
A Skeleton for Distributed Work Pools in Eden

Mischa Dieterle1, Jost Berthold2, and Rita Loogen1

1 Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany
{dieterle,loogen}@informatik.uni-marburg.de

2 Datalogisk Institut, University of Copenhagen, Denmark
berthold@diku.dk

Abstract. We present a flexible skeleton for implementing distributed
work pools in our parallel functional language Eden. The skeleton man-
ages a pool of tasks (work pool) in a distributed manner using a demand-
driven work stealing approach for load balancing. All coordination is
done locally within the worker processes. The latter are arranged in a
ring topology and exchange additional channels to shortcut communi-
cation paths. The skeleton is suited for different types of algorithms,
namely simple data parallel ones and standard tree search algorithms like
backtracking, and using a global state as needed for branch-and-bound.
Runtime experiments reveal a stable runtime behaviour for the different
algorithm classes as illustrated by activity profiles (timeline diagrams).
Acceptable speedups can be achieved with low effort.

1 Introduction

Parallel evaluation of a large and dynamically evolving pool of tasks (a work
pool) is a classical parallelisation problem [Fos95]. The common approach is a
system with one master process managing the work pool, and a set of worker
processes which process the tasks. The master distributes tasks to the workers
and collects both the results and possibly created tasks produced and sent by
the workers.

Fig. 1. Classification of Task
Scheduling Approaches

With a big number of workers, such a master-
worker setup quickly leads to a bottleneck in
the master process. Consequently, more sophisti-
cated work pool schemes have been proposed, with
a focus on optimizing the task-scheduling strat-
egy [Fos95,GGKK03,Qui03]. In Fig. 1, we clas-
sify such task-scheduling approaches according to
their work allocation policy, the organisation of
the work pool and the task distribution strategy.
Work can be allocated statically or dynamically. While a static scheme certainly
reduces the communication overhead, it may lead to load imbalance in the pres-
ence of highly irregular tasks or differences in worker performance. For this
reason, a dynamic work allocation strategy is generally favourable. In contrast

In Matthias Blume, Naoki Kobayashi and German Vidal, editors, Functional and Logic
Programming, 10th International Symposium, FLOPS 2010, LNCS 6009, pages 337-353, Sendai,
Japan, April 2010.
c© 2010 Springer-Verlag Berlin/Heidelberg
The original publication is available at springerlink.com.

springerlink.com

to the classical centralised master-worker scheme, a completely distributed task
pool avoids the single hot spot in the system (but requires more sophisticated
work distribution mechanisms and termination detection) [Qui03]. The master
process’ role reduces to setting up the system and collecting the results. In such
a distributed work pool, a basic distinction can be made between task pushing
and stealing approaches [Qui03]. A work pushing strategy means to speculatively
forward surplus tasks to random peers when the amount of local tasks exceeds a
given threshold. In a demand-driven work stealing strategy, workers send work
request messages to peers when idle. New tasks created by workers can be kept
locally until work requests from other workers arrive.

In the following, we present a sophisticated functional implementation of a
work pool skeleton where the work pool is managed in a distributed manner,
and a demand-driven work stealing approach is used for load balancing. All co-
ordination takes place between the worker processes, the master only collects
the results. As in [PK06], the worker processes are arranged in a ring topology.
This provides an easy way to traverse the whole setup for termination detection,
and is also an acceptably fast interconnect for propagating global information.
Additional channels are used at runtime to directly pass tasks and requests to
peer workers without using the ring. Our paper shows that complex coordination
structures can efficiently be implemented in a functional setting yielding a flexi-
ble base for a low-effort parallelisation of various algorithm classes. The skeleton
is especially useful for solving combinatorial optimisation problems with back-
tracking or branch-and-bound algorithms. Experiments show stable runtime be-
haviour for several algorithm classes as illustrated by activity profiles. Our traces
show well-balanced workloads. Runtime measurements reveal a good scalability
with respect to the number of processors.

After a short introduction to Eden in Section 2, the skeleton is described in
Section 3. First we explain the skeleton interface and how to adapt and apply it to
typical algorithm classes. Then the functional implementation of the distributed
work pool skeleton is presented. Section 4 shows experimental results for two case
studies. Related work is discussed in Section 5. The paper ends with conclusions.

2 Eden in a Nutshell

The distributed work pool skeleton has been implemented in the parallel Haskell
dialect Eden [LOMP05], which extends Haskell with an explicit notion of pro-
cesses (function applications evaluated remotely in parallel). The programmer
has direct control over evaluation site, process granularity, data distribution and
communication topology, but does not have to manage synchronisation and data
exchange between processes. The latter are performed by the parallel runtime
system through implicit communication channels, transparent to the program-
mer.

The essential two coordination constructs of Eden are process abstraction
and instantiation:

2

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

process :: (Trans a, Trans b) => (a -> b) -> Process a b

(#) :: (Trans a, Trans b) => Process a b -> a -> b

The function process embeds functions of type (a -> b) into process abstractions
of type Process a b where the context (Trans a, Trans b) states that both a and
b must be types belonging to the Trans class of transmissible values. Evaluation
of an expression (process funct) # arg leads to the creation of a new process
for evaluating the application of the function funct to the argument arg. The
type class Trans provides overloaded communication functions for lists, which
are transmitted as streams, i.e. element by element, and for tuples, which are
evaluated componentwise by concurrent threads in the same process. An Eden
process can thus contain a variable number of threads during its lifetime.

Two additional non-functional features of Eden are essential for performance
optimisations: nondeterministic stream merging and explicit communication.
Eden’s non-deterministic function merge :: Trans a => [[a]] -> [a] merges a
list of streams into a single stream. It simplifies the specification of control and
coordination. Communication channels may be created implicitly during process
creation - in this case we call them static channels - or explicitly during process
evaluation. In the latter case we call them dynamic channels. The following
functions provide the interface to create and use dynamic channels:

new :: Trans a => (ChanName a -> a -> b) -> b

parfill :: Trans a => ChanName a -> a -> b -> b

Evaluating new (\ name val -> e), a process creates a dynamic channel name
of type ChanName a in order to receive a value val of type a. After creation,
the channel should be passed to another process (just like normal data) inside
the expression result e, which will as well use the eventually received value val.
Because of Haskell’s lazy evaluation, the execution will not block on val until that
value is actually needed. Evaluating (parfill name e1 e2) in the other process
has the side-effect that a new thread is forked to concurrently evaluate and send
the value e1 via the channel. The overall result of the expression is e2.

In the skeleton, dynamic channels are used to create the ring connections
between the processes, as well as shortcut connections between ring processes.
The latter are used to bypass (previously) idle workers when sending a new
work request and when returning tasks to a requesting worker process. Eden’s
nondeterministic merge function is heavily used to ensure that incoming data
can be processed as soon as it is available.

3 Skeleton Definition

The distributed work pool skeleton uses a set of workers to solve a list of initial
tasks received from the caller. Each worker holds a local task pool, and maybe
a local state. New tasks may be created and added while solving the initial task
set. Load balancing is achieved by a demand-driven exchange of surplus tasks.

3

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

mwRing :: (Trans t, Trans r, Trans s, NFData r’) =>

Int -> -- no of processes

-- task processing and result post processing

([(t,s)] -> [(Maybe (r’,s),[t])]) -> -- worker function wf

([Maybe (r’,s)] -> s -> [r]) -> -- result transform function resTf

([[r]] -> [r]) -> -- result merge function

-- work pool transformation

([t] -> [t] -> s -> [t]) -> -- attach function ttAf

([t] -> s -> ([t],[t])) -> -- split function ttSplitf

([t] -> s -> ([t],Maybe (t,s))) -> -- detach function ttDf

-- state comparison function

(s -> s -> Bool) -> -- compare function cpSf

-- initialisation

s -> [t] -> -- initial state initS/tasks initTs

[r] -- results

Fig. 2. Interface of the General Distributed Work Pool Skeleton

3.1 Skeleton Interface and Application

Fig. 2 shows the interface of the skeleton, which allows to customise its func-
tionality by a large set of parameter functions. While the last two parameters
provide the initial state and task list, the first parameter specifies the number of
processes to be created. The skeleton creates a ring of worker processes together
with a hierarchy of collector processes. The latter is used to speed-up result
post-processing. Three functions determine task processing and result post pro-
cessing, i.e. the proper worker functionality. The work pool is manipulated with
the following three parameter functions of the general skeleton: the task pool
transformation and attach function ttAf is used to extend the work pool with
newly created tasks, the function ttSplitf is used to split the work pool when
an external work request arrives, and the function ttDf detaches a single task
for local evaluation. Different selection strategies can be used for serving oneself
via ttDf and other workers via ttSplitf. Finally, the state comparison function
is used for branch-and-bound algorithms to select the optimal solution (state).

The following table illustrates how the skeleton functionality is reduced for
specific algorithm classes.

Algorithm class task pool
size

post-
processing

state task pool
structure

parallel transformation
(map)

fixed at start no no queue

transformation and re-
duction (map-reduce)

fixed at start yes no queue

backtracking (tree search) dynamic maybe no queue or stack
branch-and-bound

(optimum search)
dynamic yes yes priority queue

4

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

To show how to parallelise a variety of common data processing patterns, we
exemplarily discuss the simplest and the most involved instantiation.

Data-Parallel Transformation. The most simple and very common application
of work pool skeletons is the case of a big set of data items processed by a
common transformation (using a functionality like the well-known higher-order
function map::(a->b)->[a]->[b]). In our general distributed work pool skeleton,
the worker function simplifies to a transformation (t -> r), since it does not
create new tasks, nor does it depend on a system state or environment. We
embed such a simple worker function into the type needed by our work pool
skeleton using the function staticWF and extract the results with the result
transformation function idResTf before they are returned to the master:

staticWF :: (t->r) -> [(t,())] -> [(Maybe (r,()),[t])]

staticWF wf ts = [(Just (wf t,()),[]) | (t,_) <- ts]

idResTf :: [Maybe (r,())] -> () -> [r]

idResTf rss _ = [r | (Just (r,())) <- l]

The data set can easily be divided and processed in parallel. However, it may
have extremely varying complexity for different input data, and thereby needs
dynamic load balancing between the working parallel processes. Every worker
in the ring receives a subset of the (usually numerous) tasks. Load balancing
becomes relevant in the end phase of the computation, when some workers might
already be idle, while others still work on the remaining tasks.

Transformation and Reduction. As an immediate extension, a reduction op-
eration (commutative and associative) can be applied to the results, yielding
a map-reduce skeleton. The reduction is easily realised by the result transform
function resTf: workers can pre-combine all their results after processing and
send only one single result back to the caller. The latter then reduces only few
pre-results:

mwRingMapReduce :: (Trans t, Trans r) =>

(t->r) -> ([r]->[r]) -> [t] -> [r]

mwRingMapReduce wf redF ts

= mwRing (noPe-1) (staticWF wf)

(\ rs _-> redF(idResTf rs ())) (redF . merge)

(\ ts _ _->ts) halfTTSplit topTTD (_ _->False) () ts

Parameters are the worker function wf, the reduce function redF and the
task list ts. Note that the type of the reduce function redF :: [r]->[r] allows
any list transformation including identity or sorting. The constant noPe :: Int

determines the number of processing elements. The task pool transform and
split strategy halfTTSplit passes over half of the tasks within the task pool and
the taskpool transform and detach function topTTD selects the first task to be
processed next by the local worker function (both not shown).

Data transformation/reduction and exhaustive tree search (not discussed
here) can also be implemented using a hierarchical master-worker systems (as
shown and analysed in [BDLP08]). Our distributed work pool skeleton is tailored

5

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

to the more interesting case of tree search problems which look for an optimal
solution. Note, that ordinary master-worker skeletons are in general not able to
handle such optimisation problems.

Tree Search for Optimal Results (Branch-and-Bound). Branch-and-bound algo-
rithms require an internal state (best result yet), and the comparison function
of the skeleton interface to decide which branches of the decision tree should be
searched further, and which can be discarded because of already known better
results. The best result which has previously been found forms the global sys-
tem state. This system state is included as a parameter and as a result in the
worker, yielding the general type: [(t,s)] -> [(Maybe (r,s),[t])]. Each time
a new (better) result has been found, the new state is propagated through the
ring to all worker processes. Delays in this state update mechanism may lead
to unnecessary evaluations of suboptimal results and thus should be avoided. It
is essential that the ring communication remains responsive under all circum-
stances.

Branch-and-bound algorithms can use a best-first search strategy, where the
task pool is implemented as a priority queue, or a depth-first search strategy,
with a stack implementation of the task pool [CP96]. Our skeleton can implement
both strategies using appropriate instantiations of the parameter functions ttDf,
ttSplitf, and ttAf. In our experiments, we observed a better performance of the
depth first search in most cases. The general interface of the skeleton (shown in
Fig. 2) must be used for branch-and-bound algorithms.

3.2 Skeleton Implementation

In the following, we describe the full implementation of the skeleton and explain
more details of the skeleton parameters on the way.

Global Functionality. In the beginning, all initial tasks are evenly distributed
to the worker processes, and the workers work on their local work pools. Newly
generated tasks are put into this local pool. When the first worker becomes idle,
the demand-driven task exchange starts, following a local round robin strategy
[GGKK03]. Fig. 3 shows an exemplary request cycle to illustrate the function-
ality. Workers with an empty task pool are depicted in white, working processes
appear with a coloured (dark) center. The first idle worker sends a work request
to its neighbour through the ring. The request of type Req t with

data Req t = ... Other ChanName ([t], ChanName (Req t)) ...

contains a dynamic return channel which the receiving process can use to
send part of its tasks to the demanding worker (Fig. 3 (a)). The split strategy
defined by the parameter function ttSplitf determines which tasks will be sent
to the requesting process. Together with the task list of type [t], a dynamic
request channel for further work requests (type ChanName (Req t)) is passed to
the requesting worker. If the served worker runs out of work again, this re-
quest channel is used to send another work request directly to the process which
answered the previous request (Fig. 3 (b)). The worker immediately forwards

6

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

(a) Return tasks after first request (b) Further request

(c) Idle processes forward request (d) Further return

Fig. 3. Snapshots of Local Round Robin Strategy for Task Distribution

the request to its successor in the ring. The request is further passed through
the ring (Fig. 3 (c)) until it reaches a worker with spare tasks which again will
directly send further work (Fig. 3 (d)) and a new request channel via the return
channel included in the request.

Note our notational distinction between request and return channels, which
are technically the same. Request channels are the channels which transport
work requests together with a return channel. The return channel is then used
by a busy worker process to hand over some of its local tasks to the requesting
process. In addition to the tasks, a request channel is supplied, which will be used
by the requesting process to send the next work request directly to the process
which answered its previous request. Thus, the ring structure is often bypassed
via dynamic channels. Nevertheless, the ring is essential when systematically
visiting all workers for termination detection.

Worker Functionality. The behaviour of the worker processes is determined by
two functions: the task processing worker function wf and a control function

7

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

data ReqS t s = ME

| OtherS (Tag, ChanName([t],Maybe(ChanName(ReqS t s))))

| TasksNME [t]

| NewState s -- carry state inside and between workers

data Tag = Black | White (Int,Int,Int,Int) | None

-- Tag White carries four counters of incoming/outgoing messages

-- for two subsequent tours through the ring

workerAdminS :: (Trans t, Trans r, Trans s, NFData r’) =>

... -> -- passed parameters of general interface

ChanName [ReqS t s] -> -- outgoing ring channel ringOutChan

[ReqS t s] -> -- ring input ringIn

Bool -> -- first worker? isFirst

[r] -- results to parent

workerAdminS wf resTf ttAf ttSplitf ttDf cpSf initTs initS

ringOutChan ringIn isFirst

= parfill ringOutChan ringOut results

where -- central control: manage local work pool and requests

(ts’, ringOut) = control ttAf ttSplitf ttDf cpSf

initTs initS isFirst reqL

reqL = ME : mergeS rnf [ringIn,localReqs]

-- task processing and final result transformation

(ress, localReqs) = split (wf ts’)

results = resTf ress finalState

NewState finalState = last ringOut

Fig. 4. Implementation Scheme of Ring-Connected Worker Processes

8

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

which is the heart of the work pool management. Fig. 4 illustrates the inter-
nal flow of information and the code of the worker administration function
workerAdminS which essentially maps a stream ringIn of incoming requests with
type ReqS t s to a stream ringOut of outgoing requests and a results stream to
the parent. The ring output is passed via a dynamic channel ringOutChan while
the output for the parent is simply returned as the function result.

The request type ReqS t s (see Fig. 4) is the type of information passed
through the ring, now extended with state information. It covers external and
internal requests for task lists of type t as well as update information for the state
(type s). External work requests are identified by the OtherS constructor. These
include a Tag that is needed for distributed termination detection. Requests of the
local task processing function are identified by the TasksNME constructor which
additionally includes a list of newly generated tasks, or by the ME constructor
which indicates a pure request for new work. State update information identified
by the NewState constructor will be broadcasted using the ring topology.

The worker function wf :: [(t,s)] -> [(Maybe (r,s),[t])] processes a list
of task/state pairs and outputs a list of pairs. In the first component a re-
sult/state pair may be returned. The second component is a list of newly cre-
ated tasks. The Maybe type allows allows to indicate that no result or no better
solution than the already known solution has been found. The output stream of
the worker function is split into two streams: a stream of results which is trans-
formed using the parameter function resTf and returned to the parent process,
and another stream containing the new states and new tasks that have been
produced. If existent, the new state s is forwarded as NewState s, the task list
is embedded in a local work request TaskNMe newTs. The stream of local work
request and new state information is merged with the ring input stream of ex-
ternal work requests and passed to the function control (see Fig. 4). Initially,
the request stream to a control function contains a single ME request.

Local Worker Coordination. The central worker function control distinguishes
between two different modes handled by the functions distribWork and passWhile-

Receive. The function distribWork is active as long as the local work pool is non-
empty, i.e. work requests can be answered with tasks. It is the initial mode of
the control function.

control .. requests initTasks initState isFirst

= distribWork .. requests initTasks initState Nothing ..

distribWork :: Trans t =>

... -> -- passed parameter functions

[ReqS t s] -> -- requests

[t] -> s -> -- work pool/state

Maybe(ChanName (ReqS t s)) -> -- return channel if available

... -> -- book keeping parameters

([t],s,[ReqS t s]) -- new work pool/state,

-- outgoing requests/state infos

The function passWhileReceive is called when the local task pool is empty
and a Me request occurs, i.e. the worker itself runs out of work. The first time

9

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

this situation occurs, an OtherS work request is sent into the ring, tagged Black

and containing a newly created return channel. Later requests will be sent on
the previously received request channel. Incoming work requests are passed to
the next ring process and incoming state information is handled as follows: New
states are compared with the current state, and either accepted and passed on to
the next ring process or discarded. When new tasks are received via the return
channel, control is passed back to the distribWork function.

Termination Detection. We have implemented a combination of two standard
algorithms: Mattern’s ”four counter method” [Mat87] and Dijkstra’s token al-
gorithm [ED83]. The four counter method counts the number of outgoing and
incoming messages per process with a control message circulated twice through
the whole ring. We use our work requests for that purpose. Termination is initi-
ated when a work request completes the second ring tour with the same balanced
number of sent and received messages as in the first tour. While counting in-
coming and outgoing messages helps to detect ongoing communications, the tag
colour is used to check whether there are still busy workers that may produce
additional work.

The main difficulties in the implementation of the distributed work pool
skeleton have been to add additional evaluation demand, to ensure liveness of
the whole system, and to appropriately merge input data received via many
different channels. An example for additional demand is the mergeS variant used
in the function workerAdminS (see Fig. 4). This variant uses a function rnf (reduce
to normal form strategy) to force the evaluation of stream elements before they
are written into the result stream. An additional optimisation of merging will
be discussed in the following section. We will not go further into the details of
the skeleton implementation. The complete code can be found in [Die07].

4 Experimental Results

In this section, we present experimental results for typical case studies. We vi-
sualise the runtime behaviour using activity profiles and show runtime mea-
surements and speedup figures for the most general case of a branch-and-bound
problem.

NAS EP Benchmark. We have compared the skeleton with a simple master-
worker-skeleton [LOMP05] using an exemplary transformation problem, the NAS
parallel benchmark EP (Embarrassingly Parallel) [BBB+94]. In this benchmark,
two-dimensional statistics are accumulated from a large number of Gaussian
pseudo-random numbers. Very little communication is required. Fig. 5 visualises
the process activities over time for both computations with 3 million numbers
on an inhomogeneous local network of 9 Linux workstations. Active phases of
the processes are shown in cyan (middle gray), blocked phases in red (dark), and
runnable phases in yellow (light). Communication is overlayed, i.e. messages are
shown as black arrows from the sending to the receiving process.

In data-parallel transformation problems, the entire task pool is known in
advance. With the distributed work pool skeleton, workers are assigned a fixed

10

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

(a) Distributed Work Pool Skeleton (b) Simple Master-Worker-Skeleton

Fig. 5. Activity Profiles of NAS EP Benchmark, Input Size 3M, 9 PEs

task subset initially. The activity profile shows that workers are active most of
the time. Communication takes place only in the beginning and at the end of
the computations. The computation of the simple master-worker-skeleton is very
communication-intensive, because the master continuously distributes tasks to
the workers. The more sophisticated distributed work pool skeleton has almost
no runtime overhead. Load is well balanced in both cases.

Graph Partitioning Problem. The graph partitioning problem is a typical branch-
and-bound problem. A graph has to be partitioned into two sub-graphs with an
(almost) equal number of nodes where the weight sum of the edges connecting
the two subgraphs — the truncation cost — is minimal. The partitioning is
incrementally built up by traversing the list of graph nodes and defining sub-
problems where each node is assigned to one of the two possible sub-graphs. The
actual truncation costs of partial solutions are used to compute a lower bound
on the truncation costs of corresponding complete solutions.

The following runtime experiments were carried out on a Beowulf cluster at
Heriot-Watt-University, Edinburgh which consists of 32 Intel P4-SMP-processors
running at 3 GHz with 512 MB RAM and a Fast Ethernet interconnection. Fig. 6
shows the activity profile when evaluating the graph partitioning problem for a
graph with 30 nodes on 31 PEs. On the left hand side, the whole trace is shown.
On the right hand side, we see a zoom of the end phase of the same trace. Again,
most communication takes place in the beginning to establish the topology and
during the final phase, when idle workers send work requests to other workers.
The request-reply cycles are clearly visible in the zoomed view. The whole system
is well-balanced and all workers are equally loaded. Note that a comparison with
the simple master-worker skeleton is not possible, because the latter cannot be
used for the implementation of branch-and-bound algorithms.

Two parameters have major impact on the runtime of the parallel program:
The cutoff depth (explained below) and the merge function. We have examined
this impact with experiments focussing on a depth-first branch-and-bound im-
plementation of the graph partitioning problem with graphs consisting of 32
nodes.

11

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

︷ ︸︸ ︷
zoomed area

Fig. 6. Graph Partitioning (30 Nodes), Entire Run (Left) and Zoomed End Phase
(Right), 31 PEs, Runtime: 2,68 sec

The cutoff Parameter. Tasks evaluating nodes near the root of the search tree
usually have a higher complexity than tasks whose nodes are deeper in the tree,
i.e. tasks are irregular in their potential to generate new subtasks. Load balancing
strategies should take this fact into account, and preferably give away tasks which
have a higher “potential”. Usually, the tree depth in the decision tree is known,
or can be estimated cheaply. Thus, a load balancing strategy may retain tasks
when their distance from the root is bigger than a cutoff. These small tasks
will be solved locally: Passing them to other workers would be more expensive
than local evaluation. Although this behaviour is related to task distribution,
it is more easily encoded in the worker function. The runtime of the work pool
can benefit in two ways from a properly adjusted cutoff parameter. Tasks are
only sent to other workers if they have the potential to produce enough work,
depending on the remaining subtree depth, thereby reducing communication
overhead. In addition, evaluation of tree levels beyond the cutoff depth is done by
a simple recursive function, bypassing the control function. The traces in Fig. 6
have been obtained with the (experimentally determined) best cutoff depth.

We have tested the impact of the cutoff depth with two different program
versions. One is based on the skeleton described in the previous section, i.e. using
a ring of worker processes and implementing a local round robin strategy for
task stealing. The second one implements an all-to-all communication topology
among the workers and a random strategy for task stealing, i.e. the processes
to be asked for tasks are randomly chosen. We made runtime comparisons using
these skeleton versions on up to 31 PEs with the cutoff depth ranging from 5
(early cut) to 29 (late cut). The results presented in Fig. 7(a) show an optimal
cutoff with 12, 13, 14, or 15 for both program versions. The two versions perform
similar in the area of the optimal cutoff values. With higher cutoff values the
local round robin version is faster than the random version.
Improving merge. At first, our example programs showed a steadily increasing
number of active threads per process. The thread activities of a single pro-

12

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

¥ Random Stealing vs
¨ Local Round Robin

(a) Runtimes for varying cutoff par. (b) Threads view: old merge (c) new merge

Fig. 7. GPP 32 Test Runs on 31 PEs

cess (number 21) in a program run with cutoff value 26 and the original “old”
merge are illustrated in Fig. 7(b). Each horizontal line represents the life time
of a thread. The picture shows many long-living threads within a single process
which are blocked most of the time. This is due to the fact that Eden’s merge

which is implemented using the Concurrent Haskell nmergeIO: [[a]] -> IO [a]

forks one additional thread per input list for concurrently passing through this
list; the untouched list elements are written into a single output list. A thread
terminates as soon as it reaches the end of its list. Even the final thread will
transmit its input list element-by-element into the output list. This approach is
acceptable for stream merging. However, each time a finite list is merged with a
stream, the number of threads increases by one. In our skeleton, the values sent
on dynamic channels (e.g. tasks or work requests) are always merged with the re-
quest stream scanned by the worker’s control function. Thus, the original merge
implementation causes the number of running threads to increase with the num-
ber of requests and replies. We have modified the Concurrent Haskell nmergeIO,
so that the merger threads can detect this situation and terminate earlier. This
implementation dramatically reduces the life time and number of merge threads
in the above scenario, as we can see in Fig. 7(c). The overall runtime is reduced
because messages are no longer passed through several intermediate threads.

Speedup. If the search tree is immediately cut with cutoff value 0, the task pool
contains only the initial node, and the whole branch-and-bound problem is evalu-
ated sequentially. This eliminates most of the overhead of the work pool skeleton
compared to a sequential implementation, so we used this cutoff 0 version of the
graph partitioning problem to approximate the behaviour and runtime of the se-
quential algorithm. Fig. 8 shows the almost linear speedup of a series of program
runs with the new merge version, the cutoff value 13 and the number of processors
ranging from 1 up to 29 in comparison with the pseudo-sequential version. The
runtime on 1 machine with cutoff 13 and the pseudo-sequential version (cutoff
value 0) are very close, they differ less then 1%. Efficiency slightly drops when
the number of processors is increased, but it stays above 88%.

Summary. The parallel runtime behaviour of the skeleton has been visualised
for the NAS EP benchmark which implements a data-parallel transformation

13

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

Fig. 8. Speedup for the GPP 32 Problem

problem and for the graph partitioning problem which is a typical branch-and-
bound algorithm. Both profiles show that communication concentrates on the
start-up and the final computation phase when the worker processes run out
of work. Load is well-balanced in both cases. For the NAS EP benchmark, the
activity profile has been compared with a profile of a simple master-worker skele-
ton which shows a higher communication overhead due to the continuous task
distribution by the master process. For the graph partitioning problem, it has
been shown that the cutoff parameter has a great impact on the runtime. Using
a random instead of a local round robin strategy for task stealing makes only
a difference for sub-optimal cutoff values, where the random strategy leads to
higher runtimes. By improving the implementation of the merge function in the
case that a stream is merged with a finite list a substantial reduction of the
number and the lifetime of threads and, consequently, of the overall runtime
could be achieved. Finally, this led to an almost linear speedup when using an
optimal cutoff value and the new merge function.

5 Related Work

The master-worker paradigm has been extensively investigated and many im-
plementations exist. We focus here on other pattern or skeleton approaches and
especially on distributed work pool implementations. In the context of the grid
computing environment Condor, the MW (Master-Worker) library has been de-
veloped [GL06]. MW is tailored for branch-and-bound applications. It imple-
ments the basic master-worker system with a central master managing the task
pool and a set of worker processes. A special feature that is not supported by our
skeleton is the addition and removal of workers during runtime which is especially
important in a grid environment. This feature cannot easily be implemented in
Eden, because dynamic channels cannot simply be re-directed.

14

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

Most skeleton libraries like [Kuc,Ben,Dan] provide master-worker skeletons.
The MPI-based skeleton library Muesli [Kuc], e.g. offers a farm, a search and a
branch-and-bound skeleton. The farm implements a master-worker system with a
dynamic task distribution. The search and branch-and-bound skeletons are espe-
cially tailored for the corresponding problem classes. Our distributed work pool
skeleton is more general, because it supports all three problem classes. Moreover,
it allows a hierarchical result collection. In [PK06], Kuchen and Poldner present
a distributed branch-and-bound skeleton based on a distributed work pool. The
workers are also arranged in a ring. Two task distribution policies are supported:
a supply-driven scheme where workers send their second-best problem to their
ring neighbour from time to time, and a demand-driven scheme where work is
only distributed if an idle worker requests it.

Hippold and Rünger describe task pool teams [HR06], a programming envi-
ronment for SMP clusters that is explicitly tailored towards irregular problems
with strong inter-task dependences. The scheme comprises a set of task pools,
each running on its own SMP node, and interacting via explicit message passing.
Dynamic task creation by workers, task migration, and distributed task pools
with a task stealing mechanism are possible. Locality can be exploited to hold
global data on the SMP nodes, while communication between nodes is used for
task migration, remote data access, and global synchronisation.

Dorta et al. present a master-worker skeleton implementation in C plus MPI
which is tailored for branch-and-bound problems [DLR06]. A master process is
used to coordinate the interaction between the worker processes and to keep
the information about the currently best solution. A task pushing approach is
implemented where the master process determines to which workers a worker
should send its newly created tasks. No cutoff parameter is used to improve the
task granularity. Distributing the whole search tree leads to a high imbalance of
task sizes. The profiles show that the workers spend most of the time waiting
for new tasks. Moreover, a lack of scalability was observed.

In a previous paper [BDLP08], we have investigated declarative techniques
for hierarchically nesting master-worker instances. The workers are divided into
several groups managed by a hierarchy of sub-masters. The work pool is divided
into several sub-pools within the sub-masters. Now we have followed a more
radical approach and completely distributed the work pool within the worker
processes.

6 Conclusions

A distributed work pool skeleton has been implemented in the parallel functional
language Eden. Eden’s specific features like lazy stream processing, dynamic re-
ply channels, nondeterministic merge are very supportive for the efficient imple-
mentation of the complex coordination structure of the skeleton. The skeleton
is very general, highly parameterised, and thus applicable to a range of problem
classes. Experiments show a stable runtime behaviour, well-balanced work loads
and worker activities. Communication overhead mainly occurs in the end phase
of executions.

15

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

Acknowledgements. We thank the anonymous referees for their helpful com-
ments on a previous version of this paper.

References

[BBB+94] D. Bailey, E. Baszcz, J. Barton, D. Browning, R. Carter, I. Dagum, and
et al. The NAS Parallel Benchmarks. Technical Report RNR-94-007, NASA,
1994.

[BDLP08] Jost Berthold, Mischa Dieterle, Rita Loogen, and Steffen Priebe. Hierarchi-
cal Master-Worker Skeletons. In PADL’08 — Practical Aspects of Declar-
ative Languages, LNCS 4902, pages 248–264. Springer, 2008.

[Ben] Anne Benoit. ESkel — The Edinburgh Skeleton Library. Univ. of Edinburgh
2007, http://homepages.inf.ed.ac.uk/abenoit1/eSkel/.

[CP96] J. Clausen and M. Perregaard. On the best search strategy in parallel
branch-and-bound - best-first-search vs. lazy depth-first-search. Technical
Report 16, University of Copenhagen, 1996.

[Dan] Marco Danelutto. The parallel programming library Muskel. Universita di
Pisa 2007, http://www.di.unipi.it/~marcod/Muskel/Home.html.

[Die07] Mischa Dieterle. Parallel functional implementation of master worker skele-
tons. Diploma Thesis, Philipps-Universität Marburg, October 2007. (in
german).

[DLR06] I. Dorta, C. Léon, and C. Rodŕıguez. Performance Analysis of Branch-and-
Bound Skeletons. In 14th Euromicro Conf. on Parallel, Distributed, and
Network-Based Processing (PDP’06). IEEE, 2006.

[ED83] A.J.M. van Gasteren E.W. Dijkstra, W.H.J. Feijen. Derivation of a termi-
nation detection algorithm for distributed computations. Inform. Process.
Lett., 16(5):217–219, 1983.

[Fos95] Ian Foster. Designing and Building Parallel Programs. Addison-Wesley,
1995.

[GGKK03] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Intro-
duction to Parallel Computing. Pearson Education, 2003.

[GL06] W. Glankwamdee and J.T. Linderoth. MW: A Software Framework for
Combinatorial Optimization on Computational Grids. In E. Talbi, editor,
Parallel Combinatorial Optimization, pages 239–262. Wiley, 2006.

[HR06] J. Hippold and G. Rünger. Task Pool Teams: A Hybrid Programming
Environment for Irregular Algorithms on SMP Clusters. Concurrency and
Computation: Practice and Experience, 18:1575–1594, 2006.

[Kuc] Herbert Kuchen. The Münster Skeleton Library Muesli. Univ. Münster
2007,
http://www.wi.uni-muenster.de/PI/ forschung/Skeletons/index.php.

[LOMP05] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Pro-
gramming in Eden. Journal of Functional Programming, 15(3):431–475,
2005.

[Mat87] Friedemann Mattern. Algorithms for distributed termination detection.
Distributed Computing, 2:161–175, 1987.

[PK06] Michael Poldner and Herbert Kuchen. Algorithmic skeletons for branch &
bound. In ICSOFT (1), pages 291–300. INSTICC Press, 2006.

[Qui03] Michael Quinn. Parallel Programming in C with MPI and OpenMP. Mc-
Graw Hill, 2003.

16

Dieterle, Berthold, Loogen, A Skeleton for Distributed Work Pools In: FLOPS 2010, LNCS 6009.
c© 2010 Springer Berlin/Heidelberg. The original publication is available at springerlink.com.

springerlink.com

