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Abstract

MLF is a type system that seamlessly merges ML-style implicit but second-class polymorphism with System-F explicit
first-class polymorphism. We present xMLF, a Church-style version of MLF with full type information that can easily
be maintained during reduction. All parameters of functions are explicitly typed and both type abstraction and type
instantiation are explicit. However, type instantiation in xMLF is more general than type application in System F. We
equip xMLF with a small-step reduction semantics that allows reduction in any context, and show that this relation is
confluent and type preserving. We also show that both subject reduction and progress hold for weak-reduction strategies,
including call-by-value with the value-restriction. We exhibit a type preserving encoding of MLF into xMLF, which shows
that xMLF can be used as the internal language for MLF after type inference, and also ensures type soundness for the
most expressive variant of MLF.

Keywords: MLF, System F, Types, Type Generalization, Type Instantiation, Retyping functions, Coercions, Type
Soundness, Binders

Introduction

MLF (Le Botlan and Rémy, 2003, 2009; Rémy and
Yakobowski, 2008) is a type system that seamlessly merges
ML-style implicit but second-class polymorphism with
System-F explicit first-class polymorphism. This is done
by enriching System-F types. Indeed, System F is not well-
suited for partial type inference, as illustrated by the fol-
lowing example. Assume that a function, say choice, of
type ∀ (α) α→ α→ α, and the identity function id, of type
∀ (β) β → β, have been defined. How can the application
choice to id be typed in System F? Should choice be applied
to the type ∀ (β) β → β of the identity, that is itself kept
polymorphic? Or should it be applied to the monomorphic
type γ → γ, with the identity being applied to γ (where
γ is bound in a type abstraction in front of the applica-
tion)? Unfortunately, these alternatives have incompatible
types, respectively (∀ (α) α → α) → (∀ (α) α → α) and
∀ (γ) (γ → γ) → (γ → γ): none is an instance of the
other. Hence, in System F, one is forced to irreversibly
choose between one of the two explicitly typed terms.

However, a type inference system cannot choose be-
tween the two, as this would sacrifice completeness and be
somehow arbitrary. This is why MLF enriches types with
instance-bounded polymorphism, which allows to write
more expressive types that factor out in a single type

URL: http://gallium.inria.fr/~remy (Didier Rémy),
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all typechecking alternatives in such cases as the exam-
ple of choice. Now, the type ∀ (α > ∀ (β) β → β) α → α,
which should be read “α → α where α is any instance
of ∀ (β) β → β”, can be assigned to choice id, and the
two previous alternatives can be recovered a posteriori by
choosing different instances for α.

Currently, the language MLF comes with a Curry-style
version, iMLF, where no type information is needed and a
type-inference version, eMLF, that requires partial type in-
formation (Le Botlan and Rémy, 2009). However, eMLF is
not quite in Church style: a large amount of type informa-
tion is still implicit, and partial type information cannot
be easily maintained during reduction. Hence, while eMLF

is a good surface language, it is not a good candidate for
use as an internal language during the compilation pro-
cess, where some program transformations, and perhaps
some reduction steps, are being performed. This has been
a problem for the adoption of MLF in the Haskell commu-
nity (Peyton Jones, 2003), as the Haskell compilation chain
uses an explicitly-typed internal language, especially, but
not only, for evidence translation due to the use of qualified
types (Jones, 1994).

This is also an obstacle to proving subject reduction,
which does not hold in eMLF. In a way, this is unavoid-
able in a language with non-trivial partial type inference.
Indeed, type annotations cannot be completely dropped,
but must at least be transformed and reorganized during
reduction. Still, one could expect that eMLF is equipped
with reduction rules for type annotations. This has actu-
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ally been considered in the original presentation of MLF,
but only with limited success. The reduction kept track of
annotation sites during reduction; this showed, in partic-
ular, that no new annotation site needs to be introduced
during reduction. Unfortunately, the exact form of anno-
tations could not be maintained during reduction, by lack
of an appropriate language to describe their computation.
As a result, it has only been shown that some type deriva-
tion can be rebuilt after the reduction of a well-typed pro-
gram, but without exhibiting an algorithm to compute it
during reduction.

Independently, Rémy and Yakobowski (2008) have in-
troduced graphic constraints, both to simplify the presen-
tation of MLF and to improve its type inference algorithm.
This also resulted in a simpler and more expressive defi-
nition of MLF. Hence, by eMLF, we refer to the graphical
presentation of MLF rather then the original version. Con-
sistently, iMLF refers to the graphic Curry’s style version
of eMLF. We still use the generic name MLFwhen the style
of presentation does not matter.

In this article, we present xMLF, a Church-style version
of MLF that contains full type information. In fact, type
checking becomes a simple and local verification process—
by contrast with type inference in eMLF, which is based
on unification. In xMLF, type abstraction, type instan-
tiation, and all parameters of functions are explicit, as
in System F. However, type instantiation is more general
and more atomic than type application in System F: we
use explicit type instantiation expressions that are proof
evidences for the type instance relations.

In addition to the usual β-reduction, we give a series of
reduction rules for simplifying type instantiations. These
rules are confluent when allowed in any context. More-
over, reduction preserves typings, and is sufficient to re-
duce all typable expressions to a value when used in either
a call-by-value or call-by-name setting. This establishes
the soundness of MLF for a call-by-name semantics for the
first time. Furthermore, we show that xMLF is a conserva-
tive extension of System F.

The natural definition of xMLF is actually more expres-
sive than that of MLF. Still, we can restrict type-checking
in xMLF so that well-typed terms are in closer correspon-
dence with MLF terms. This defines a well-behaved subset
xMLF♭ of xMLF. Then, all three versions iMLF, eMLF and
xMLF♭ have the same expressiveness, and only differ by the
amount of type information: terms of iMLF contain none,
terms of eMLFcontain some type annotations and no de-
scription of type instantiations, while xMLF contains all
type annotations and a full description of all type instan-
tiations.

A term of xMLF can easily be converted into an eMLF

one by retaining type annotations, but dropping all other
type information. The result may in turn be converted into
a term of iMLF by further dropping all type annotations.
Conversely, terms of iMLF cannot be automatically trans-
lated into terms of eMLF, since type inference in iMLF is

undecidable—some type annotations are required. Hence,
source terms are terms of eMLF: type inference can re-
build the type annotations that may be left implicit, or
fail if mandatory type annotations have been omitted (or
are incorrect). Terms of eMLF—for which type inference
succeeds—can then be elaborated into terms of xMLF.

Outline. Perhaps surprisingly, the difficulty in defining an
internal language for MLF is not reflected in the internal
language itself, which remains simple and easy to under-
stand. Rather, the difficulties lie in the translation from
eMLF to xMLF, which is made somewhat complicated by
many administrative details. Hence, we present xMLFfirst,
and study its meta-theoretical properties independently of
eMLF. We then describe the elaboration of eMLF terms.

More precisely, the paper is organized as follows. We
present xMLF, its syntax and its static and dynamic se-
mantics in §1. We study its main properties, including
type soundness for different evaluations strategies in §2.
The elaboration of eMLF programs into xMLF is described
§3. We discuss the expressiveness of xMLF in §4 and re-
lated and future works in §5.

Proofs and implementation. The soundness proof of xMLF

has been mechanized in the Coq proof assistant1 and is
briefly discussed in Appendix A. Other interesting proofs
of §1 and §2 can be found in Appendix B, except for two
results, which have already been proved by Manzonetto
and Tranquilli (2010). Detailed proofs of §3 can all be
found in the dissertation of Yakobowski (2008, Chapters 14
& 15), although for a slightly different—but equivalent—
presentation. We do not reproduce them here, as they de-
pend too much on the metatheoretical properties of eMLF.
The elaboration of eMLF into xMLF has been implemented
in a prototype2.

1. The calculus

1.1. Types, instantiations, terms, and typing environ-
ments

All the syntactic definitions of xMLF can be found in
Figures 1 and 2. We assume given a countable collection
of type variables written with letters α, β, γ, and δ. As
usual, types include type variables and arrow types. Other
type constructors will be added later—straightforwardly,
as the arrow constructor receives no special treatment.
Types also include a bottom type ⊥ that corresponds to
the System-F type ∀α.α. Finally, a type may also be a
form of bounded quantification ∀ (α> τ) τ ′, called flexible
quantification, that generalizes the ∀α.τ form of System F

and, intuitively, restricts the variable α to range only over

1The Coq development is available at http://www.yakobowski.

org/publis/2010/xmlf-coq/. Properties that have been mechani-
cally verified in Coq are marked with the Coq symbol.

2Available at http://gallium.inria.fr/~remy/mlf/proto/.
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α, β, γ, δ : Type variable

τ ::= Type
| α Type variable
| τ → τ Arrow type
| ∀ (α> τ) τ Quantification
| ⊥ Bottom type

φ ::= Instantiation
| @τ Bottom
| !α Abstract
| ∀ (>φ) Inside
| ∀ (α>) φ Under
| N ∀-elimination
| O ∀-introduction
| φ;φ Composition
| 1 Identity

Figure 1: Grammar of types and instantiations

a ::= Term
| x Variable
| λ(x : τ) a Function
| a a Application
| Λ(α> τ) a Type function
| a φ Instantiation
| let x = a in a Let-binding

Γ ::= Environment
| ∅ Empty
| Γ, α> τ Type variable
| Γ, x : τ Term variable

Figure 2: Grammar of terms and typing contexts

instances of τ . The variable α is bound in τ ′ but not in τ .
We may just write ∀ (α) τ ′ when the bound τ is ⊥.

In Church-style System F, type instantiation inside
terms is simply type application a τ . By contrast, in
xMLF, we use type instantiation a φ to detail every in-
termediate instantiation step, so that it can be checked
locally. Intuitively, the instantiation φ transforms a type
τ into another type τ ′ that is an instance of τ . In a way,
φ is a witness for the instance relation that holds between
τ and τ ′. It is therefore easier to understand instantia-
tions altogether with their static semantics, which will be
explained in the next section.

Terms of xMLF are those of the λ-calculus enriched
with let bindings, with two small differences: type instan-
tiation a φ generalizes System-F type application as just
described; and type abstractions are extended with an in-
stance bound τ and written Λ(α > τ) a where the type
variable α is bound in a, but not in τ . We abbreviate
Λ(α > ⊥) a as Λ(α) a, which simulates the type abstrac-
tion Λα. a of System F.

We write ftv(τ) and ftv(a) for the sets of type vari-
ables that appear free in τ and a, respectively. We iden-
tify types, instantiations, and terms up to the renaming
of bound variables. The capture-avoiding substitution of

wf (∅)

α /∈ dom(Γ)
wf (Γ) ftv(τ) ⊆ dom(Γ)

wf (Γ, α> τ)

x /∈ dom(Γ)
wf (Γ) ftv(τ) ⊆ dom(Γ)

wf (Γ, x : τ)

Figure 3: Well-formed environments

Inst-Bot

Γ ⊢ @τ : ⊥ ≤ τ

Inst-Under
Γ, α> τ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (α>) φ : ∀ (α > τ) τ1 ≤ ∀ (α> τ) τ2

Inst-Abstr
α> τ ∈ Γ

Γ ⊢ !α : τ ≤ α

Inst-Inside
Γ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (>φ) : ∀ (α> τ1) τ ≤ ∀ (α> τ2) τ

Inst-Intro
α /∈ ftv(τ)

Γ ⊢ O : τ ≤ ∀ (α>⊥) τ

Inst-Comp
Γ ⊢ φ1 : τ1 ≤ τ2
Γ ⊢ φ2 : τ2 ≤ τ3

Γ ⊢ φ1;φ2 : τ1 ≤ τ3

Inst-Elim

Γ ⊢ N : ∀ (α> τ) τ ′ ≤ τ ′{α← τ}

Inst-Id

Γ ⊢ 1 : τ ≤ τ

Figure 4: Type instance

an expression s0 for a variable v inside an expression s is
written s{v ← s0}.

As usual, type environments assign types to program
variables. However, instead of just listing type variables,
as is the case in System F, they also assign them a type
bound, using the form α > τ . We write dom(Γ) for the
set of all term variables and type variables that are bound
by Γ. We also assume that typing environments are well-
formed, i.e. they do not bind twice the same variable and
free type variables appearing in a type of the environment
Γ are bound earlier in Γ. Well-formedness rules are given
in Figure 3: the empty environment is well-formed; given
a well-formed environment Γ, the relations x /∈ dom(Γ),
α /∈ dom(Γ), and ftv(τ) ⊆ dom(Γ) must hold to form envi-
ronments Γ, x : τ and Γ, α> τ .

1.2. Instantiations

Instantiations φ are defined in Figure 1. Their typing,
described in Figure C.19, are type instance judgments of
the form Γ ⊢ φ : τ ≤ τ ′, stating that in environment Γ,
the instantiation φ transforms the type τ into the type τ ′.
(For conciseness, the syntax of instantiations uses mathe-
matical symbols !, N, O, etc. which have no connection at
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τ (!α) = α
⊥ (@τ) = τ
τ 1 = τ
τ (φ1;φ2) = (τ φ1) φ2

τ O = ∀ (α >⊥) τ α /∈ ftv(τ)
(∀ (α> τ) τ ′) N = τ ′{α← τ}
(∀ (α> τ) τ ′) (∀ (>φ)) = ∀ (α > τ φ) τ ′

(∀ (α> τ) τ ′) (∀ (α>) φ) = ∀ (α > τ) (τ ′ φ)

Figure 5: Type instantiation (on types)

all with linear logic.)
The bottom instantiation @τ expresses that (any) type

τ is an instance of the bottom type. The abstract in-
stantiation !α, which assumes that the hypothesis α > τ
is in the environment, abstracts the bound τ of α as the
type variable α. The inside instantiation ∀ (>φ) applies
φ to the bound τ ′ of a flexible quantification ∀ (α′ > τ ′) τ .
Conversely, the under instantiation ∀ (α>) φ applies φ
to the type τ under the quantification; the type variable
α is bound in φ and the environment in the premise of
the rule Inst-Under is increased accordingly. The quan-
tifier introduction O introduces a fresh trivial quantifica-
tion ∀ (α > ⊥). Conversely, the quantifier elimination N
eliminates the bound of a type of the form ∀ (α > τ) τ ′

by substituting τ for α in τ ′. This amounts to definitely
choosing the present bound τ for α, while the bound be-
fore the application could be further instantiated by some
inside instantiation. The composition φ;φ′ witnesses the
transitivity of type instance, while the identity instantia-
tion 1 witnesses reflexivity.

Example. Let τmin, τcmp, and τand be the types of the para-
metric minimum and comparison functions, and of the
boolean conjunction:

τmin , ∀ (α>⊥) α→ α→ α

τcmp , ∀ (α>⊥) α→ α→ bool

τand , bool→ bool→ bool

Let φ be the instantiation ∀ (>@bool);N. Then, both ⊢
φ : τmin ≤ τand and ⊢ φ : τcmp ≤ τand hold.

Let τK be the type ∀ (α > ⊥) ∀ (β > ⊥) α → β → α
(e.g. of the λ-term λ(x) λ(y) x) and φ′ be the instantiation
∀ (α>) (∀ (>@α);N) (the occurrence of α in the inside
instantiation is bound by the under instantiation). Then,
the relations ⊢ φ′ : τK ≤ τmin holds.

Type application. As above, we often instantiate a quan-
tification over ⊥ and immediately substitute the result.
Moreover, this pattern corresponds to the System-F unique
instantiation form. Therefore, we define 〈τ〉 as syntactic
sugar for (∀ (>@τ);N). The previous instantiations φ and
φ′ can then be abbreviated as 〈bool〉 and ∀ (α>) 〈α〉.

Properties of instantiations. Since instantiations make all
steps in the instance relation explicit, their typing is de-
terministic.

Var
x : τ ∈ Γ

Γ ⊢ x : τ

Let
Γ ⊢ a : τ Γ, x : τ ⊢ a′ : τ ′

Γ ⊢ let x = a in a′ : τ ′

App
Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Abs
Γ, x : τ ⊢ a : τ ′

Γ ⊢ λ(x : τ) a : τ → τ ′

TAbs
Γ, α> τ ′ ⊢ a : τ α /∈ dom(Γ)

Γ ⊢ Λ(α> τ ′) a : ∀ (α> τ ′) τ

TApp
Γ ⊢ a : τ

Γ ⊢ φ : τ ≤ τ ′

Γ ⊢ a φ : τ ′

Figure 6: Typing rules for xMLF

Lemma 1. If Γ ⊢ φ : τ ≤ τ1 and Γ′ ⊢ φ : τ ≤ τ2, then
τ1 = τ2. Coq

The use of Γ′ instead of Γ may be surprising. However,
Γ does not contribute to the instance relation, except in
the side condition of rule Inst-Abstr. Hence, the type
instance relation defines a partial function, called type
instantiation3 that, given an instantiation φ and a type
τ , returns (if it exists) the unique type τ φ such that
Γ ⊢ φ : τ ≤ τ φ holds for some Γ. An inductive definition
of this function is given in Figure 5. Type instantiation is
complete for type instance:

Lemma 2. If Γ ⊢ φ : τ ≤ τ ′, then τ φ = τ ′. Coq

However, the fact that τ φ may be defined and equal to τ ′

does not imply that Γ ⊢ φ : τ ≤ τ ′ holds for some Γ. In-
deed, type instantiation does not check the premise of rule
Inst-Abstr. This is intentional, as it avoids parametriz-
ing type instantiation over the type environment. This
means that type instantiation is not sound in general. This
is never a problem, however, since we only use type instan-
tiation originating from well-typed terms for which there
always exists some context Γ such that Γ ⊢ φ : τ ≤ τ ′.

We say that types τ and τ ′ are equivalent in Γ if there
exist φ and φ′ such that Γ ⊢ φ : τ ≤ τ ′ and Γ ⊢ φ′ : τ ′ ≤ τ .
Although types of xMLF are syntactically the same as the
types of iMLF—the Curry-style version of MLF (Le Botlan
and Rémy, 2009)—they are richer, because type equiva-
lence in xMLF is finer than type equivalence in iMLF, as
explained in §4.

1.3. Typing rules for xMLF

Typing rules are defined in Figure 6. Compared with
System F, the novelties are type abstraction and type in-

3There should never be any ambiguity between type instantiation
τ φ and instantiation of expressions a φ; moreover, both operations
have strong similarities and are closely related.
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stantiation, unsurprisingly. The typing of a type abstrac-
tion Λ(α > τ) a extends the typing environment with the
type variable α bound by τ . The typing of a type instan-
tiation a φ resembles the typing of a coercion, as it just
requires the instantiation φ to transform the type of a into
the type of the result. Of course, it has the full power of
the type application rule of System F. For example, the
type instantiation a 〈τ〉 has type τ ′{α ← τ} provided the
term a has type ∀ (α) τ ′. As in System F, a well-typed
closed term has a unique type and, in fact, a unique typ-
ing derivation.

Lemma 3. If Γ ⊢ a : τ1 and Γ ⊢ a : τ2, then τ1 = τ2. Coq

A let-binding let x = a1 in a2 cannot entirely be
treated as an abstraction for an immediate application
(λ(x : τ1) a2) a1 because the former does not require a
type annotation on x whereas the latter does. This is
nothing new, and the same as in System F extended with
let-bindings. Notice however that τ1, which is the type of
a1, is fully determined by a1 and can be easily synthesized
by a typechecker.

Example. Let id stand for the identity Λ(α > ⊥) λ(x :
α) x and τid be the type ∀ (α > ⊥) α → α. We have
⊢ id : τid—much as in System F, except that unconstrained
universal variables are given the bound ⊥. The function
choice mentioned in the introduction may be defined as
Λ(β > ⊥) λ(x : β) λ(y : β) x. It has type ∀ (β > ⊥) β →
β → β. This is again similar to its typing in System F. We
abbreviate this type as τchoice.

The application of choice to id, which we refer to below
as choice id, may be defined as Λ(β> τid) choice 〈β〉 (id !β)
and has type ∀ (β > τid) β → β. Indeed, its typing deriva-
tion ends with:

TApp

Γβ ⊢ choice : τchoice
Γβ ⊢ 〈β〉 : τchoice ≤ β → β → β

Γβ ⊢ choice 〈β〉 : β → β → β

Γβ ⊢ id : τid
Γβ ⊢ !β : τid ≤ β (1)

Γβ ⊢ id !β : β
TApp

Γβ ⊢ choice 〈β〉 (id !β) : β → β

Γ ⊢ Λ(β > τid) choice 〈β〉 (id !β) : ∀ (β > τid) β → β
Abs

App

where Γβ is Γ, β > τid and the key judgment (1), which
follows by Rule Inst-Abstr, says that type τid can be
seen as type β whenever β is declared to be an instance
of τid.

The term choice id may also be given weaker types
by type instantiation. For example, choice id N has type
(∀ (α > ⊥) α → α) → (∀ (α > ⊥) α → α) as in System F,
while choice id (O; ∀ (γ>) (∀ (> 〈γ〉);N)) has the ML type
∀ (γ>⊥) (γ → γ)→ γ → γ. The former expression can be
understood directly, by fixing β to its bound τid. The latter
can be understood informally as the introduction of a free
type variable γ and then the instantiation of the bound τid
of β to the type γ → γ, say τγ . Formally, the derivation is
a little tedious. Let Γ be the typing environment γ >⊥.

(λ(x : τ) a1) a2 −→ a1{x← a2}
let x = a2 in a1 −→ a1{x← a2}

a 1 −→ a
a (φ;φ′) −→ a φ (φ′)
a O −→ Λ(α>⊥) a α /∈ ftv(a)

(Λ(α> τ) a) N −→ a{!α← 1}{α← τ}
(Λ(α> τ) a) (∀ (α>) φ) −→ Λ(α> τ) (a φ)
(Λ(α> τ) a) (∀ (>φ)) −→ Λ(α> τ φ) a{!α← φ; !α}

E[a] −→ E[a′] if a −→ a′ (

Figure 7: Reduction rules

First, we have

Γ ⊢ @γ : ⊥ ≤ γ (2
Γ ⊢ ∀ (>@γ) : ∀ (α>⊥) α→ α ≤ ∀ (α> γ) α→ α(3
Γ ⊢ N : ∀ (α> γ) α→ α ≤ γ → γ (4
Γ ⊢ ∀ (>@γ);N : ∀ (α>⊥) α→ α ≤ γ → γ (5

(2) is by rule Inst-Bot; (3) is by Inst-Inside and (2);
(4) is by Inst-Elim; (5) is by Inst-Comp, (3), and (4).
Then,

Γ ⊢ 〈γ〉 : τid ≤ γ → γ
Γ ⊢ ∀ (> 〈γ〉) : ∀ (β > τid) β → β ≤ ∀ (β > γ → γ)
Γ ⊢ N : ∀ (β > γ → γ) β → β ≤ (γ → γ)→ γ →
Γ ⊢ ∀ (> 〈γ〉);N : ∀ (β > τid) β → β ≤ (γ → γ)→ γ →

(6) is an abbreviation of (5); (7) is by Inst-Inside; (8) is
by Inst-Elim; (9) is by Inst-Comp, (7) and (8). By rule
Inst-Under and (9), we have

⊢ ∀ (γ>) (∀ (> 〈γ〉);N) :
∀ (γ >⊥) ∀ (β > τid) β → β ≤ ∀ (γ >⊥) (γ → γ)→ γ →

(10)
Finally, by rule Inst-Intro, (10), and Inst-Comp, we
have:

⊢ O; ∀ (γ>) (∀ (> 〈γ〉);N) :
∀ (β > τid) β → β ≤ ∀ (γ >⊥) (γ → γ)→ γ

As illustrated on this rather simpler example, computing
all intermediate steps of a type instantiation is very tedious
for a human and usually harder than just checking type
instantiation. However, xMLF is only meant to be used as
an internal language by a machine.

1.4. Reduction

The semantics of the calculus is given by a small-step
reduction semantics. We let reduction occur in any con-
text, including under abstractions. That is, the evaluation
contexts are single-hole contexts, given by the grammar:

E ::= [ · ] | E φ | λ(x : τ) E | Λ(α> τ) E
| E a | a E | let x = E in a | let x = a in E

The reduction rules are described in Figure 7. As usual,
basic reduction steps contain β-reduction, with the two
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variants (β) and (βlet). Other basic reduction rules, re-
lated to the reduction of type instantiations and called
ι-steps, are described below. The one-step reduction is
closed under the context rule. We write −→β and −→ι for
the two subrelations of −→ that contain only Context

and β-steps or ι-step, respectively. Finally, the reduction
is the reflexive and transitive closure −→⋆ of the one-step
reduction relation.

Reduction of type instantiation. By definition, type in-
stantiation redexes are all of the form a φ. The first three
rules do not constrain the form of a. The identity type
instantiation is just dropped (Rule ι-Id). A type instanti-
ation composition is replaced by the successive correspond-
ing type instantiations (Rule ι-Seq). Rule ι-Intro intro-
duces a new type abstraction in front of a; we assume that
the bound variable α is fresh for a.

The other three rules require the type instantiation to
be applied to a type abstraction Λ(α>τ) a. Rule ι-Under

propagates the type instantiation under the bound, on the
body a.

By contrast, Rule ι-Inside propagates the type instan-
tiation φ inside the bound, replacing τ by τ φ. However,
as the bound of α has changed, the domain of the type
instantiation !α is no more τ , but τ φ. Hence, in order
to maintain well-typedness, all the occurrences of the in-
stantiation !α in a must be simultaneously replaced by the
instantiation (φ; !α). Here, the instantiation !α is seen as
an atomic construct, i.e. all occurrences of !α are sub-
stituted, while other occurrences of α (i.e. that are not
part of !α) are left unchanged. Formally, a{!α0 ← φ0} is
defined recursively, as described in Figure 8 (abbreviating
{!α0 ← φ0} by θ). The interesting lines are the two first
ones of the second column, as other lines are just lifting the
substitution from the leaves to types, type instantiations,
and terms in the usual way.

As an example of ι-Inside, if a is the term

Λ(α> τ) λ(x : α→ α) λ(y : ⊥) y (@(α→ α)) (z !α)

then, the type instantiation a (∀ (>φ)) reduces to:

Λ(α> τ φ) λ(x : α→ α) λ(y : ⊥) y (@(α→ α)) (z (φ; !α))

Rule ι-Elim eliminates the type abstraction, replacing
all the occurrences of α inside a by the bound τ . All
the occurrences of !α inside τ (used to instantiate τ into
α) become vacuous and must be replaced by the identity
instantiation. For example, reusing the term a above, a N
reduces to

λ(x : τ → τ) λ(y : ⊥) y (@(τ → τ)) (z 1)
Finally, notice that type instantiations a @τ and a !α

are irreducible.

Examples of reduction. Let us reuse the term choice id de-
fined in §1.3 as Λ(β > τid) choice 〈β〉 (id !β). Remember

Types

τ θ = τ

Terms

x θ = x
(a1 a1) θ = (a1 θ) (a1 θ)
(a φ) θ = (a θ) (φ θ)

(λ(x : τ) a) θ = λ(x : τ θ) (a θ)
(Λ(α> τ) a) θ = Λ(α : τ θ) (a θ)

Type instantiations

!α θ = !α if α 6= α0

!α0 θ = φ0

(@τ) θ = @(τ θ)
(∀ (>φ)) θ = ∀ (>φ θ)

(∀ (α>) φ) θ = ∀ (α>) (φ θ)
(φ;φ′) θ = (φ θ); (φ′ θ)

N θ = N
O θ = O1 θ = 1

Figure 8: Definition of a θ, where θ is {!α0 ← φ0}

that 〈τ〉 stands for the System-F type application τ and
expands to (∀ (>@τ);N). Therefore, the type instantia-
tion choice 〈β〉 reduces to the term λ(x : β) λ(y : β) x by
ι-Seq, ι-Inside and ι-Elim. Hence, the term choice id re-
duces by these rules, Context, and (β) to the expression
Λ(β > τid) λ(y : β) id !β.

Below are three specialized versions of choice id (with
∀ (α) τ and Λ(α) a being abbreviations for ∀ (α>⊥) τ and
Λ(α > ⊥) a). Here, all type instantiations are eliminated
by reduction, but this is of course not always the case in
general.

choice id (∀ (> 〈int〉);N) : (int→ int)→ (int→ int)
−→⋆ λ(y : int→ int) λ(x : int)

choice id N : (∀ (α) α→ α)→ (∀ (α) α
−→⋆ λ(y : ∀ (α) α→ α) (Λ(α)

choice id (O; ∀ (γ>) (∀ (> 〈γ〉);N)) : ∀ (γ) (γ → γ)→ (γ → γ)
−→⋆ Λ(γ) λ(y : γ → γ) λ(x : γ

1.5. System F as a subsystem of xMLF

System F can be seen as a subset of xMLF, using the
following syntactic restrictions: all quantifications are of
the form ∀ (α) τ and ⊥ is not a valid type anymore (how-
ever, as in System F, ∀ (α) α is); all type abstractions
are of the form Λ(α) a; and all type instantiations are
of the form a 〈τ〉. The derived typing rules for Λ(α) a
and a 〈τ〉 are exactly the System-F typing rules for type
abstraction and type application. Hence, typechecking in
this restriction of xMLF corresponds to typechecking in
System F. Moreover, the one-step System-F β-reduction
(Λ(α) a) 〈τ〉 −→ a{α ← τ} can be performed in xMLF in
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three steps:

(Λ(α) a) 〈τ〉 = (Λ(α>⊥) a) (∀ (>@τ);N) (1)

−→ (Λ(α>⊥) a) (∀ (>@τ)) N (2)

−→ (Λ(α>⊥ (@τ)) a{!α← @τ ; !α}) N (3)

= (Λ(α> τ) a) N (4)

−→ a{!α← 1}{α← τ} (5)

= a{α← τ} (6)

Equality (1) is by definition; step (2) is by ι-Seq; step (3)
is by ι-Inside; step (5) is by ι-Elim; equalities (4) and (6)
are by type instantiation and by the assumption that a is
a term of System F thus in which !α cannot appear.

Conversely, if a term a is in System F, then its reduc-
tion steps in xMLF are all of these forms but possibly in-
terleaved. Formally, the Church-Rosser property and the
strong normalization lemma stated in §2.2 ensure that any
reduction of a in xMLF will eventually terminate with the
same normal form, hence with its normal form in System F.

2. Properties of reduction

2.1. Subject reduction

Reduction in xMLF, which can occur in any context,
preserves typings. This relies on weakening and substitu-
tion lemmas for both instance and typing judgments.

Lemma 4 (Weakening). Let Γ,Γ′,Γ′′ be a well-formed
environment.
If Γ,Γ′′ ⊢ φ : τ1 ≤ τ2, then Γ,Γ′,Γ′′ ⊢ φ : τ1 ≤ τ2.
If Γ,Γ′′ ⊢ a : τ ′, then Γ,Γ′,Γ′′ ⊢ a : τ ′. Coq

Lemma 5 (Term substitution).
If Γ, x : τ ′,Γ′ ⊢ φ : τ1 ≤ τ2 then Γ,Γ′ ⊢ φ : τ1 ≤ τ2.
Suppose Γ ⊢ a′ : τ ′; if Γ, x : τ ′,Γ′ ⊢ a : τ then Γ,Γ′ ⊢
a{x← a′} : τ . Coq

The next lemma, which expresses that we can substitute
an instance bound inside judgments, ensures the correct-
ness of Rule ι-Elim.

Lemma 6 (Bound substitution).
Let ϑ and θ be respectively the substitutions {α ← τ} and
{!α← 1}{α← τ}.
If Γ, α> τ,Γ′ ⊢ φ : τ1 ≤ τ2 then Γ,Γ′ϑ ⊢ φθ : τ1ϑ ≤ τ2ϑ.
If Γ, α> τ ,Γ′ ⊢ a : τ ′ then Γ,Γ′ϑ ⊢ aθ : τ ′ϑ. Coq

The result below ensures in turn the correctness of rule
ι-Inside.

Lemma 7 (Narrowing). Assume Γ ⊢ φ : τ ≤ τ ′. Let θ
be {!α← φ; !α}.
If Γ, α> τ ,Γ′ ⊢ φ′ : τ1 ≤ τ2 then Γ, α> τ ′,Γ′ ⊢ φ′θ : τ1 ≤
τ2.
If Γ, α> τ,Γ′ ⊢ a : τ ′′ then Γ, α> τ ′,Γ′ ⊢ aθ : τ ′′. Coq

Subject reduction is an easy consequence of all these re-
sults.

Theorem 8 (Subject reduction).
If Γ ⊢ a : τ and a −→ a′ then, Γ ⊢ a′ : τ . Coq

2.2. Confluence

Theorem 9. The relation −→β is confluent. The rela-
tions −→ι and −→ are confluent on the terms well-typed
in some context.

This result is proved using the standard technique of par-
allel reductions (Barendregt, 1984). The proof is uninter-
esting and omitted here; it can be found in (Yakobowski,
2008).

Confluence means that β-reduction and ι-reduction are
independent. For instance, ι-reductions can be performed
under λ-abstractions as far as possible while keeping a
weak evaluation strategy for β-reduction.

The restriction to well-typed terms for the confluence
of ι-reduction is due to two things. First, the rule ι-Inside
is not applicable to ill-typed terms in which τ φ cannot be
computed, (for example (Λ(α> int) a) (∀ (>N))). Second,
τ φ can sometimes be computed, even though Γ ⊢ φ : τ ≤
τ ′ never holds, typically if φ is !α and τ is not the bound
of α in Γ. Hence, type errors may be either revealed or
silently reduced and perhaps eliminated, depending on the
reduction path. As an example, let a be the term

(

Λ(α> ∀ (γ) γ)
(

(Λ(β > int) x) (∀ (> !α))
))

(∀ (>N))

It is ill-typed in any context, because !α coerces a term of
type ∀ (γ) γ into one of type α, but !α is here indirectly
applied to a term of type int. If we reduce the outermost
type instantiation first, we are stuck with Λ(α>⊥)

(

(Λ(β>

int) x) (∀ (>N; !α))
)

, which is irreducible since the type
instantiation int (N; !α) is undefined.

Conversely, if we reduce the innermost type instantia-
tion first, the faulty type instantiation disappears and we
obtain the term

(

Λ(α > ∀ (γ) γ) Λ(β > α) x
)

(∀ (>N)),
which further reduces to the normal form Λ(α>⊥) Λ(β>
α) x.

The fact that ill-typed terms may not be confluent is
not new: for instance, this is already the case with η-
reduction in System F. We believe this is not a serious
issue. In practice, this means that typechecking should
be performed before any program simplification, which is
usually the case anyway.

2.3. Termination of reduction

The termination of reduction has been proved by Man-
zonetto and Tranquilli (2010).

Theorem 10. (Manzonetto-Tranquilli) The reduction
−→ is terminating.

As a corollary of this result and of Theorem 9, we have
immediately

Corollary 11. The relation −→ is strongly normalizing.

The proof of Theorem 10 is by translation of xMLF

into System F, where reductions are known to terminate,
and by showing a simulation between reduction in xMLF
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and reduction of the elaborated term in System F. (This
is also discussed in §5.1.) As a corollary, −→ι alone is
also terminating. The termination of −→ is useful but
not critical, as xMLF is meant to be used in a language
with general recursion. However, the termination of −→ι

is essential for xMLF to have a type-erasure semantics.

2.4. Type-erasure semantics

The reduction has been defined so that the type erasure
of a reduction sequence in xMLF is a reduction sequence
in the untyped λ-calculus. Formally, the type erasure of a
term a of xMLF is the untyped λ-term ⌈a⌉ defined induc-
tively by

⌈x⌉ = x
⌈a φ⌉ = ⌈a⌉
⌈a1 a2⌉ = ⌈a1⌉ ⌈a2⌉

⌈let x = a1 in a2⌉ = let x = ⌈a1⌉ in ⌈a2⌉
⌈λ(x : τ) a⌉ = λ(x) ⌈a⌉
⌈Λ(α> τ) a⌉ = ⌈a⌉

It is immediate to verify that two terms related by ι-
reduction have the same type erasure. Moreover, if a term
a β-reduces to a′, then the type erasure of a β-reduces to
the type erasure of a′ in one step in the untyped λ-calculus.

Lemma 12. If a −→ι a′ then ⌈a⌉ = ⌈a′⌉. If a −→β a′,
then ⌈a⌉ −→β ⌈a

′⌉.

The converse direction is also true:

Lemma 13. (Manzonetto-Tranquilli) If ⌈a⌉ −→β M ,
then there exist a′ and a′′ such that a −→∗

ι a′ −→β a′′

and ⌈a′′⌉ = M .

A proof has been given by Manzonetto and Tranquilli
(2010, Appendix B4). Combining these two results ensures
that xMLF has a type-erasure semantics.

2.5. Accommodating weak reduction strategies and con-
stants

In order to show that the calculus may also be used
as the core of a programming language, we now introduce
constants and we restrict the semantics to a weak evalu-
ation strategy. We then show that subject reduction and
progress hold for the main two forms of weak-reduction
strategies, namely call-by-value and call-by-name.

We let the letter c range over constants. Each con-
stant comes with its arity |c|. The dynamic semantics of
constants must be provided by primitive reduction rules,
called δ-rules. However, these are usually of a certain form.
To characterize δ-rules (and values), we partition constants
into constructors and primitives, ranged over by letters C
and f , respectively. The difference between the two lies in
their semantics: primitives (such as +) are reduced when

4The indirect proof given in §4 is not correct, since it relies on the
subject reduction property for their intermediate System Fc, which
unfortunately does not hold.

fully applied, while constructors (such as cons) are irre-
ducible and typically eliminated when passed as argument
to primitives.

In order to classify constructed values, we assume
given a collection of type constructors κ, together with
their arities |κ|. We extend types with constructed types
κ (τ1, . . . τ|κ|). We write α for a sequence of variables
α1, . . . αk and ∀ (α) τ for the type ∀ (α1) . . . ∀ (αk) τ . The
static semantics of constants is given by an initial typing
environment Γ0 that assigns to every constant c a type τ of
the form ∀ (α) τ1 → . . . τ|c| → τ0, where τ0 is a constructed
type (hence neither bottom, a variable or an arrow type)
whenever the constant c is a constructor.

We distinguish a subset of terms, called values and
written v, that are term abstractions, type abstractions,
full or partial applications of constructors, or partial ap-
plications of primitives. We use an auxiliary letter w to
characterize the arguments of functions, which differ for
call-by-value and call-by-name strategies. In values, an
application of a constant c can involve a series of type in-
stantiations, but only evaluated ones and placed before all
other arguments. Moreover, the application may only be
partial whenever c is a primitive. Evaluated instantiations
θ may be quantifier eliminations or either inside or under
(general) instantiations. In particular, a (@τ) and a (!α)
are never values. The grammar for values and evaluated
instantiations is as follows:

v ::= λ(x : τ) a
| Λ(α : τ) a
| C θ1 . . . θk w1 . . . wn n ≤ |C|
| f θ1 . . . θk w1 . . . wn n < |f |

θ ::= ∀ (>φ) | ∀ (α>) φ | N

Importantly, values cannot have type ⊥:

Lemma 14. If v is a value and if ⊢ v : τ , then τ is not
⊥.

(Proof p. 25)

Finally, we assume that δ-rules are of the form f θ1 . . .
θk w1 . . . w|f | −→f a (that is, δ-rules may only reduce
fully applied primitives).

In addition to this general setting, we make further
assumptions to relate the static and dynamic semantics of
constants.

Subject reduction: δ-reduction preserves typings, i.e.,
for any typing context Γ such that Γ ⊢ a : τ and
a −→f a′, the judgment Γ ⊢ a′ : τ holds.

Progress: Well-typed, full applications of primitives
can be reduced, i.e., for any term a of the form
f θ1 . . . θk w1 . . . w|f | verifying Γ0 ⊢ a : τ , there
exists a term a′ such that a −→f a′.

Call-by-value reduction

We now specialize the previous setting to a call-by-
value semantics. In this case, arguments of applications in
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values are themselves restricted to values, i.e. w is taken
equal to v. Reduction rules of Figure 7 are modified as
follows. Rules (β) and (βlet) are limited to the substitu-
tion of values, that is, to reductions of the form (λ(x :
τ) a) v −→ a{x ← v} and let x = v in a −→ a{x ← v}.
Rules ι-Id, ι-Seq and ι-Intro are also restricted so that
they only apply to values (e.g. a is textually replaced by v
in each of these rules). Finally, we restrict rule Context

to call-by-value contexts, which are of the form

Ev ::= [ · ] | Ev a | v Ev | Ev φ | let x = Ev in a

We write −→⋆
v the resulting reduction relation. It follows

from the above restrictions that the reduction is determin-
istic. Moreover, since δ-reduction preserves typings, by as-
sumption, the relation −→⋆

v also preserves typings by The-
orem 8. Hence, in combination with progress, stated next,
the evaluation of well-typed terms “cannot go wrong”.

Theorem 15 (Progress for call-by-value).
If Γ0 ⊢ a : τ , then either a is a value or a −→⋆

v a′ for some
a′.

(Proof p. 25)

Call-by-value reduction and the value restriction

The value-restriction is the standard way of adding side
effects in a call-by-value language. We verify that it can
be transposed to xMLF.

Typically, the value restriction amounts to restricting
type generalization to non-expansive expressions, that can-
not have direct or indirect side effects. Those contain at
least value-forms, i.e. values and term variables, as well
as their type-instantiations. In the case of xMLF, which is
a target language and not a source one, we obtain a re-
stricted grammar of (potentially) expansive expressions a,
and a subset which is constituted of non-expansive expres-
sions u.

a ::= u | a a | let x = u in a
u ::= x | λ(x : τ) a | Λ(α : τ) u | u φ | let x = u in u

| C θ1 . . . θk u1 . . . un n ≤ |C|
| f θ1 . . . θk u1 . . . un n < |f |

As usual, we restrict let-bound expressions to be non-
expansive, since they implicitly contain a type general-
ization. Hence, a let-bound expression is expansive when
its body is expansive—but it remains non-expansive when
its body is non-expansive. Notice that, although type in-
stantiations are restricted to non-expansive expressions,
this is not a limitation: b φ can always be written as
(λ(x : τ) x φ) b, where τ is the type of b, and similarly for
applications of constants to expansive expressions.

Lemma 16, stated below, ensures two things: our re-
stricted grammar has a meaning as a standalone language
(as it is stable by reduction); and non-expansive expres-
sions are closed by reduction and are thus harmless in pres-
ence of side-effects.

Lemma 16. Expansive and non-expansive expressions
are closed by call-by-value reduction.

As an immediate consequence:

Corollary 17. Subject reduction holds with the value re-
striction.

It is then routine work to extend the semantics with a
global store to model side effects and verify type soundness
for this extension.

Call-by-name reduction

In call-by-name reduction semantics, values may con-
tain applications of constants to arbitrary expressions—
and not just to values. That is, we take a for w. The
ι-reduction is restricted as for call-by-value, while −→β is
unchanged. However, evaluation contexts are now En ::=
[ · ] | En a | En φ.

We write −→⋆
n the resulting reduction relation. As for

call-by-value, it is deterministic by construction and pre-
serves typings. Moreover, it may always progress. Hence,
call-by-name evaluation of well-typed terms “cannot go
wrong”.

Theorem 18 (Progress for call-by-name).
If Γ0 ⊢ a : τ , then either a is a value or a −→⋆

n a′ for some
a′.

(Proof p. 25)
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3. Elaboration of graphical eMLF into xMLF

To verify that, as expected, xMLF can be used as an in-
ternal language for eMLF, we now exhibit a type-preserving
type-erasure-preserving translation from eMLF to xMLF.
We use the graphic constraint presentation of eMLF (Rémy
and Yakobowski, 2008; Yakobowski, 2008) which is more
general than the syntactic presentation (Le Botlan and
Rémy, 2003, 2009) and also better suited for type infer-
ence.

The elaboration of eMLF into xMLF proceeds in two
phases. The first phrase is just type inference in eMLF, de-
scribed by Rémy and Yakobowski (2008) and Yakobowski
(2008). A source program of eMLF is translated into a typ-
ing constraint, which can be seen as a decoration of the
source program with (1) placeholders for missing types,
and (2) type instantiation constraints that relate types (ei-
ther known or unknown). The constraint is then solved,
filling in all unknown types so that all type instantiation
constraints become valid. The result of type inference is
called a presolution.

The second phase translates a presolution into a term
of xMLF. The main difficulty is to infer for each instanti-
ation constraint a precise description of the type instanti-
ation steps. Interestingly, this is done by replaying type
inference with an instrumented algorithm. More precisely,
the instantiation steps are extracted from the proof that
the presolution found by type inference is indeed in solved
form. It then remains to translate the instrumented pres-
olution, which is represented graphically, into a syntactic
form, i.e. a term of xMLF. This second phase is a form of
compilation, which is technically not very deep, but metic-
ulous.

Since the elaboration is based on—and starts with—
type inference, it contains many details that require some
minimal understanding of eMLF. Hence we present an
overview of eMLF. Sill, other reading might help (Rémy
and Yakobowski, 2007, 2008; Yakobowski, 2008). As no
other part depends on §3, most details (or even the whole
section) can also be skipped in a first reading of the paper.

Outline. We first review the graphic constraints type in-
ference framework (§3.1); we then present the main steps
of the translation (§3.2); finally, we describe the key steps
in details (§3.3-3.5). The elaboration has been imple-
mented in a prototype by Scherer (2010a).

3.1. An overview of graphical eMLF

A full presentation of graphical eMLF is out of the scope
of this paper. In this section, we only remind the key
points about graphic types and associated type instance,
which is the basis of the elaboration algorithm. We put
more emphasis on the aspects of graphic types that either
depart significantly from more traditional syntactic pre-
sentation of types, or that play a key role in understand-
ing the elaboration process. Detailed presentations can be
found in (Rémy and Yakobowski, 2007, 2008; Yakobowski,
2008).
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Figure 9: Dags and graphic types

3.1.1. Graphic types

Types of graphical eMLF are graphs, designated with
letter σ, composed of the superposition of a term-dag, rep-
resenting the structure of the type, and of a binding tree
encoding polymorphism.

Term-dags are just dag representations of usual tree-
like types where all occurrences of the same variable are
shared, and inner nodes representing identical subtypes
may also be shared. We write σ(n) for the constructor
at node n. Variables are anonymous and represented by
the pseudo-constructor ⊥. Term-dag edges are written
n i◦−→ m, where i is an integer that ranges between 1 and
the arity of σ(n); we also use the notation 〈ni〉 to designate
m, the root node being simply noted 〈〉. On pictures, edges
are drawn with plain lines, oriented downwards; we leave
i implicit, as outgoing edges are always drawn from left to
right.

Example 1. The dag t on Figure 9 represents the first-
order type (α → β) → (α → β). The nodes 〈11〉 and 〈22〉
are variables (the names α and β are here to help reading
the figure, but formally they are not part of the graphic
type). Compared with the tree notation, leaves representing
the same variable are merged together; the names of leaves
are left anonymous. That is, paths 11 and 21 lead to the
same node, which can therefore be designated by 〈11〉 or
〈21〉, indifferently. Similarly, paths 12 and 22 lead to the
same node.

The dag structure also allows sharing internal nodes
whose subtrees are identical as described by the dag t′ where
nodes 〈1〉 and 〈2〉 coincide. The dag t′ could be syntacti-
cally written as (let γ = α→ β in γ → γ). In fact, sharing
of internal nodes is a key to the efficient implementation of
unification algorithms on first-order types. Those typically
see t′ as an instance of t, but not the converse; thus shar-
ing can only be increased, and never lost. However, this
refinement of the instance relation needs not be revealed
externally, and dag t′ can be displayed as dag t by splitting
(or just reading back) shared internal nodes into separate
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Figure 10: Examples of instance on graphic types

ones.

The second component of graphic types, the binding
tree, is an upside-down tree with an edge n ⋄≻−→ m leav-
ing from each node n different from the root, and going to
some node m upper in the term-dag at which n is bound.
Binding edges may be either flexible or rigid, which is rep-
resented by labeling the edge with > or =, respectively. On
drawings, these flags are represented by dotted or dashed
lines, respectively. We use the flag metavariable ⋄ to range
over > and =.

Example 2. Consider the graphic type σ0 of Figure 9.
It is the superposition of the first-order term-dag t0 and

the binding tree b0. The edge 〈22〉 >≻−→ 〈2〉 is a flexible
binding edge (the rightmost lowermost one), while 〈1〉 =≻−→
〈〉 is a rigid binding edge (the leftmost uppermost one) and

〈1〉 2◦−→ 〈12〉 is a structure edge.

Binding edges express polymorphism. They are ori-
ented, and the target of the edge indicates the place where
the binding occurs. The node at the source of the edge
represents the variable being introduced, while the sub-
tree at that node is the bound of that variable. Binding
edges are of two kinds: a rigid edge means that poly-
morphism is required; typically, it is used for the type of
an argument that is used polymorphically. By contrast,
a flexible edge means that polymorphism is available (as
with flexible quantification in xMLF) but not required.

Example 3 (cont.). The type σ0 of Figures 9 and 10 de-
scribes a function f whose argument must be at least as
polymorphic as ∀ (α) α → α, and whose result has type
∀ (β) β → β, or any instance of it. In other words, the
result of an application of f can be used in place of the

successor function of type int→ int, but f cannot be passed
the successor function as argument, which is not as poly-
morphic as required.

The type σ′
0 of Figure 10 describes a polymorphic func-

tion that, given a type γ, expects an argument of type
∀ (α) α → α and returns a value of type γ → γ. In
particular, σ′

0 is strictly less polymorphic than σ0, as in
System-F, since γ → γ is a strict instance of ∀ (β) β → β.

Rigid bounds arise from type annotations: the princi-
pal type of a term that contains no type annotations (in
an environment that contains no types with rigid bounds),
uses only flexible bounds. That is, required polymorphism
may be offered by type inference, but never requested au-
tomatically.

Classifying nodes. For the purpose of defining type in-
stance, we distinguish four kinds of nodes according to
their position in the binding tree. The kind of each node
is used below to determine how they can be transformed
during type instantiations. Hence, this classification plays
an important role in the translation.

Nodes on which no variable is transitively flexibly
bound are called inert, as they neither hold nor control
polymorphism. They will be discussed in detail further
on. All other nodes hold or control some polymorphism
and are classified as follows. Nodes whose binding path
is flexible up to the root are called instantiable: they can
be freely instantiated as described in the next section; in
xMLF these nodes correspond to parts of types that can be
transformed by a suitable instantiation expression. Nodes
whose binding edge is rigid are called restricted, because
they cannot be grafted; in xMLF they roughly correspond
to polymorphic types occurring under some arrow type.
Nodes whose binding edge is flexible but whose binding
path up to the root contains a rigid edge are called locked ;
they cannot be transformed in any way. In xMLF, these
nodes roughly correspond to polymorphic types occurring
in the bound of quantifiers themselves under some arrow
type—they offer polymorphism that is requested and can-
not be diminished.

Example 4 (cont.). In the type σ′
0 of Figure 10, the node

〈2〉 is inert, 〈21〉 is instantiable, 〈1〉 is restricted and 〈11〉
is locked.

Type instance. The instance relation on graphic types,
written ⊑, can be described as the composition of four
atomic operations: grafting, merging, raising, and weaken-
ing. All four operations are detailed below, and depicted
schematically in Figure 11. In the figure, we use the fol-
lowing conventions to constrain the position of nodes in
the binding tree: the green (or light gray) node with dot-
ted border is instantiable; blue (or darker gray) nodes with
double-line borders are anything but locked; small white
nodes are unconstrained.

• Graft(σ, n), called grafting, replaces an instantiable
bottom node n by a closed graph σ. Grafting corresponds
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n ·
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Figure 11: Atomic graphic instance operations

to the Inst-Bot rule of xMLF. That is, Γ ⊢ @τ : ⊥ ≤ τ
where τ is the type describing the graph σ.

•Merge(n1, n2), calledmerging, fuses two nodes n1 and
n2 that are not locked and have identical subgraphs. After
merging, the subgraphs will thus be shared and can only
be instantiated synchronously. In xMLF terms, it replaces
two identical quantifications by an unique one, as in

Γ ⊢ φ : ∀ (α> τ) ∀ (β > τ) τ ′ ≤ ∀ (α> τ) τ ′{β ← α}

with, for instance, φ equal to ∀ (α>) (∀ (> !α);N).

• Raise(n), called raising, makes the binding of a node
n that is not locked slide other the binding edge above it.
Raising corresponds to a scope extrusion in xMLF, as in

Γ ⊢ φ : ∀ (α> ∀ (β > τ) τ ′) τ ′′ ≤ ∀ (β > τ) ∀ (α> τ ′) τ ′′

with, for instance, φ equal to O; ∀ (>@τ); ∀ (β>)
(∀ (> ∀ (> !β);N)).

• Weaken(n), called weakening, changes the binding of
a flexible node n that is not locked into a rigid one. This
freezes the subgraph under the node, preventing further
instance operations on non-inert nodes, and all graftings.
When this operation occurs on an instantiable node, it
corresponds to the xMLF Inst-Elim instantiation:

Γ ⊢ N : ∀ (α> τ) τ ′ ≤ τ ′{α← τ}

G

χe

→

⊥

g G

→

⊥

→

n

→

⊥ ⊥

→

r

⊥

e

Figure 12: Constraints and expansion

Notice that grafting and merging do not change the
bindings of existing nodes, while conversely, raising and
weakening only change the bindings of existing nodes.

Example 5 (cont.). The type σ′
0 of Figure 10 is an in-

stance of σ0 obtained by raising 〈21〉. The type σ4 is an
instance of σ1, obtained by grafting then weakening 〈21〉
(resulting in σ2), raising the node 〈11〉 (which gives σ3),
and finally merging 〈11〉 and 〈21〉. Letting σ be the graph
corresponding to ∀ (α) α→ α, we may formally write:

σ1
Graft(σ, 〈21〉)
−−−−−−−−−−→

Weaken(〈21〉)
−−−−−−−−−−→ σ2

Raise(〈11〉)
−−−−−−−−→

σ3

Merge(〈11〉, 〈21〉)
−−−−−−−−−−−−−→ σ4

Hence, the instance g1 ⊑ g2 is witnessed by the transfor-
mation

Graft(σ, 〈21〉);Weaken(〈21〉);Raise(〈11〉);Merge(〈11〉, 〈21〉)

where “;” is the composition with arguments given in re-
verse order.

On the importance of inert nodes. While inert nodes
carry no polymorphism, it is important to treat them
especially—so as to allow slightly more instance opera-
tions. Intuitively, since these nodes carry no polymor-
phism, they need not be shared, nor do they need a binding
edge. However, it is technically more regular to let every
node but the root node be bound to some other node,
which we do. Furthermore, we only allow raising, merg-
ing or weakening those nodes, not the converse operations;
§3.3 will justify why this is technically possible.

3.1.2. Type constraints

Type constraints are used to formalize MLF typing
problems. They generalize graphic types by adding new
forms of edges, called constraint edges. These can be either
unification edges or instantiation edges . They
also generalize let-constraints that have been proposed for
type inference in ML by Pottier and Rémy (2005). Instan-
tiation edges are oriented. They relate special nodes, used
to represent type schemes and called G-nodes, to regular
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nodes. An example of a constraint χe is shown on Fig-
ure 12. The instance on type constraints is exactly as on
graphic types—constraint edges are just preserved.

A unification edge is solved when it relates a node to
itself (thus, a unification edge forces the nodes it relates
to be merged). An instantiation edge e of the form g
n of a constraint χ is solved when, informally, n is an
instance of the type scheme represented by g, or formally,
when the expansion of e in χ (defined below) is an instance
of χ.

A type constraint is solved when all of its constraint
edges are solved. A presolution of a constraint is one of
its solved instances. It still contains all the nodes of the
original constraint, many of which may have become ir-
relevant for describing the resulting type. A solution of a
constraint is, roughly, a presolution in which such nodes
have been removed. We need not define solutions formally
since the translation uses presolutions directly.

Expansion. In a constraint χ, consider an instantiation
edge e defined as g n. We define an expansion op-
eration that enforces the constraint represented by e. The
expansion of e in χ, written χe, is the constraint χ ex-
tended with both a copy of the type scheme represented
by g and a unification edge between n and the root r of
the copy. The copy is bound at the same node as n. Tech-
nically, we define the interior of g, written I(g) as all the
nodes transitively bound to g. The expansion operation
copies all the nodes structurally strictly under g and in
the interior of g. Intuitively, those nodes are generic at
the level of g. Conversely, the nodes under g that are not
in the interior of g are not generic at the level of g and are
not copied by the expansion5 (but are instead shared with
the original).

Example 6. Let us consider the expansion χe of Fig-
ure 12. The original constraint χ can be obtained from
χe by removing the rightmost highlighted nodes, as well as
the resulting dangling edges. The interior of g is composed
of the leftmost highlighted nodes. Hence, the copied nodes
are 〈g1〉 and 〈g11〉, but not 〈g12〉, which is not in I(g).
The root of the expansion r is the copy of 〈g1〉. It is bound
to the bound of n and connected to n by an unification
edge.

By definition, we say that an instantiation edge e is
solved when χ is an instance of χe. This indeed means that
the subtype constrained by the instantiation edge is less
general than the type scheme at the origin of the edge—as
a copy of this scheme can be instantiated into the sub-
type. We call instantiation witness an instance derivation
of χe ⊑ χ for a solved instantiation edge e.

5Readers familiar with MLF (Rémy and Yakobowski, 2008) may
notice a slight change in terminology, as in this work we use the
term “expansion” instead of “propagation”, and we solve frontier
unification edges on the fly, for conciseness.
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Figure 13: Example of solved instantiation edge

Example 7 (cont.). In Figure 12, χ is an instance of
χe—hence, the edge e is solved. This is witnessed by the
sequence of transformations given below and depicted in
Figure 13.

All nodes below g are invariant during the transforma-
tions and are elided (represented as the subtree) in all
other constraints, for conciseness. Nodes or edges about
to change are highlighted in green or in light gray, while
those that have just changed are highlighted in red or in
dark gray.

Grafting ∀ (α) ∀ (β) α → β under 〈r1〉 in χe leads to
χ1; raising 〈r11〉 twice gives χ2; mergings nodes 〈r11〉 and
〈n11〉 gives χ3; weakening node 〈r1〉, then node 〈r〉 leads
to χ4; finally, by merging n and r, which is possible as
the two subgraphs under them are equal, we end up with
exactly χ.

Formally, this is the transformation Ω:

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉) ; Raise(〈r11〉) ; Raise(〈r11〉) ;
Merge(〈r11〉, 〈n11〉) ; Weaken(〈r1〉) ; Weaken(r) ; Merge(r, n)
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3.1.3. From λ-terms to typing constraints

Terms of eMLFare the partially annotated λ-terms gen-
erated by the following grammar:

b ::= x | λ(x) b | λ(x : σ) b | b b | let x = b in b | (b : σ)

Type inference is performed by translating a source term
into a type constraint, solving the constraint into a (prin-
cipal) presolution, from which a (principal) solution can
easily be read.

Type constraints are generated in a compositional
manner. Every occurrence of a subexpression b is asso-
ciated to a distinct G-node in the constraint, which we
label with b for readability; however, it should be under-
stood that different occurrences of equal subexpressions
are mapped to different nodes. (Formally, occurrences
may be identified by their path to the root of the type
constraint.) We let y and z stand for λ-bound and let-
bound variables, respectively. We assume that the source
term has been renamed so that every bound variable is
distinct from all others.

Constraint generation is described on the top of Fig-
ure 14: each case refers to the expression on the left-hand
side of the corresponding equality6 at the bottom of the
Figure. The unification edge uy in (1) links the node that
encodes an occurrence of a λ-bound variable y to the node
y generated in (4) by the translation of the abstraction
binding y. The instantiation edge ez ending in (2) is com-
ing from the G-node labeled b1 generated in (3) by the
translation of the let expression binding z. The type of
an abstraction λ(y) b is an arrow type whose domain is
the type of y and codomain is an instance of the type of
b, as witnessed by the edge e (4). The type for an ap-
plication b1 b2 is the codomain of an instance of the type
of b1, which must itself be an arrow type whose domain
is an instance of the type of b2 (5). The type of a let-
expression let x = b1 in b2 is just an instance of the type
of b2: as explained above, the constraints b2 will contain,
for every occurrence of x in b2, one instance edge coming
from the type of b1 and ending at that occurrence. The
typing constraint for let-expressions could be optimized to
avoid taking an additional instance of b2, as done in (Rémy
and Yakobowski, 2008; Yakobowski, 2008). The advan-
tage of this unoptimized version, which still preserves the
complexity of type inference, is that every subexpression
introduces exactly one G-node; this establishes a one-to-
one mapping between subexpressions and G-nodes that is
preserved during constraint resolution (G-nodes are never
merged) and helps define the elaboration after constraint
resolution.

Example 8. The typing constraint χ for the term
λ(x) λ(y) x is described on the left-hand side of Figure 15.
One of its presolutions χp is drawn on the middle. (We

6The right-hand side is the elaboration of the left-hand side, which
will be explained in the next section.

χ λ(x) λ(y) x

→

⊥ λ(y) x

→

⊥ x

⊥

⊥

⊥

χp G

→

G

→

⊥

γ

G

⊥α

→

β

⊥

e

χe
p G

→

G

→

⊥ G

⊥

→

n

⊥

→

r

⊥

Figure 15: Typing constraints for λ(x) λ(y) x.

have dropped the mapping of expressions to G-nodes for
conciseness, and labeled some binding edges that will ap-
pear in the xMLF translation.) This is not the most general
presolution, as some arrow nodes bound at G-nodes have
been made rigid, but an equivalent rigid presolution, as
explained in §3.3, that is ready for translation into xMLF.

While type inference is out of the scope of this work, we
may however easily check that χp is a presolution, i.e. that
both instantiation edges are solved. Consider for example
the edge e. We must verify that χp is an instance of the
expansion χe

p drawn on the right-hand side, that is, exhibit
a sequence of atomic instance operations that transforms
χe
p into χp. Here, the obvious solution is just to merge the

two nodes related by the unification edge, i.e. Merge(n, r).

Annotated expressions. The constructions λ(x : σ) b and
(b : σ) are actually syntactic sugar for λ(x) let x = κσ x in

b and κσ b, respectively7, where κσ is a coercion function
that has type ∀ (α > σ) σ → α in xMLF; those coercion
functions are discussed in more detail in §3.6.

Both constructs are desugared before the translation
into constraints. The effect of rebinding x to κσ x is to
request the parameter x to be of type σ and simultaneously
let all occurrences of x in b be typed with possibly different
instances of σ. By contrast, λ(x) b, without an annotation,
forces the parameter x and all occurrences of x in b to have
exactly the same type.

3.2. An overview of the translation to xMLF

The elaboration of an eMLF term b to xMLF is based
on a presolution χ of the typing constraint for b. The
translation is based on presolutions rather than solu-
tions, since presolutions still contain the original subcon-
straints (unlike solutions, which only retain the final type).
While typing constraints have principal presolutions, any
presolution—not merely the principal one that is returned

7The expression λ(x) let x = κσ x in b is equal to λ(y) let x =
κσ y in b whenever y does not appear free in b; using the same
variable x for y avoids the side condition and so makes the syntactic
sugar a purely local transformation.
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J b1 b2 K =(5) /)(g) J b1 K (Φ(e1)) (J b2 K (Φ(e2)))

J let z = b1 in b2 K =(3) /)(g) let z = J b1 K in J b2 K (Φ(e2))

Figure 14: Constraint generation and translation of presolutions

by type inference—can be translated. However, presolu-
tions must be slightly transformed into rigid presolutions
before translating them, as explained in §3.3—but we may
ignore this minor detail for the moment.

Given an original program b and a (rigid) presolution
of the graphic constraint for b, the translation is induc-
tively defined on the structure of b, reading auxiliary in-
formation on the corresponding nodes in the presolution;
we build this way the type of function parameters, type
abstractions, and type instantiations. Since presolutions
are instances of the original constraint, and type instance
preserves both G-nodes and instantiation edges, we can re-
fer to the original nodes and edges in the top of Figure 14
when defining the translation (hence both top and bottom
parts of Figure 14 should now be read in parallel to un-
derstand the translation). There are two key ingredients:

• For each instantiation edge e of the form g n, an
instantiation Φ(e) is inserted to transform the type
of the translation of the expression b corresponding
to g into the type of n. It can be computed from the
proof that e is solved in χ, i.e. from the instantiation
witness for e. Details are given in §3.4 and §3.5.

• For each flexible binding edge to a G-node n ≻−→ g,
a type abstraction Λ(αn > τn) is inserted in front of
the translation of the expression b corresponding to
g, τn being the type of the node n. Indeed, such an
edge corresponds to some polymorphism in n that
must be introduced at the level of g. We use the
notation /)(g) to refer to the sequence of all such
quantifications at the level of g, which is a binding
prefix of the form Λ(α1>τ1) . . .Λ(αq>τq) that will
be precisely defined in §3.4.

(Conversely, rigid bindings, which are only useful to
make type inference decidable, are inlined during the
translation and thus do not give rise to type quan-
tifications.)

The translation is given in Figure 14. We let /)(g) and
Φ(e) abstract for the moment. They will be defined in
sections 3.4 and 3.5, respectively.

The translation of a λ-bound variable y (1) is itself. In-
deed, the G-node y is always monomorphic and there is no
polymorphism to introduce; moreover, as the type of y in
the presolution is its only instance, there is no need to add
a type instantiation. For all other cases, the translation is
of the form /)(g) b′, g being the G-node for b. Indeed, gen-
eralization is needed in MLF for let-bound expressions (as
in ML) and also for applications and abstractions (unlike
in ML).

An occurrence of a variable z (2) bound by some
let z = b1 in b2 expression is instantiated by Φ(ez) so
as to transform the type of [[b1]] into the type of this oc-
currence of z, according to the edge ez; each occurrence of
z in [[b2]] will potentially pick a different instance. Thus, in
the translation of let z = b1 in b2 (3), the translation of b1
is bound to z uninstantiated (as it suffices to instantiate
the occurrences of z), while the translation of b2 is instan-
tiated according to the edge e2. In the translation of an
abstraction λ(y) b (4), we annotate y by its type in the
presolution (written T(y) and defined in §3.4) and coerce
[[b]] to its type inside the abstraction according to the edge
e. Finally, the translation of an application (5) is the ap-
plication of the translations, each of which is instantiated
according to its constraint edge.

Example 9. The presolution χp in Figure 15 can be
translated into the term

Λ(α) Λ(β>∀ (δ) δ → α) λ(x : α) (Λ(γ) λ(y : γ) (x 1)) (!β)
which has type ∀ (α) ∀ (β>∀ (δ) δ → α) α→ β. Notice the
three type quantifications for α, β, and γ that correspond
to the flexible edges of the same name. The instantiation
!β is the translation of e.

Type-erasure. As we will see later, /)(g) is only composed
of type quantifications, and Φ(e) of instantiations. Thus,
the translation is type-erasure preserving by construction,
which ensures that the semantics of the original and trans-
lated terms are the same.

Theorem 19. Given a (desugared) term b, we have
⌈J b K⌉ = ⌈b⌉.
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3.3. Rigidifying presolutions

All presolutions are not suitable for elaboration into
xMLF, because rigid and flexible bindings are not treated
symmetrically during the translation. Indeed, xMLF has
flexible quantification, but does not have the rigid form.
Rigid quantification is not necessary in xMLF because
types are fully explicit and rigid nodes can always be ex-
plicitly unshared. Unsurprisingly, flexible bindings will be
translated to flexible quantification—while rigid bindings
will be inlined.

This causes a problem with inert nodes that are flexible
but bound under a rigid edge: while they are instantiable
in eMLF in any context, they would appear in a non in-
stantiable context in xMLF if we translated them as flexi-
ble bounds, and there would be no way to instantiate them
afterward. One solution is to inline them during the trans-
lation, exactly as rigid bounds. However, an even simpler
solution is to rigidify them prior to the translation. This
is a sound operation in eMLF, since inert nodes can al-
ways be weakened, and it avoids a special case during the
translation.

Example 10. For example, the flexible →

→

int

int

binding edge in the type drawn on the right,
which is leaving from the inert node 〈11〉,
may be weakened in eMLF. The two types
with or without rigidification are equivalent
in eMLF. However, they are translated into
(∀ (α> int) α→ α)→ int and (int→ int)→ int, which are
not equivalent in xMLF (in this case, they are actually in-
comparable): since type applications are explicit in xMLF,
a term of the former type must instantiate its argument
before applying it, while a term of the latter type can apply
its argument directly. This is quite similar to the differ-
ence between the two types (∀ (α) int → int) → int and
(int→ int)→ int in System F.

For now, let us call rigidification the weakening of an
inert node. A weakening is in general a strict instance op-
eration in eMLF. However, on inert nodes it is a lossless
one as it right-commutes with all instance operations: a
rigidification followed by an instantiation can always be
rewritten as an instantiation followed by a rigidification.
This means that rigidification will never make typecheck-
ing fail when it would not fail without rigidification. In-
tuitively, when an inert node n that has been rigidified is
unified with another inert node m, then m itself can al-
ways be rigidified so that unification succeeds, because it
is already or can be made inert.8

Although inert nodes in non-instantiable contexts are
the only nodes that must be rigidified, all inert nodes may
be rigidified. This is easier to implement, but more impor-
tantly, it results in simpler and more uniform elaborated
terms.

8 This reasoning can actually be generalized to lowering and split-
ting of inert nodes, which explains why we only need direct instance
operations on such nodes.

For the same reason, we also rigidify flexible existen-
tial nodes, even though these are not inert. An existential
node is bound to a G-node but not reachable by structure
edges. If it is rigid, it will be inlined by the translation.
But no occurrence will be found, so it will be skipped.
However, if it is flexible, its translation introduces a (use-
less) type abstraction over a variable that does not appear
in the body of the abstraction but that would still have to
be eliminated by some irrelevant type application. Rigid-
ifying flexible existential nodes is always correct and still
lossless. Moreover, it avoids useless abstraction and appli-
cations in the translated term, as in Example 10.

Since presolutions are instances of the original type
constrains (no node and no edge have been lost), we can
describe rigidification on the typing constrains of Figure
14. Namely, the following nodes of the presolution are
rigidified:

• the node 〈g1〉 in the translation of abstractions (4);

• the node n in the translation of an application (5);

• the node 〈g1〉 whenever it is bound on g;

• any node bound on a G-node but not reachable from
a G-node by following only structure edges (i.e. an
existential node).

In the first two cases, rigidification could have been per-
formed during constraint generation since nodes that are
rigidified are already inert in the constraint. Conversely,
in the two last cases, it is important that the nodes are left
flexible during type inference when some of the constraints
might not have yet been solved, and rigidified only after
type inference, i.e. in presolutions so that rigidification
remains a lossless transformation, as argued earlier. No-
tice that although nodes 〈g1〉 are always bound on 〈g〉 in
the original constraint, they might be bound above in the
presolution, in which case they must not be rigidified—
unless they have been merged with other nodes that must
be rigidified according to the criteria above.

We call rigid a presolution that respects the four con-
ditions above and in which all inert nodes are rigid. We
call rigidification the transformation of a presolution into
a most general, rigid one. The following lemma states the
existence of lossless rigid presolutions.

Lemma 20. Given a presolution χp of a constraint χ,
there exists a rigid presolution χ′

p of χ, derived from χp

only by rigidifying some nodes, such that the solutions
of χp and χ′

p are equivalent up to the weakening of inert
nodes.

This result suggests that we could have restricted our-
selves to rigid presolutions in the first place, since princi-
pal presolutions can be turned into rigid ones in a prin-
cipal manner. However, rigid presolutions are only useful
for the translation of eMLF into xMLF and useless, if not
harmful, for type inference purposes: binding edges can
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Rχ(n) , ∀ (Qχ(n)) χ(n) (Tχ(〈n 1〉), . . . Tχ(〈n p〉))
where p is the arity of χ(n)

Tχ(n) ,

{

Rχ(n) if n is rigidly bound in χ
αn if n is flexibly bound in χ

Qχ(n) , (α〈n1〉 >Rχ(n1) . . . α〈nk〉 >Rχ(nk))
where n1, . . .nk are all non G-nodes
flexibly bound to n in χ, ordered by ≺.

Gχ(g) , ∀ (Qχ(g)) Tχ(〈g 1〉)

Figure 16: Mapping nodes of eMLF to types of xMLF.

only be rigidified—without losing solutions—after all the
constraint edges under them have been solved. This im-
poses some synchronization during the constraint resolu-
tion. Therefore, we prefer to stay with the more flexible
(and simpler) definition of presolutions for eMLF and per-
form rigidification as a first step of the translation into
xMLF. This way, rigidification needs not be exposed to
the user.

In the remainder of this section, we abstract over a
rigid presolution χ and an instantiation edge e of the form
g d.

3.4. Translating types

Ordering binders. In eMLF, two binding edges reaching the
same node are unordered. It is actually a useful property
for type inference not to distinguish between two types
that just differ by the order of their quantifiers. However,
adjacent quantifiers do not commute in xMLF. While they
could be explicitly reordered by type instantiation, it is
much better to get them in the right order by construction
as far as possible, even if reordering of quantifiers remains
necessary in some cases, as described below (§3.4, page 18).

The simplest way to order quantifiers is to assume a
total ordering ≺ of all the nodes of a constraint χ. Of
course, ≺ cannot be arbitrary, as it should also ensure the
well-scopedness of syntactic types: if n ◦−→ n′ or n′ ≻−→ n,
then n′ ≺ n must hold.

We choose the leftmost-lowermost ordering of nodes

→

⊥ ⊥

for ≺. That is, if n1, . . . , nk are bound to n, we first
translate the ni that is structurally lowest in
the type, or leftmost if the ni are not ordered
by ◦−→. This means that the type drawn on
the right is always translated as ∀ (α1) ∀ (α2)
α1 → α2, not as ∀ (α2) ∀ (α1) α1 → α2.

From graphic types to xMLF types. Every node of χ can be
translated to an xMLF type. Moreover, the translation is
uniquely determined by the ordering of binders.

We assume that every node n in χ is in bijection with
a type variable αn. Each non G-node n of χ is mapped to
a type Tχ(n) of xMLF as described in Figure 16. A flexibly

bound node is translated by Tχ as αn; this translation is
always used in a context where αn is bound. Otherwise,
n is rigidly bound and its type is inlined as Rχ(n) whose
definition uses a helper function Qχ(n) to build a sequence
of type quantifications (one for each node flexibly bound
to n); then Rχ(n) is also used recursively to build the
bounds of the type variables in Q(n). When χ is clear
from context, we omit it for brevity.

Example 11. Consider again Figure 12, disregarding the
expanded part on the right for now. Let us consider the
translation of the node 〈n1〉 (the arrow node under n).
There is only one node bound on it, the node 〈n12〉, whose
bound is ⊥. Hence, T(〈n1〉) is ∀ (α〈n12〉 > ⊥) α〈n11〉 →
α〈n12〉.

The function G is used to translate a G-node g. This is
done by introducing the sequence of type quantifications
Q(n) (representing the type variables generalized at the
level of the type scheme that g stands for), followed by the
translation of 〈g 1〉. Notice that some other type quan-
tifications can be introduced when translating 〈g 1〉; this
stands for polymorphism purely local to g. That is, this
polymorphism was already present in g, has not been in-
stantiated, and needs not be re-introduced. Notice also
that, by definition of rigid presolutions, 〈g 1〉 cannot be
flexibly bound on g. Hence, the translation is never of the
form ∀ (...) ∀ (α> τ) α.

Finally, we write G(χ) for the translation G(〈〉) of the
root G-node of the whole constraint.

Example 12 (cont.). Let us focus on the root of the con-
straint in Figure 12. The non-G nodes that are flexibly
bound on 〈〉 before expansion are 〈11〉 and 〈n11〉. As n
is also 〈12〉, we have 〈11〉 ≺ 〈n11〉. Thus, the translation
G(〈〉) of 〈〉 is

∀ (α〈11〉 >⊥) ∀ (α〈n11〉 >⊥) α〈11〉 → (T(〈n1〉)→ α〈11〉)

Given all these definitions, we are now able to formally
define the notation /)(g) used in Figure 14. It is simply
Λ(Q(g)) .

Translating the type of an expansion. Let χ be a constraint
containing an instantiation edge e equal to g d. Let
χ′ be an instance of the expansion χe of e in χ, such that
χe ⊑ χ′ ⊑ χ. Let r be the root of the expanded (i.e.
copied) part in χ′. In §3.5, we will need to refer to the type
under r, as we will transform this type so that it matches
the type under d. It would be meaningless to translate
r as α〈r〉, because after any transformation under r, the
translation would still be α〈r〉. Instead, the correct type
is the following: if r has been created by the expansion,
we inline it regardless of its binding flag, and translate it
as Rχ′ (r). Conversely, if r is in fact d, it is translated as
Tχ′(d) as usual.9 Formally, the translation Eχ′(r) of r is

9The case r equal to d happens either when χ′ has been instan-
tiated back into χ or when g is degenerate in χ and does not hold
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defined as

Eχ′(r) ,

{

Tχ′ (r) if r is d
Rχ′ (r) otherwise

Example 13 (cont.). In Figure 12, the translation of r
is the type ∀ (α〈r1〉 > ⊥) α〈r1〉 → α〈11〉, as r is not part of
the initial constraint.

Type of a G node vs. type of an expansion. In g G

→

⊥ ⊥

some cases, the translation of the expansion
does not correspond to the translation of g,
regardless of our use of ≺. This can easily
be seen in the example drawn on the right.
Here G(g) is ∀ (β) ∀ (α) α → β, as we start
by translating the flexible nodes bound on g, here 〈g12〉,
before translating 〈g1〉. However, the expansion of g has
type ∀ (α) ∀ (β) α → β: the quantifiers appear in the
opposite order.

We believe that this difficulty is actually inherent to
elaborating terms for languages with second-order poly-
morphism, in which second-order polymorphism can be
kept local (as here for 〈g11〉), or be introduced by gener-
alization (as for 〈g12〉). Thankfully, the two translations
may differ only by a reordering of quantifiers. In xMLF,
we can explicitly reorder them using the instantiation

O; ∀ (>@τα); O; ∀ (>@τβ); ∀ (β>) ∀ (α>)
(

〈!α〉; 〈!β〉
)

whose effect is just to commute α and β in the type ∀ (α>
τα) ∀ (β > τβ) τ .

In the general case, we write Σ(g) for the instantiation
that transforms G(g) into the translation of its expansion.

3.5. From instantiation edges to type instantiations

The main part of the translation is the computation of
the type instantiation Φ(e) corresponding to an instantia-
tion edge e. By assumption, the edge is solved; thus χ is
an instance of the expansion χe of e in χ. This instantia-
tion can be witnessed by a sequence Ω of atomic instance
operations. We first build a graphical instantiation Ω that
will then be translated into a type instantiation in xMLF.

Building Ω. Because Ω leaves χ unchanged (as otherwise
χe ⊑ χ would not hold, ⊑ being antisymmetric), the oper-
ations can be rearranged into the following forms (we let
r be the root node of the expansion in χe):

(1) Graft(σ, n) or Weaken(n) with n in I(r);

(2) Merge(n,m) with n and m in I(r), and m ≺ n;

(3) Raise(n) with n +≻−→≻−→ r;

(4) a sequence (Raise(n))k ; Merge(n,m), with n ∈
I(r) and m /∈ I(r). We write this sequence
RaiseMerge(n,m) and see it as an atomic operation.

polymorphism; see, e.g., the lowermost G-node in Figure 15 in which
case both r and d are equal to 〈g 1〉 in χe.

An operation RaiseMerge(n,m) lets n leaves the interior
of r and be merged with some node m of χ bound above
r. Conversely, the other operations occur inside the inte-
rior of r. The grouping of operations in RaiseMerge(n,m)
helps translating the subparts of instantiation witnesses
that operate outside of I(r).

Furthermore, since χ is a rigid presolution, we may
also assume that an operation Weaken(n) appears after all
the other operations on a node below n (5). This ensures
that Ω does not perform any operation under a rigidly
bound node, which would not be expressible as an xMLF

instantiation, as explained in §3.3.
We call normalized an instantiation witness that ver-

ifies the conditions (1)–(4), and (5) above. Normalized
witnesses always exist. A constructive proof of this fact is
given by Yakobowski (2008) and it is actually quite easy to
establish: performing all instance operations bottom-up,
while delaying weakening operations as much as possible,
is always possible and results in a normalized witness.

Example 14. The constraint edge e of χ in Figure 13 is
solved. We recall the witness of χe ⊑ χ that we gave in
Example 7:

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉)
Raise(〈r11〉) ; Raise(〈r11〉) ; Merge(〈r11〉, 〈n11〉) ;
Weaken(〈r1〉) ; Weaken(r) ; Merge(r, n)

This transformation is not normalized because node
〈r11〉 is raised twice above the root r, then merged
with 〈n11〉. We must join those three operations into
RaiseMerge(〈r11〉, 〈n11〉). Similarly, the last operation
merges n and r and should be replaced by RaiseMerge(r, n).
This results in the following normalized derivation:

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉) ;
RaiseMerge(〈r11〉, 〈n11〉) ;
Weaken(〈r1〉) ; Weaken(r) ; RaiseMerge(r, n)

Similarly, in Figure 15, we have χe
p ⊑ χp —as wit-

nessed by RaiseMerge(r, n), which is normalized, hence
equal to Ω(e).

Instantiation contexts. In order to relate graphic nodes
and xMLF bounds, we introduce one-hole instantiation
contexts defined by the following grammar:

C ::= {·} | ∀ (> C) | ∀ (α>) C

We write C{φ} for the replacement of the hole by the in-
stantiation φ.

Consider a node n, and a flexible node m that is tran-
sitively bound to n. Given our use of ≺ to order nodes,
there exists a unique instantiation context Cnm that can be
used to descend in front of the quantification correspond-
ing to m in R(n). For presolutions, in order to avoid α-
conversion-related issues, we build instantiation contexts
using variables whose names are based on the nodes they
traverse.

18



Any operation on a node that is transitively bound
to the root of an expansion can be expressed using an
instantiation context (and a “local” instantiation). Con-
versely, the operations on rigidly bound or inert-locked
nodes cannot. This is unimportant in our case, as normal-
ized witnesses of rigid presolutions only transform nodes
transitively flexibly bound to the root of the expansion.

Example 15. For example, consider the constraint χp in
Figure 15. The translation Q(〈〉) of the root G-node is

∀ (α〈11〉>⊥) ∀ (α〈12〉>∀ (α〈121〉>⊥) α〈121〉 → α〈11〉) α〈11〉 → α〈12〉

With the convention above, C
〈〉
〈11〉 = {·}, C

〈〉
〈12〉 = ∀ (α〈11〉 >)

{·}, and C
〈〉
〈121〉 = ∀ (α〈11〉 >) ∀ (> {·}).

Translating normalized derivations into instantiations.
Let us resume the construction of Φ(e) by translating a
normalized witness Ω of χe ⊑ χ into a type instantiation
in xMLF. In fact, we generalize the problem by translating
a normalized witness Ω of ξ ⊑ χ where ξ is an instance of
χe, i.e. such that χe ⊑ ξ ⊑ χ. Inside χe and ξ, we let r
be the root of the expansion (inside χ, r is merged with
d). We remind that Eχ(r) is the translation of r in the
constraint ξ. By definition, the translation of Ω, written
Φξ(Ω), must witness the instantiation Eξ(r) ≤ Eχ(r), i.e.

Γd ⊢ Φξ(Ω) : Eξ(r) ≤ Eχ(r)

where Γd is the typing context for the node d.
10 The trans-

lation of Ω is defined by induction on Ω as described in
Figure 17. The function Φξ is overloaded to act on both
an instance derivation and a single operation.

The translation of an instance derivation is defined re-
cursively: the translation of an empty derivation is the
identity instantiation 1; otherwise, Ω is of the form (ω; Ω′)
and we return the composition of the translation of the
operation ω followed by the translation of the instance
derivation Ω′ applied to the constraint ω(ξ).

The translation of an operation on a rigid node is the
identity instantiation 1, as rigid bounds are inlined. Inert
nodes have been weakened into rigid ones and locked nodes
cannot be transformed at all. Hence, the remaining and
interesting part of the translation is a (single) operation
applied to an instantiable node.

The translation of an instance operation on r (when r
is flexible) is handled especially, as follows.

• The grafting of a type σ is translated to the instanti-
ation (@τ), where τ is the translation of σ into xMLF.
(Grafting grafts only closed types, so the constraint
in which we translate σ is unimportant.)

• A raise-merge of r with m is translated to !αm: it
must be the last operation of the derivation Ω, and
αm is necessarily bound in the typing environment
Γd; hence we may abstract the type of r under αm.

10We do not define the typing contexts Γd formally, since they are
not needed for the translation, but only to state its properties.

Sequences of operations

Φξ() = 1
Φξ(ω; Ω

′) = Φξ(ω); Φω(ξ)(Ω
′)

Operation ω on a rigid node n

Φξ(ω) = 1
Operation on the (flexible) root r of the expansion

Φξ(Graft(σ, r)) = @(R(σ))

Φξ(RaiseMerge(r,m)) = !αm

Φξ(Weaken(r)) = 1
Operation on a flexible node different from the root

Φξ(Graft(σ, n)) = Crn{∀ (>@(R(σ)))}

Φξ(RaiseMerge(n,m)) = Crn{∀ (> !αm);N}

Φξ(Merge(n,m)) = Crn{∀ (> !αm);N}

Φξ(Weaken(n)) = Crn{N}

Φξ(Raise(n)) = Crm{O; ∀ (>@(Rξ(n)));

∀ (βn >) Cmn {∀ (> !βn);N}}

where m = min≺{m | n ≻−→≻−→←−≺ m ∧ n ≺ m}

Figure 17: Translating normalized instance operations

• The weakening of r is translated to 1: it must be
the next-to-the-last operation in the derivation Ω,
before the merging of r with a rigidly bound node,
and there is actually nothing to reflect in xMLF, as
the type of r itself is unchanged.

In the remaining cases, the operation is applied to an in-
stantiable node n. Since the derivation is normalized and
n is not rigid, n must be flexible and transitively bound
to r. Therefore, there exists an instantiation context Crn,
which we call C , to reach the bound of αn in Rξ(r).

• The grafting of a type σ at n is translated to
C{∀ (>@(R(σ)))} which transforms the bound ⊥ of
αn into R(σ).

• The merging of n with a node m is translated to
C{〈!αm〉}, which first abstracts the bound of αn un-
der the name αm and immediately eliminates the
quantification. (We have assumed m ≺ n, hence αm

is in scope in the bound of n.)

• The translation is the same for a raise-merge, but
αm is bound in the typing environment instead of in
Rξ(r).

• The weakening of n is translated to C{N}, which
eliminates the bound of n.

• Finally, the translation of the raising of n is more
involved, and of the form Crm{O; ∀ (>@(Rξ(n)));φ}.

We first insert a fresh quantification, which will be
the one of n after the raising, inside Rξ(r). The
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bound is the current bound of n, i.e. Rξ(n). The
difficulty consists in finding the node m in front
of which to insert this quantification, so as to re-
spect the ordering between bounds. Notice that
the set {m | n ≻−→≻−→←−≺ m ∧ n ≺ m} con-
tains at least the binder of n, hence its minimum
m is well-defined. Then, the instantiation φ equal
to ∀ (βn >) Cmn {∀ (> !βn);N} aliases the bound of n
to the quantification just introduced and eliminates
the resulting quantification.

The net result of the whole type instantiation is that
the type of n is introduced one level higher than it
previously was.

Finally, in order to have a correct instantiation, it re-
mains to reorder quantifiers as described earlier (page 18).
Thus we take

Φ(e) = Σ(g); Φχe(Ω)

Example 16 (cont.). The translation of each step of the
normalized witness of Example 14 is:

Normalized graphic operation xMLF translation

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉) ∀ (>@(R(∀ (α) ∀ (β) α→ β)))

RaiseMerge(〈r11〉, 〈n11〉) ∀ (> ∀ (> !α〈n11〉))

Weaken(〈r1〉) N

Weaken(〈r〉) 1
RaiseMerge(〈r〉, 〈n〉) !αn

Since for the edge e of χ we have Σ(g) = 1, the entire
translation of e is

Φ(e) = 1; ∀ (>@(R(∀ (α) ∀ (β) α→ β))); ∀ (> ∀ (> !α〈n11〉));N;1; !αn

3.6. Translating annotated terms

As mentioned in §3.1.3, expressions such as (b : σ)
and λ(y : σ) b are actually syntactic sugar, for κσ b and
λ(y) let y = κσ y in b, respectively. The translation
R(κσ) of the type of the coercion function κσ in xMLF

is ∀ (α > R(σ)) R(σ) → α. Interestingly, coercion func-
tions need not be primitive in xMLF—unlike in eMLF. Let
idκ be the expression Λ(α) Λ(β > α) λ(x : α) (x (!β)).
Then, define κσ as idκ〈R(σ)〉. Notice that κσ behaves as
the identity function. Moreover, coercion functions can
always be eliminated by strong reduction (as implied by
Lemma 13) in the elaboration of the presolution, so that
they have no runtime cost.

3.7. Soundness of the translation

Theorem 21. Let b be an eMLF term, χ a rigid presolu-
tion for b. The translation J b K of χ is well-typed in xMLF,
of type G(χ).

Our translation preserves the type-erasure of programs
(Theorem 19). Hence, the soundness of xMLF also im-
plies the soundness of eMLF—which had previously only
been proved for the syntactic versions of MLF, but not for
the most general, graphical version.

3.8. Optimizations

The elaboration is a compilation process, and we have
defined it in its simplest form. In practice, some opti-
mizations could be performed during the elaboration pro-
cess. For instance, raising k times a node n (to a position
n′), is currently done step by step by invoking the atomic
Raise(n) operation k times. This could (and should) be
translated in a simple step, avoiding intermediate ab-
stractions and applications in xMLF. Similarly, contexts
could be factored, replacing Crn(φ); C

r
n(φ

′) by Crn(φ;φ
′).

Those optimizations are actually straightforward and sig-
nificantly simplify elaborated terms—they have been im-
plemented in our prototype (Scherer, 2010b), indeed. Op-
timizations can also be performed a posteriori, by trans-
forming xMLF terms into equivalent ones (with the same
type and the same type erasure), as discussed in §5.2.

4. Expressiveness of xMLF

The translation of eMLF into xMLF shows that xMLF

is at least as expressive as eMLF. However, the converse
is not true. (This is not entirely surprising: as mentioned
in §3.6, coercion functions are primitive in eMLF, but not
in xMLF.) That is, there exist programs of xMLF that
cannot be typed in eMLF. While this is mostly irrelevant
when using xMLF as an internal language, the question is
still interesting from a theoretical point of view, and may
help understanding MLF independently of any restriction
imposed for the purpose of type inference and perhaps
suggest other useful extensions.

For the sake of simplicity, we explain the difference
between xMLF and iMLF, the Curry-style version of MLF

(which has the same expressiveness as eMLF, but does not
require explicit type annotations in source terms).

4.1. A term typable in xMLF but not in iMLF

Although syntactically identical, the types of xMLFand
of syntactic iMLF differ in their interpretation of quantifi-
cations of the form ∀ (β>α) τ . Consider, for example, the
two types τ0 and τid defined as ∀ (α > τ) ∀ (β > α) β → α
and ∀ (α > τ) α → α respectively. In iMLF, β is just an
alias for α and these two types are equivalent. Intuitively,
the set of their instances (stripped of toplevel quantifiers)
is {τ ′ → τ ′ | τ ≤ τ ′}. In xMLF, the set of instances of τ0 is
larger and at least a superset of {τ ′′ → τ ′ | τ ≤ τ ′ ≤ τ ′′},
which can be obtained from τid by all type instantiations
of the form ∀ (>φ);N; ∀ (>φ′);N with ⊢ φ : τ ≤ τ ′ and
⊢ φ′ : τ ′ ≤ τ ′′. That is, an instance of τ0 can pick for β an
instance of the type chosen for α. This level of generality,
possible in xMLF, cannot be expressed in iMLF.

From this observation, we may easily exhibit an ex-
pression a that is typable in xMLF but not in iMLF. For
readability of the example, we assume primitive products.
Let a0 be the expression

Λ(α) Λ(β > α) λ(x : α) λ(y : β) (x, choice 〈β〉 (x (!β)) y)

20



[[λ(x : τ) a]]∆ = λ(x : ∃(∆) τ) [[a]]∆
, λ(x) let x = (∃(∆) τ) x in [[a]]∆

[[x]]∆ = x
[[a1 a2]]∆ = [[a1]]∆ [[a2]]∆

[[Λ(α> ρ) a]]∆ = [[a]]∆,α>ρ

[[a φ]]∆ = [[a]]∆

Figure 18: Translating xMLF into eMLF

of type τ0 , ∀ (α) ∀ (β > α) α → β → (α × β). Let a1
and a2 be defined as

a1 , Λ(α) λ(x : α) x : ∀ (α) α→ α , τ1
a2 , Λ(α) λ(x : α) λ(y : α) x : ∀ (α) α→ α→ α , τ2

Let i be 1 or 2 and a′i be λ(x : τi) x 〈τi〉 x. We have
⊢ a′i : τ ′i , where τ ′i is defined as τi 〈τi〉. If f has type
τ0, then f (〈σ〉; ∀ (>φ);N) has type σ → σ′ → (σ × σ′),
for any instantiation φ such that φ ⊢ σ ≤ σ′. Let φi be
〈τi〉; ∀ (> 〈τi〉);N and τ ′′i be τi → τ ′i → (τi×τ

′
i) and observe

that φi ⊢ τ0 ≤ τ ′′i . Let a′′i be let (xi, x
′
i) = f φi ai a′i in

x′
i xi and take (λ(f : τ0) (a

′′
1 , a

′′
2)) a0 for a. The expression

a is well-typed in xMLF (and has type τ1 × (τ2 → τ2)).
However, the type erasure of a is ill-typed in iMLF, as

there is no annotation τ0 for the type of the parameter f
that is simultaneously a correct type for ⌈a0⌉ and that can
be independently instantiated to τ ′′1 and τ ′′2 —or some other
types that allow to simultaneously type both expressions
a′′1 and a′′2 . The problem is that, in iMLF, ⌈a0⌉ can only
be given a type of the form τ → τ ′ → (τ × τ ′′) or τ ′ →
τ → (τ ′ × τ ′′) with τ ≤ τ ′ ≤ τ ′′, or of the form ∀ (α) α→
α→ (α×α) (in which both arguments must have identical
types), but not simultaneously two such types.

4.2. Restricting xMLF to match eMLF

The current treatment of variable bounds in xMLF is
quite natural in a Church-style presentation. Surprisingly,
it is also simpler than treating them as in eMLF. A restric-
tion xMLF♭ of xMLFwithout variable bounds that is closed
under reduction and in close correspondence with iMLFcan
still be defined a posteriori, by constraining the formation
of terms. But the definition is contrived and unnatural,
and may not be so appealing in practice (see Appendix C
for details). Still, all terms of xMLF♭ can be translated to
eMLF.

The translation is actually very similar to that for
Church-style System F (Le Botlan and Rémy, 2009) and
proceeds by dropping all type abstractions and type ap-
plications and translating type annotations of argument
of functions. As a result, some type variable may be-
come free in translated types and must be existentially
quantified, leading to annotations of the form ∃(∆) τ .
Free variables are kept with their bound in the source.
Hence, ∆ is a list of αi>ρi where ρ are non-variable types

(see Appendix C). This is a minor difference with Sys-
tem F where all bounds are trivial—and thus need not be
tracked. Here, the translation uses an environment to pass
this information downward as described in Figure 18. The
annotation ∃(∆) τ stands in eMLF for the coercion func-
tion of type ∀ (∆) ∀ (α = τ) ∀ (α′ = τ) α → α′, which can
easily be translated into some graphic type, as described
in (Yakobowski, 2008, Chapter 8).

The restriction to xMLF♭ prevents the use of variable
bounds and therefore of type instantiation between types
whose translation into eMLF would not be in some in-
stance relationship. This should ensure that the trans-
lation of well-typed terms is well-typed, although we have
not checked it formally.

Notice that the translation described above annotates
all parameters of functions, which is not necessary in eMLF.
Only parameters of functions that are used polymorphi-
cally need to be annotated. A simple optimization is to
omit monomorphic type annotations, i.e. type annota-
tions of the form ∃(∆) τ where neither ∆ nor τ con-
tain quantifiers. Still all parameters of functions that
have a polymorphic type, whether or not used polymor-
phically, will be annotated. The image of the translation
is then in HML (Leijen, 2008), a strict subset of eMLF. In-
deed, parameters of functions that are polymorphic may
still not be used polymorphically and need not be anno-
tated in MLF. However, we do not know whether this can
be easily checked during the translation. (In fact, this
would amount to detecting and removing useless type-
annotations in eMLF.)

4.3. Enriching eMLF to match xMLF?

Instead of restricting xMLF to match the expressiveness
of iMLF, a question worth further investigation is whether
the treatment of variable bounds could be enhanced in
iMLF and eMLF to match their interpretation in xMLF but
without compromising type inference. A solution might
exist, but it would likely depart from eMLF: graphic types
have been introduced to simplify the metatheory of the
syntactic presentation of MLF and one of the simplifi-
cations was precisely to disallow variable bounds, which
could be written in the syntactic presentation but lead to
many complications.

4.4. Comparing xMLF and Fη

Type instantiation in xMLF, which changes the type
of an expression without changing its meaning, can be ap-
plied deeply inside a type while it is only superficial in Sys-
tem F. This has some resemblance with retyping functions
in F

η, the closure of System F by η-conversion (Mitchell,
1988), which also allows deep type instantiations. How-
ever, type instantiations rely on quite different mecha-
nisms in both languages. While it is explicitly expressed
in flexible bounds in xMLF, it is left implicit and driven by
the underlying structure of types in Fη, propagating type
instantiation covariantly on the right-hand side of arrow
types and contravariantly on their left-hand side.
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Both Fη and xMLF have a little more than System F in
common, as our running example choice id has both types
∀ (α) (α → α)→ α → α and (∀ (α) α → α)→ (∀ (α) α →
α), since the latter can be recovered from the former by
type containment, distributing the ∀ over the arrow type
constructor.

However, Fη fails on the application, choice (choice id):
which is a small variant of choice id: this program has type
∀ (γ > ∀ (β > ∀ (α) α → α) β → β) γ → γ in MLF, which
admits the three following particular System-F types as as
instances:

((∀ (α) α→ α)→ ∀ (α) α→ α)→ (∀ (α) α→ α)→ ∀ (α) α→ α
(∀ (α) (α→ α)→ α→ α)→ ∀ (α) (α→ α)→ α→ α
∀ (α) ((α→ α)→ α→ α)→ (α→ α)→ α→ α

However, choice (choice id) does not have any type in Fη

of which all these three types are instances.
Conversely, a function of type ∀ (β) (τ1{α ← τ2} →

β)→ β can be seen as one of type ∀ (β) (∀ (α) τ1 → β)→
β in Fη by contra-variant type instantiation, which cannot
(in general) be expressed xMLF.

In fact xMLF and Fη are two rather orthogonal exten-
sions of System F, which could be combined together, as
shown in recent work by Cretin and Rémy (2012).

5. Discussion

5.1. Related works

A strong difference between eMLF and xMLF is the use
of explicit coercions to trace the derivation of type instan-
tiation judgments. Beside the several papers that describe
variants of MLFand are only indirectly related to this work,
most related works are about the use of coercion functions
in different ways.

Elaboration of MLF into System F. In a way, the closest
work to ours is the elaboration of MLF into System F, first
proposed by Leijen and Löh (2005) to extend MLF with
qualified types and later simplified by Leijen (2007) in the
absence of qualified types. Since System F is less expres-
sive than MLF, an MLF term a with a polymorphic type of
the form ∀ (α > τ ′) τ is elaborated as a function of type
∀ (α) (τ ′⋆ → α) → τ⋆, where τ⋆ is a runtime representa-
tion of τ . The first argument is a runtime coercion, which
bears strong similarities with our instantiations. However,
an important difference is that their coercions are at the
level of terms, while our instantiations are at the level of
types. In particular, although coercion functions should
not change the semantics, this critical result has not been
proved, and it is not obvious for a call-by-value language
with side effects. In our setting the type-erasure semantics
comes for free by construction.

Interestingly, while their translation and ours work on
very different inputs—syntactic typing derivations in their
case, graphic presolutions in ours—there are strong simi-
larities between the two. The resemblance is even closer

with the improved translation proposed by Leijen (2007),
in which rigid bindings are inlined during the translation.
Both elaborations use some canonical ordering of quanti-
fiers inside types, with slight differences: while we strive
to reduce the number of quantifier reorderings, thus or-
der all the quantifiers, Leijen uses only weaker canonical
forms that are sufficient to obtain well-typed terms, but
may result in additional reorderings.

Explicit coercions. A similar approach has already been
used in a language with subtyping and intersection types,
proposed as a target for the compilation of bounded poly-
morphism by Crary (2000). In both cases, coercions are
used to make typechecking a trivial process. In our case,
they are also exploited to make subject reduction easy—
by introducing the language to describe how type instance
derivations must be transformed during reduction. We be-
lieve that, more generally, the use of explicit coercions is
a powerful tool for simplifying subject-reduction proofs.
In both approaches, reduction is split into a standard no-
tion of β-reduction and a new form of reduction (which we
call ι-reduction) that only deals with coercions, preserves
type-erasures, and is strongly normalizing. There are also
important differences. While both coercion languages have
common forms, our coercions intendedly keep the instance-
bounded polymorphism form ∀ (α>τ) τ ′. On the opposite,
Crary uses the coercions to eliminate the subtype-bounded
polymorphism form ∀ (α ≤ τ) τ ′, using intersection types
and contravariant arrow coercions instead, which we do
not need. Perhaps union types, which Crary (2000) pro-
poses as an extension, could be used to encode away our
instance-bounded polymorphism form.

Harnessing MLF. In a recent paper, Manzonetto and Tran-
quilli (2010) have shown that xMLF is strongly normalizing
by translation into System F, reusing the idea of Leijen and
Löh (2005) and their translation of types, recalled above,
but starting with xMLF instead of MLF. It is unsurprising
that the elaboration of MLF into System F can be decom-
posed into our elaboration of MLF into xMLF followed by
a translation of xMLF into System F. However, the idea
of Manzonetto and Tranquilli (2010) is to use the elabora-
tion into System F to prove termination of the reduction in
xMLF in some indirect but simple way, while a direct proof
of termination seemed trickier. They show that the elabo-
ration preserves well-typedness and the dynamic semantics
via a simulation between the reduction of source terms and
target terms. In this process, they also exhibit an inter-
mediate calculus Fc of term-level retyping functions that
mimic our type instantiations. Unfortunately, subject re-
duction does not hold in Fc (hence, we can only reuse their
direct proof of bisimulation given in Appendix B). More-
over, their intermediate calculus Fc is tuned to be the tar-
get of xMLF, and cannot express much more. It is actually
subsumed by a calculus of erasable coercions Fι recently
proposed by Cretin and Rémy (2012), which contrary to
Fc, enjoys subject reduction. Theorem 10 and Lemma 13

22



have also been verified by a translation of xMLF into Fι

(Cretin and Rémy, 2012).

System with type equalities. An extension of System F

with type equality coercions, called FC or FC2 for its re-
vised version (Sulzmann et al., 2007; Weirich et al., 2011)
has been proposed to be used as an internal language for
Haskell. Type equalities are made explicit through wit-
nesses that have some similarities with our instantiations.
System FC has also been designed to be a compiler in-
termediate language, one of the objectives we have pur-
sued with xMLF. However, there are also significant differ-
ences: type coercions in FC2 are type equality coercions
while they are type instantiations in MLF. In fact FC2 is
more related to the system Fι mentioned above, of which
xMLF is only a particular case. Technically, FC2 and xMLF

seems to be orthogonal extensions of System F which, per-
haps, could be combined together. Unfortunately, MLF-
style polymorphism has been removed from the recent ver-
sions of GHC to better accommodate for type inference
with GADT. We hope that this is temporary and that
both could be eventually recombined.

5.2. Future works

The demand for an internal language for MLFwas first
made in the context of using the eMLF type system for the
Haskell language. We expect xMLF to better accommo-
date qualified types than eMLF, since no evidence function
should be needed for flexible polymorphism, but it remains
to be verified.

While graphical type inference has been designed to
keep maximal sharing of types during inference so as to
have good practical complexity, our elaboration implemen-
tation reads back dags as trees and undoes all the shar-
ing carefully maintained during inference. Even with to-
day’s fast machines, this might be a problem when writing
large, automatically generated programs. Hence, it would
be worth maintaining the sharing during the translation,
perhaps by adding type definitions to xMLF.

It was somewhat of a surprise to realize that xMLF

types are actually more expressive than iMLFones, because
of a different interpretation of variable bounds. While the
interpretation of xMLF seems quite natural in an explic-
itly typed context, and is in fact similar to the interpreta-
tion of subtype bounds in F<:, the eMLF interpretation also
seemed the obvious choice in the context of type inference.
We have left for future work the question of whether the
additional power brought by the xMLF could be returned
back to eMLF while retaining type inference. In fact, the
problem of choosing the right interpretation for variable
bounds reappeared in a recent work by Scherer (2010a) on
extending MLF to cope with higher-order polymorphism.
Indeed, this requires making coexist both implicit and ex-
plicit quantifiers, and using the xMLF interpretation for
explicit quantifiers while retaining the MLF more restric-
tive interpretation for implicit quantifiers.

As noticed in §4.4, type instantiation changes the type
of an expression without changing its meaning. It can be
performed deeply inside terms, as retyping functions in
System Fη. In System Fη, retyping functions can be seen
either at the level of terms, as expressions of System F that
βη-reduce to the identity, or at the level of types as a type
conversion. In xMLF, retyping functions are at the level
of types. However, the translation of type instantiations
back into coercion functions as done by Manzonetto and
Tranquilli (2010) allows one to also see them at the level of
terms, bringing xMLF and Fη even closer. While the two
languages differ in their coercions, they can be combined
together as shown in recent work by Cretin and Rémy
(2012), allowing a form of abstraction (as in xMLF) over
retyping functions (as in F

η).
Regarding type soundness, it is worth noticing that the

proof of subject reduction in xMLF does not subsume, but
complements, the one in the original presentation of MLF.
The latter does not explain how to transform type anno-
tations, but shows that annotation sites need not be intro-
duced (but only transformed) during reduction. Because
xMLF has full type information, it cannot say anything
about type information that could be left implicit and in-
ferred. Given a term in xMLF, can we rebuild a term in
iMLF with minimal type annotations? While this should
be easy if we require that corresponding subterms have
identical types in xMLF and iMLF, the answer is unclear if
we allow subterms to have different types.

The semantics of xMLF allows reduction (and elimina-
tion) of type instantiations a φ through ι-reduction but
does not allow reduction (and simplification) of instan-
tiations φ alone. It would be possible to define a no-
tion of reduction on instantiations φ −→ φ′ (such that
∀ (>φ1;φ2) −→ ∀ (>φ1); ∀ (>φ2), or conversely?) and
extend the reduction of terms with a context rule a φ −→
a φ′ whenever φ −→ φ′. This might be interesting for more
economical representations of type instantiations. How-
ever, it is unclear whether there exists an interesting form
of reduction that is both Church-Rosser and large enough
for optimization purposes. Perhaps, one should rather con-
sider instantiation transformations that preserve observa-
tional equivalence; this would leave more freedom in the
way one instantiation could be replaced by another.

Less ambitious is to directly generate smaller type
instantiations when translating eMLF presolutions into
xMLF, by carefully selecting the instantiation witness to
translate—as there usually exist more than one witness
for a given instantiation edge. This amounts to using type
derivations equivalence in eMLF instead of observational
equivalence in xMLF.

Extending MLFwith higher-order polymorphism is an-
other ongoing research direction (Herms, 2009; Scherer,
2010a).
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Conclusion

The Church-style version of xMLF that was still missing
for type-aware compilation and from a theoretical point
of view, completes the MLF trilogy. The original type-
inference version eMLF, which requires partial type anno-
tations but does not tell how to track them during reduc-
tion, now lies between the Curry-style presentation iMLF

that ignores all type information and xMLF that maintains
full type information during reduction.

We have shown that xMLF is well-behaved: reduction
preserves well-typedness, and the calculus is sound for
both call-by-value and call-by-name semantics.

Hence, xMLF can be used as an internal language for
MLF, with either semantics, and also for the many restric-
tions of MLF that have been proposed, including HML.
Hopefully, this will help the adoption of MLF and maintain
a powerful form of type inference in modern programming
languages that must feature some form of first-class poly-
morphism.

Appendix A. Coq formalization

The Coq development is available electronically11.

We have proved most of the meta-theoretical results
of §2 and §3 using the Coq proof assistant (Coq develop-
ment team, 2009). In order to deal with alpha-conversion
issues—which often represent the most burdensome part
of the formalization—we have used the locally nameless
approach of Aydemir et al. (2008). In this setting, free
variables are represented by names, while bound variables
are De Bruijn indices. When going through a binder, a
term must be opened by replacing the bound variable by a
free variable. Of course, this variable must be fresh; this is
ensured by a cofinite quantification, that allows all names
but a given finite set, typically chosen to contain all the
free variables of the local typing context.

Given the strong syntactical similarities between xMLF

and F<:, notably the instance-bounded quantification, we
have been able to reuse most of the definitions and re-
sults previously established for the examples of (Aydemir
et al., 2008). Extending the formalism to add type instan-
tiations was quite natural with a lot of cut-and-paste. We
have however found it important to update the tactics12

contained in the development so that they seamlessly han-
dle the constructs we have added. This way, we have been
able to reuse the very high level of automation they pro-
vide, which is quite striking in the initial development.

Up-to the use of the locally nameless formalism, our
formalization is very faithful to the metatheory of §2. One
small difference is that we did not define the operation τ φ
as a function, but as a relation. (See below for a justifi-
cation.) Also, as it is painful to define reduction relations
using evaluation contexts, we have inlined rule Context

for each context. Finally, characterizing subrelations is
also technically heavy, so we have not attempted to for-
mally prove results about call-by-value and call-by-name,
but only for −→.

Unfortunately, we have also encountered some difficul-
ties. In particular, defining the operation a{!α ← φ; !α}
proved very complicated. To understand why, let us recall
rule ι-Inside:

(Λ(α> τ) a) (∀ (>φ)) −→ Λ(α> τ φ) a{!α← φ; !α}

The problem lies in the fact that the instantiation (φ; !α)
is not closed in the locally nameless sense when it is substi-
tuted instead of !α. That is, the variable α is not free, but
bound in front of a{!α ← φ; !α}. Since bound variables
are De Bruijn indices, it is impossible to define the entire
operation as a simple recursive operation on a. Instead,

11At the url http://www.yakobowski.org/publis/2010/

xmlf-coq/.
12Coq proofs are done using a set of commands, called tactics,

which describe in a very high-level way how to build proof terms.
The locally nameless examples define some very specialized tactics,
that handle e.g. the computation of the set of variables against which
a variable must be fresh.
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we need e.g. to shift (φ; !α) when crossing a binder. How-
ever, this is unsatisfactory, as it requires a considerable
amount of new metatheory related to shifting (which the
locally nameless approach had been introduced to avoid!).
We instead chose to temporarily close φ when doing the
substitution, by replacing the bound variable α by a fresh
free one. Still (and unsurprisingly), this was not sufficient,
as inside the proofs the variable was not “fresh enough”.
We thus had to prove that using any fresh free variable,
not just the first available one, was equivalent. Those re-
naming lemmas were quite tedious to prove.

Notice that the exact same problem theoretically oc-
curs when defining the operation τ φ, for the rule (∀ (α>τ)
τ ′)(∀ (>α)φ) = ∀ (α > τ) (τ ′ φ). In this case, we did not
introduce tedious renaming lemmas, but simply defined
τ φ as a relation, instead of as a function.

We tried using the the same solution for a{!α← φ; !α},
which solved some problems related to bound v.s. free
variables. However, such a solution is only partial. Indeed,
when proving progress, we need to give the result term to
which a source term reduces to. For rule ι-Inside, we
have to show that both τ φ and the term a{!α ← φ; !α}
exist. For τ φ, this is easily deduced from the typability
of the original term, which requires Γ ⊢ φ : τ ≤ τ ′ to
hold for some Γ. For a{!α ← φ; !α}, this is unfortunately
essentially as hard as defining the constructive version of
the operation.

Appendix B. Proofs of §2.5.

Proof of Lemma 14

Let v be a value. If it is an abstraction or a type
abstraction, the result is immediate. If v is a partially
applied constant, and it is applied to less than its arity, it
has either a type of the form ∀ (α > τ) τ ′, or τ → τ ′. If
it is a fully applied constructor, it cannot have type ⊥ by
hypothesis.

Proof of Theorem 15

The proof is quite standard and proceed by cases on a.
Only the first case is original, but still proceeds without
difficulties:

• if a is a′ φ, by inversion of typing a′ is typable in the
empty environment. If a′ is not a value, it can be fur-
ther reduced by Context, and so can a. Otherwise,
we proceed by cases on φ:

– if φ is 1, O or φ1;φ2, a can be reduced by rules ι-
Id, ι-Intro or ι-Seq

– the case φ = !α is impossible in the empty en-
vironment;

– the case φ = @τ is also impossible, as a′ is a
value which cannot have type ⊥ by Lemma 14.

– in the three last cases, a′ must have type ∀ (α>
τ) τ ′ for some τ and τ ′. Since it is a value, by
inversion of typing it is either a type abstraction
of the form Λ(α>τ) a′′ (and a can be reduced by
ι-Inside, Under or ι-Elim), or it is a partially
applied constants, and a is a value.

• if a is a1 a2: by inversion of typing, a1 and a2 are
typable in the empty environment, and a1 has type
τ → τ ′ for some τ and τ ′. If a1 or a2 are not values,
they can be further reduced, and a can be further
reduced by Context. Otherwise, since a1 is a value,
of type τ → τ ′, we proceed by inversion of typing:

– it a1 is of the form λ(x : τ) a′1, a can be reduced
by (β).

– if a1 is a partially applied primitive, either a is
a fully applied primitive and it can be reduced
by the appropriate δ rule, or a is a value.

– if a1 is a partially applied constructor: by hy-
pothesis on the typing of constructors, a1 is of
the form C θ1 . . . θk v1 . . . vn with n < |C| (as a
full application would not have an arrow type).
Then a is a value.

• if a is let x = a2 in a1, by inversion of typing a2 is ty-
pable in the empty environment. If it is not a value,
by induction hypothesis it can be reduced. Hence, a
can be reduced by rule Context. Otherwise, a can
be reduced by rule (βlet).

• variables are not typable in the empty environment;

• constants, abstractions and type abstractions are
values;

Proof of Theorem 18

By cases on a. The cases for variables, constants, ab-
stractions, type abstractions and type applications are the
same as for call-by-value.

• If a is a1 a2: by inversion of typing, a1 and a2 are
typable in the empty environment, and a1 has type
τ → τ ′ for some τ and τ ′. If a1 is not a value,
by induction hypothesis it can be reduced, and so
can a by rule Context. Otherwise, by inversion of
typing and since a1 is a value, it is either of the form
λ(x : τ) a′1 (in which case a can be β-reduced), or a
partially applied constant, and the reasoning is the
same as for call-by-value.

• If a is let x = a2 in a1, it can be reduced by rule
(βlet).
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Appendix C. A restriction of xMLF without vari-
able bounds

A restriction of xMLF without variable bounds that is
closed under reduction and in close correspondence with
eMLF can still be defined a posteriori, by constraining the
formation of terms.

The first idea to avoid variable bounds is to restrict the
syntax of types and expressions as follows:

ρ ::= τ → τ | ∀ (α> ρ) ρ | ⊥ Constructed Types

τ ::= α | ρ | ∀ (α> ρ) τ Types

a ::= . . . | Λ(α> ρ) a Terms

Γ ::= ∅ | Γ, α> ρ | Γ, x : τ Environments

The typing rule for type abstraction can be restricted ac-
cordingly, replacing τ by ρ in bounds:

TAbs
Γ, α> ρ ⊢ a : τ α /∈ ftv(Γ)

Γ ⊢ Λ(α> ρ) a : ∀ (α > ρ) τ

There is a slight difficulty however, because new variable
bounds could be created during reduction by rule ι-Inside,
turning a bound ρ into ρ φ, which might be a variable.
Indeed, assume α > ρ ⊢ φ : ρ′ ≤ α (φ could be @α if ρ′

is ⊥ or of the form φ′; !α with α > ρ ⊢ φ′ : ρ′ ≤ ρ) and
consider the reduction sequence:

Λ(α> ρ) (Λ(β > ρ′) a) (∀ (>φ);N) (1)
−→ Λ(α> ρ) (Λ(β > α) a{!β ← φ; !β}) N (2)
−→ Λ(α> ρ) a{!β ← φ;1}{β ← α} (3)

The term (1) is well-formed. However, after one reduction
step the bound of β becomes a variable α and (2) is ill-
formed. To prevent this from happening, we may restrict
uses of φ inside bounds, replacing Rule ι-Inside by the
following variant:

Inst-Inside
Γ ⊢ φ : ρ1 ≤ ρ2

Γ ⊢ ∀ (>φ) : ∀ (α> ρ1) τ ≤ ∀ (α> ρ2) τ

As expected, this rejects the source term (1) as ill-typed.
Unfortunately, this is too restrictive. For instance, it
would also reject the application of a polymorphic func-
tion. When ρ and ρ′ are ⊥ and φ is @α, (1) is a term of
System F, which we must keep!

Notice that the ill-formed term (2) can be further re-
duced to the term (3), which is well-formed. This sug-
gests another solution to recover type application: making
∀ (>φ);N a primitive instance operation, say $φ, and the
above reduction sequence atomic, so that one does not see
the intermediate ill-formed step.

In summary, xMLF♭ is defined as follows: first we extend
type instantiations with primitive type applications:

φ ::= . . . | $φ

Inst-App
Γ ⊢ φ : ρ ≤ τ

Γ ⊢ $φ : ∀ (α > ρ) τ0 ≤ τ0{α← τ}

Inst-Bot

Γ ⊢ @ρ : ⊥ ≤ ρ

Inst-Under
Γ, α> ρ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (α>) φ : ∀ (α> ρ) τ1 ≤ ∀ (α> ρ) τ2

Inst-Abstr
α> ρ ∈ Γ

Γ ⊢ !α : ρ ≤ α

Inst-Inside
Γ ⊢ φ : ρ1 ≤ ρ2

Γ ⊢ ∀ (>φ) : ∀ (α> ρ1) τ ≤ ∀ (α> ρ2) τ

Inst-Elim

Γ ⊢ N : ∀ (α> ρ) τ ′ ≤ τ ′{α← ρ}

Figure C.19: Type instance for xMLF♭

Accordingly, we add the reduction rule

(Λ(α> ρ) a) ($φ) −→ a{!α← φ;1}{α← ρ φ} (ι-Type)

and the following case in the recursive definition of type
instance:

(∀ (α > ρ) τ) ($φ) = τ{α← ρ φ}

so that $φ behaves as its expanded form (∀ (>φ);N). We
then restrict the syntax of types and terms as described
above, and type instantiation rules as described on Fig-
ure C.19 (Rules Inst-Intro, Inst-Comp, and Inst-Id

are omitted as they are left unchanged).
Notice that the intermediate language after the exten-

sions and before the restrictions, say xMLF♯, is equivalent to

xMLF: both typing and reduction rules of $φ are derived;
subject reduction hence holds in xMLF♯.

We show that reduction of xMLF♯ is closed in the xMLF♭
subset by revisiting the proof of subject reduction for
xMLF, and checking in each case that the typing deriva-
tion rebuilt after reduction is well-formed in xMLF♭, having
ρ terms instead of general τ terms wherever required by
the syntax and the typing rules of xMLF♭.

Finally, the target of the translation of eMLF into xMLF,
described in §3, lies in xMLF♭. In particular, bounds of
variables are ρ-types R(·). Moreover, the translation of
instantiation witnesses described in Figure 17 only applies
@(·) to ρ-types R(·). Uses of !α appear either in expres-
sions ∀ (> !α);N, which can be replaced by $(!α), or not
under ∀ (> ·).
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D. Rémy, B. Yakobowski, A graphical presentation of MLF types
with a linear-time unification algorithm, in: Proceedings of the
2007 ACM SIGPLAN International Workshop on Types in Lan-
guages Design and Implementation (TLDI’ 07), ACM Press, 27–
38, URL http://doi.acm.org/10.1145/1190315.1190321, 2007.

G. Scherer, Extending MLF with Higher-Order Types, Master’s
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