
Size(f(a)) = Size(h(b)) = 14+1/4 = 5/4, Size(s) = 14+(5/44+5/4+1)/8 = 23/16
and finally, Size'(s) = 23/64. The rationale for the denominator in definition 2
is that we expect to have that Size(p(a)) < Size(p(a,b,c)). Consequently, the
denominator has to be greater than 2n in order to avoid a cancellation with the
size of the arguments, as happens with Nienhuys-Cheng’s distance.

The next step is devoted to find out repeated differences between atoms. To
do this, we define an equivalence relation (~) on the set O*(s,t), as follows:

Vo;, 05 € O*(s,t), 0, ~0j & s

0i = 8lo; and t|o, = t|o,

Consequently, there exists a non-overlapping partition of O*(s,t) into equiva-
lence classes, that is, O*(s,t) = U;c1O7 (s,t). Related to this, we also introduce
the auxiliary function = : O*(s,t) — I which just returns the index of the
equivalence class one occurrence belongs to.

Back to our example, we can see that there only exist two equivalence classes:
namely, O7(s,t) = {1} and O3(s,t) = {2.1,3}. Hence, w(1) = 1, 7(2.1) = 7 (3) =
2.

Finally, we need to set the context of every syntactic difference. This is for-
malised as follows:

Definition 3. (Context value of an occurrence) Let ¢ be an expression.
Given an occurrence o € O(t), the context value of o in t, denoted by C(o;t), is
defined as

Clot) — l,o=2A
(03) = { Length(o) . vorc pre(o) (Arity(tlor) + 1), otherwise



For instance, C(\;t) =1, C(1;¢t) =2- (3+1) =8 and C(2.1;¢t) =22 - (1 +1) -
(3+1)=232.

Therefore, the context value tells us about the relationship between t|, and
t in the sense that, a high value of C(0;t) corresponds to a deep position of ¢,
in ¢ or the existence of superterms of t|, with a large number of arguments. As
we will see later, this information will be employed to conveniently weight the
syntactic differences between atoms.

The context value of an occurrence satisfies the following property.

Proposition 1. Given two expressions s and t, if o € O*(s,t) then C(o0;s) =

C(o0;t)

Proof. Tt directly comes from the definition of O*(s,t). If 0 € O*(s,t) then, for
any o' € Pre(o), Compatible(s|y,t|o ), hence Arity(s|,) = Arity(t],).

When no doubts arise from omitting ¢, the short form C(0) will be used instead.
Definition 3 allows us to set an order relation (<) in every equivalence class
Of(s,t). That is,

Yoj,or € Of(s,t), 0; < o & C(0;) < C(ok)

Note that the relation order < makes sense on the grounds of Proposition 1.
Additionally, for every ordered equivalence class, (Of, <), we define the function
fi : (OF,<) — NT that simply returns the position an occurrence o € O} has
according to <. In the case of C(0;) = C(0;), we can rank first either o; or o,
since as we will see, this decision will not affect the computation of the proposed
distance.

We still require, previously to introduce our distance, another additional
function. Again, given two expressions s and ¢, we define the function w as:

w:O0*(s,t) —» RT
0 — w(o) = 3fi(0)+1

4fi(o) >

where i = 7(0)

Note that the function w simply associates weights to occurrences in such a
way that the greater C(o), the lower the weight o is assigned, i.e., the less
meaningful the syntactical difference referred by o is. For instance, if we consider
(03%(s,t),<) = {3,2.1} then w(3) = 1 and w(2.1) = 7/8. By wo(0), we will
denote the restriction of the function w(:) to a subset O C O*(s,t). Realise that
if o € O C O*(s,t), then wo (o) > w(o).

Finally, the distance between atoms we propose in this work is defined as:

Definition 4. (Distance between atoms) Let s and t be two expressions, the
distance between s and t is,

dis,y="Y_ ZEZ;(Size'(s|o)+s¢ze’(t|o))
0€0*(s,t)




Theorem 1. The ordered pair (L,d) is a bounded metric space. Concretely, 0 <
d<1.

Proof. For any expressions r, s and ¢ in £, the function d satisfies:

1. (identity): d(r,t) = 0 < r = t. If d(r,t) = 0 then O*(r,t) = (0 which
necessarily means that » = ¢. As for the other implication, if »r = ¢ then
O*(r,t) =0 and d(r,t) = 0.

2. (symmetry): d(r,t) = d(t,r). Simply, note that O*(r,t) = O*(t,r)

3. (triangular inequality): d(r,t) < d(r,s) + d(s,t). See [7].

4. (bounded distance): 0 < d(r,t) < 1. See [7].

Next, we provide short artificial examples illustrating how our distance works.
Ezample 1. s = f(a) and t = a. We have that O*(s,t) = {A}. Next,
cy) =1
The sizes of the subterms involved in the computation of the distance are:
Size'(f(a)) =5/16 and Size'(a) = 1/4

Obviously,
w(A) =1

Finally,

E + 1)

16 4

Ezample 2. s = p(a,a) and t = p(f(b), f(b)). We have that O*(s,t) = {1,2}.
Next,

d(s,t) = %(Size’(s) + Size!(t)) = (

cCH)y=C(2)=2-(2+1)=6
The sizes of the subterms involved in the computation of the distance are:
Size'(a) = 1/4 and Size'(f(b)) =5/16

There is only one equivalence class O* = O7(s,t). Assume that the occurrence
1 is ranked first,
w(l) =1and w(2) =7/8

Finally,

1,1 5 7,1 5
W0 =501 " 5G T )

Ezample 3. s = p(a,a, f(c)) and t = p(b, b, f(b)). We already know that O*(s,t) =
{1, 2, 3.1}, The contexts respective differences are,

C(y=C2)=2"-(3+1)=8and C(3.1) =2%-(1+1)-(34+1) =32

10



The sizes of the subterms involved in the computation of the distance are:
Size'(a) = Size'(b) = Size'(c) = 1/4

Additionally, we have seen that (O7(s,t), <) = {1}, (03(s,t),<) = {2, 3.1}.
Consequently,
w(l) =1, w(3.1) =1 and w(2) =7/8

Finally,
1,1
d(s,t) = §(Z + =)+ —(

5 Discussion

Next, we present a simple but illustrative comparison on how our distance per-
forms wrt. those distances reported in Section 3. Basically, we aim to analyse the
notion of similarity shaped by the different distances. For this purpose, we will
use a toy XML dataset containing several car descriptions (see Table 2) and we
will see how similar these descriptions are depending on the distance employed.

Our XML dataset contains structured information about 8 different cars.
More concretely, for every car, we know the company, the model, a list of certifi-
cations that some organisations have granted to the car, the engine and several
other features. As we can see, every description can directly be represented as
an atom, except from some attributes: the photo which cannot be properly rep-
resented, and two numerical values (the power and the baseprice) which can be
represented inside an atom, but that any of the atom distances is not going to
handle appropriately (directly). Table 3 shows a term-based representation of
the whole dataset.

Ignoring the photo and the two numerical values for the moment, we see that
if we focus on cars 1, 2 and 3, we intuitively see that the car 1 looks more similar
to the car 2 than 1 to 3, although, both pairs of cars (1,2) and (1,3) have an
identical number of differences. Namely, the difference between the cars 1 and
2 relies on the engine traits (occurrences 4.3.1 and 4.3.2) whereas cars 1 and 3
differ both in company and model (occurrences 1 and 2). Therefore, the reason
why car 2 comes nearer to 1 than car 3 is due to a qualitative criterion rather
than quantitative, in that company and model results in a more meaningful
difference than the engine traits.

In general, it makes sense to assume that differences at top positions in
the atoms are more important than differences at inner positions. In our case, as
well as in Nienhuys-Cheng’s proposal, the position of the differences, the so-called
context, between atoms is taken into account when computing the distance. Note
that, this aspect is disregarded by the unweighted J. Ramon et al.’s distance.
For this distance, cars 2 and 3 are equally similar to car 1.

Furthermore, note that a context-sensitive distance allows us to indirectly
use the position in the atom/term in order to set different levels of importance
for every trait of the car. For instance, moving the trait colour to a higher
position in the atom implies that differences involving this attribute become more

11



<‘?xml version="1.0" 7>
<!DOCTYPE root SYSTEM ”cars.dtd” >
<root>
<car>
<company> Chevrolet </company>
<model> Corvette </model>
<certifications> E3 < /certifications>
<certifications> D52 < /certifications>
<certifications> RAC < /certifications>
<features>
<color> red < /color>
<brake> abs </brake>
<power> 250 < /power>
<airbag>
<front> full </front>
<rear> mid < /rear>
< /airbag>
<engine>
<type> diesel </type>
<turbo> yes </turbo>
</engine>
< /features>
<baseprice> 60,000 </baseprice>
<photo> ChevCorv.jpg </photo>
< /car>

</root>

Table 2. A representative extract from the XML dataset.

car(Ford,Ka,cert([E3]),feats(75, red,abs,ab(full,mid),mt(gas,no)), 9000, ChevKaG.jpg)

car(Ford,Ka,cert([E3]),feats(80, red,abs,ab(full,mid),mt(diesel,yes)), 10000, ChevKaD.jpg)

car(Chev,Corv,cert([E3]),feats(250,red,abs,ab(full,mid),mt(gas,no)), 60000, ChevCorv.jpg)

car(Ford,Ka,cert([E3]),feats(100, blue,abs,ab(mid,mid),mt(diesel,yes)), 10000, ChevKaD2.jpg)

car(Ford,Ka,cert([E3]),feats(125, blue,abs,ab(full,full),mt(diesel,yes)), 10500, ChevKa3.jpg)

car(Ford,Ka,cert([E3]),feats(125, blue,abs,ab(extra,no),mt(diesel,yes)), 11000, ChevKaD4.jpg)

car(Chev,Xen,cert([D52, RAC, H5]),feats(300, red,abs,ab(full,mid),mt(gas,no)), 70000, CX.jpg)

00| | O U1 | WO| DN =

car(Chev,Prot,cert([RAC]),feats(300, red,abs,ab(full,mid),mt(gas,no)), 60000, ChevProt.jpg)

Table 3. An equivalent term-based representation of the XML dataset.

meaningful. In this line, we could also endow our representation language with
artificial constructors, namely art(-), which allow us to reduce the importance
of a trait. For instance, a nested expression such as art(art(art(Ford))) would
decrease the importance of the trait company.

Additionally, the size of the differences is also taken into account. If we ob-
serve the differences between cars 3, 7 and 8, our intuition gives more similarity
to 3 and 8 because they have only one certification while 7 has three. Nienhuys-
Cheng’s distance disregards this and gives that the three cars are at the same
distance to each other. Our distance and J. Ramon et al.’s distance place cars 3
and 8 closer than any of them with 7.

Finally, let us consider the remaining group of cars. We can see that cars 4, 5
and 6 differ in the airbag description (occurrences 4.4.1 and 4.4.2) in such a way
that 4 and 5 have an homogeneous airbag equipment but not 6. According to this
observation, we can affirm that cars 4 and 5 are more similar than 5 and 6. Here,
the rationale is that those differences occurring repeatedly are less significant.
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Our distance as well as J. Ramon et al.’s distance are capable of coping with this
(repeated differences) and hence, the computed distances are in agreement with
this fact. Nevertheless, Nienhuys-Cheng’s proposal ignores repeated differences,
and for that reason, cars 4 and 5 are at the same distance that cars 5 and 6.

If now we consider the photo and the two numerical values, we see that J.
Ramon et al.’s distance is not able to handle them. If we exclude these three
values and compute J. Ramon et al.’s distance with the rest, we have as a result
a pair such as (n,m). If, next, we compute the distances for the photo and the
numerical values, we get three scalar values di, do and ds. We do not know how
these four results can be combined and integrated into a single value. In contrast,
Nienhuys-Cheng’s distance and ours can handle the whole XML description. In
both cases, one simple way to compose atom with non-atom representations
(such as the picture) is to construct a tuple, taking out all the non-term-based
representations, such as pictures and numerical values. The resulting tuple-based
representation is shown in Table 4:

( 75, 9000, ChevKaG.jpg, car(Ford,Ka,cert([E3]),feats(red,abs,ab(full,mid),mt(gas,no))) )

( 80, 10000, ChevKaD.jpg, car(Ford,Ka,cert([E3]),feats(red,abs,ab(full,mid),mt(diesel,yes))))

( 250, 60000, ChevCorv.jpg, car(Chev,Corv,cert([E3]),feats(red,abs,ab(full,mid),mt(gas,no))))

(100, 10000, ChevKaD?2.jpg, car(Ford,Ka,cert([E3]),feats(blue,abs,ab(mid,mid),mt(diesel,yes))))

(125, 10500, ChevKa3.jpg, car(Ford,Ka,cert([E3]),feats(blue,abs,ab(full,full),mt(diesel,yes))))

(125, 11000, ChevKaD4.jpg, car(Ford,Ka,cert([E3]),feats(blue,abs,ab(extra,no),mt(diesel,yes))))

( 300, 70000, CX.jpg, car(Chev,Xen,cert([D52, RAC, H5]),feats(red,abs,ab(full,mid),mt(gas,no))))

Q0| | O O =] | DN =

( 300, 60000, ChevProt.jpg, car(Chev,Prot,cert([RAC]),feats(red,abs,ab(full,mid),mt(gas,no))))

Table 4. An equivalent tuple-based representation of the atom representation.

The two first attributes use distances for real numbers (e.g. the absolute
difference), the third attribute can use any distance for images (e.g. the Earth
Mover’s Distance, Mallows Distance or Kantorovich distance [14]) and the fourth
attribute use a distance for atoms. Using a proper weighting of the four attributes
in the tuple (by normalising them and then using their original depth as a
way to determine their weight), we can now compute the distances between the
atoms and then aggregate the four distance values into a single distance. This
shows that our distance allows the composability, an important requirement
when trying to integrate data which is represented not only as atoms, but also
using other data representations.

6 Conclusions and Future Work

In this paper we have presented a new distance for ground terms/atoms which
integrates the most remarkable traits in Nienhuys-Cheng’s and J. Ramon et
al.’s proposals. That is, context-sensitivity in the former case and complexity
and repeated differences in the latter without losing the general and convenient
feature of returning a single number, instead of two such as J.Ramon et al.’s
distance. This can directly be seen from the formulation of the distance where
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the function Size’, which takes the complexity of the differences into account,
is weighted by the quotient Zﬂgzg where the numerator controls the frequency of
the repeated difference and the denominator the context where this difference
takes place.

Apart from the direct application of a distance between atoms in areas such
as machine learning and inductive programming (very especially in inductive
logic programming), the distance can also be used when atoms are employed
to represent other structures, as we have illustrated for XML documents. Addi-
tionally, we hope that a proper measure for terms could foster the application
in different areas inside the logic and functional programming communities. In
order to show this, we need to implement the distance to conduct experiments
in these areas of application.

In this proposal, there is an easy way to assign weights at different positions,
by using dummy function symbols. Relating this problem with the limitation of
not handling variables directly, as future work, we are working on an extension
to consider weights directly and to handle variables directly as J. Ramon et al.’s
distance does. In fact, this extension can be done in two different ways. First,
upgrading the function Size’ as well as the definition of syntactical differences
between terms/atoms (O*) in order to take variable symbols into account. For
instance, the size of a variable could be weighted half of the value assigned to a
constant symbol. We could also give different weights to different constants or
function symbols or to different positions. Second, following J. Ramon et al.’s
approach, we could seek to integrate a syntactic difference search guided by the
lgg into our setting. With this extension (especially with the first approach), our
distance would include all the positive features (the desiderata) that we showed
on Table 1.

Additionally, we are studying how the ideas of size and context-sensitive
could be adapted in order to improve other distances for nested data types (e.g.
sequences of sets, or lists of lists, etc.).
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