
Learning to select a ranking function

Jie Peng, Craig Macdonald, and Iadh Ounis

Department of Computing Science,
University of Glasgow, G12 8QQ, UK
{pj, craigm, ounis}@dcs.gla.ac.uk

Abstract. Learning To Rank (LTR) techniques aim to learn an effec-
tive document ranking function by combining several document features.
While the function learned may be uniformly applied to all queries,
many studies have shown that different ranking functions favour differ-
ent queries, and the retrieval performance can be significantly enhanced
if an appropriate ranking function is selected for each individual query.
In this paper, we propose a novel Learning To Select framework that
selectively applies an appropriate ranking function on a per-query basis.
The approach employs a query feature to identify similar training queries
for an unseen query. The ranking function which performs the best on
this identified training query set is then chosen for the unseen query. In
particular, we propose the use of divergence, which measures the extent
that a document ranking function alters the scores of an initial ranking of
documents for a given query, as a query feature. We evaluate our method
using tasks from the TREC Web and Million Query tracks, in combina-
tion with the LETOR 3.0 and LETOR 4.0 feature sets. Our experimental
results show that our proposed method is effective and robust for select-
ing an appropriate ranking function on a per-query basis. In particular, it
always outperforms three state-of-the-art LTR techniques, namely Rank-
ing SVM, AdaRank, and the automatic feature selection method.

1 Introduction

The effective ranking of documents in search engines is based on various doc-
ument features, such as the frequency of query terms in each document, the
length of each document, or link analysis. In order to obtain a better retrieval
performance, instead of using a single or a few features, there is a growing trend
to create a ranking function by applying a Learning To Rank (LTR) technique
on a large set of features [1–3].

Typically, a LTR technique learns a ranking function by assigning a weight
to each document feature, then uses this obtained ranking function to estimate
the relevance scores for each document [1, 4]. In recent years, many effective
LTR techniques have been proposed to build such ranking functions, such as
AdaRank [1], Ranking SVM [5, 6] or the Automatic Feature Selection (AFS)
method [2]. Most of the current LTR literature mainly focuses on how to effi-
ciently and effectively learn such ranking functions, but simply equally applies
the learned ranking function to all queries. However, many studies have shown
that different queries benefit differently from each ranking function [7–11] and

the retrieval performance can be significantly enhanced if an appropriate ranking
function is used for each individual query.

In this paper, we propose the Learning To Select (LTS) framework for selec-
tively applying an appropriate ranking function on a per-query basis. We believe
that the effectiveness of a ranking function for an unseen query can be estimated
based on similar training queries. A divergence measure can be used to deter-
mine the extent that a document ranking function alters the scores of an initial
ranking of documents for a given query. We propose that this divergence can be
used to identify similar training queries. In this case, a ranking function which
performs well for training queries that have a similar divergence to the unseen
query, will also perform well on the unseen query.

We conduct a comprehensive experimental investigation using query and rel-
evance assessment sets from the TREC Web and Million Query tracks, in com-
bination with the LETOR 3.0 and LETOR 4.0 feature sets [4]. Moreover, we use
three state-of-the-art LTR techniques as our baselines, namely Ranking SVM,
AdaRank, and the AFS method.

There are four key contributions from this work. First, we propose the novel
LTS framework for selecting an appropriate ranking function on a per-query
basis. This approach estimates the effectiveness of a ranking function for an
unseen query based on the retrieval performance of this ranking function on
already seen neighbour queries. Second, we propose the use of divergence, which
measures the extent that a document ranking function alters the scores of an
initial ranking of documents for a given query, as a query feature for identifying
neighbour queries. Third, we show the effectiveness of our approach by comparing
it to three state-of-the-art LTR techniques. Fourth, we show the robustness of
our approach by selecting an appropriate ranking function from a large candidate
set, which is created by using a LTR technique on different feature sets.

The remainder of this paper is organised as follows. Section 2 introduces the
motivation of this paper. In Section 3, we describe several selective approaches
presented in the literature. Section 4 describes our proposed LTS framework,
which is used to select an appropriate ranking function for a given query. We
present the experimental setup in Section 5, and analyse the experimental results
in Section 6. Finally, we draw conclusions in Section 7.

2 Motivation

In this section, we provide an illustrative example showing the importance of
the selective application of a ranking function. Table 1 shows the retrieval per-
formance of three LTR techniques, namely Ranking SVM, AdaRank and the
AFS method, on four different datasets1. Moreover, the upper bounds (denoted
MAX) are achieved by manually selecting the most effective ranking function
on a per-query basis. From this table, it is clear that the retrieval performance
can be significantly enhanced if we apply the most appropriate ranking func-
tion for each query. This observation suggests that different ranking functions
do favour different queries and that the appropriate selective application of a
ranking function could enhance the retrieval performance.

1 The detailed settings can be found in Section 5.

Table 1. MAX is the upper bound (100% correct per-query application). The highest
score in each column is highlighted in bold and scores that are statistically better
than RankingSV M , AdaRank, and AFS are marked with ⋆, ∗, and †, respectively
(Wilcoxon matched-pairs signed-ranks test, p < 0.05).

MAP

TREC2003 TREC2004 TREC2007 TREC2008

Ranking SVM 0.5366 0.4193 0.4641 0.4752

AdaRank 0.5977 0.5062 0.4537 0.4766

AFS 0.6145 0.5079 0.4596 0.4784

MAX 0.6933 ⋆ ∗ † 0.5744 ⋆ ∗ † 0.5057 ⋆ ∗ † 0.5226 ⋆ ∗ †

3 Related works

Some selective application techniques have been previously proposed in Infor-
mation Retrieval IR [3, 8–11, 14, 15]. For example, in [3], Geng et al. proposed a
query-dependent ranking approach. For each given query, they employ a specific
ranking function, which is obtained by applying a LTR technique (e.g. Ranking
SVM) on a training query set. This training query set is dependent on the given
query, which can be identified by using a classification technique (K-nearest
neighbour (KNN)) based on a query feature. The query feature used in their
work is the mean of the document feature scores (e.g. tf · idf) of the top re-
trieved documents, which can be obtained by a reference model (e.g. BM25),
given as follows:

score(q, ri) =

∑n

τ=1
rel(dτ)

n
(1)

where n is the number of the top retrieved documents returned by ranking
function ri for a given query q. rel(dτ) is the document relevance score of a
document d at position τ of the document ranking list.

Extensive experiments on a large dataset, which was sampled from a commer-
cial search engine, showed the effectiveness of the aforementioned approach [3].
However, [3] only investigated the selective application of a ranking function ob-
tained from a single LTR technique and using a fixed set of document features.
Hence, the effectiveness of the query-dependent ranking approach is not clear
when there is more than one LTR technique and the number of features is varied.
Moreover, the use of the mean of the feature scores from the top retrieved doc-
uments simply ignores the importance of the distribution of the feature scores,
which has been effectively used in many retrieval applications [11, 12]. For ex-
ample, Manmatha et al. [12] use the relevance score distribution to estimate the
effectiveness of a search engine.

In [8], a query performance predictor was used to decide whether to apply
collection enrichment for a given query. Generally speaking, query performance
prediction relies on the statistics of the collection for a given query, such as
query term frequency in the collection and the number of documents containing
the query term. Hence, query performance predictors may not be applicable to
the selective application of ranking functions, as these statistics are invariant to
changes in the ranking function.

Plachouras et al. [9, 10] proposed a method to selectively apply an appropri-
ate retrieval approach for a given query, which is based on a Bayesian decision
mechanism. Features such as the link patterns in the retrieved document set
and the occurrence of query terms in the documents were used to determine the
applicability of the retrieval approaches. This method was shown to be effective
when there were only two candidate retrieval approaches. However, the retrieval
performance obtained using this method only improved slightly and actually
decreased when more than two candidate retrieval approaches were used.

Peng et al. [11] select a single query-independent feature for a given query.
Such a query-independent feature could be, for example, HostRank [13], PageR-
ank or document length. However, current IR systems usually apply a large set of
features in order to achieve a high retrieval performance, and it is not clear how
to select multiple document features using this approach. Other approaches [14,
15] attempt to predict the type of the query (e.g. known-item search query, in-
formation seeking query), and from this, apply different retrieval approaches.
However, the accuracy of state-of-the-art query type prediction is not high [16].
Moreover, queries of the same type may benefit from having different retrieval
approaches applied [11].

In order to selectively apply an appropriate ranking functions from a large
set of candidate ranking functions, in this paper, we propose the LTS framework,
which will be presented in the following section. The proposed method is agnostic
to the number of ranking functions, as well as to the type of the queries.

4 The Learning to Select Framework

In this section, we present a novel LTS framework for selectively applying an
appropriate ranking function on a per-query basis. We first introduce the general
idea of this framework, then provide a more detailed algorithm.

4.1 General Idea

A document ranking function created by a LTR technique is based on the as-
sumption that the training dataset is representative of unseen queries. However,
some queries may benefit from applying different ranking functions. We believe
that the effectiveness of a ranking function for an unseen query can be estimated
based on similar training queries. A divergence measure can be used to deter-
mine the extent that a document ranking function alters the scores of an initial
ranking of documents. We propose that this divergence can be used to identify
similar training queries. In this case, a ranking function which performs well for
training queries that have a similar divergence to the unseen query, will also
perform well on the unseen query.

4.2 Algorithm

Divergence Estimation In this work, the ranking function which is used to
obtain the initial ranking of documents for a given query is called the base

ranking function rb. Other ranking functions which may be applied are called

candidate ranking functions ri. They assign different document relevance scores
to the same documents as were retrieved by rb.

There are several different ways to estimate the divergence between two doc-
ument score distributions that are obtained by using a base ranking function
and a candidate ranking function. Two commonly used divergence measures are
studied in this work, namely Kullback-Leibler (KL) [17] and Jensen-Shannon
(JS) [18], given as follows:

KL(rb||ri, q) =

n∑

d=1

rb(d) · log2

rb(d)

ri(d)
(2)

JS(rb||ri, q) =
1

2
· KL(rb||ri, q) +

1

2
· KL(ri||rb, q) (3)

=

n∑

d=1

rb(d) · log2

rb(d)
1

2
· rb(d) + 1

2
· ri(d)

where for the top n retrieved documents of a given query q, rb(d) and ri(d) are
the relevance scores of document d in the base ranking rb and candidate ranking
ri, respectively.

It is easy to verify that adding a constant to ri does not change the ranking
position of each document in ri, however, this does affect the divergence be-
tween rb and ri. In order to avoid the issue of translation invariance, we apply a
score normalisation, which was proposed by Lee [19], on each document of the
document rankings rb and ri:

rN (d) =
r(d) − r(min)

r(max) − r(min)
(4)

where r(max) and r(min) are the maximum and minimum document relevance
scores that have been observed in the top retrieved documents from the input
ranking r. r(d) is the relevance score of document d in the input ranking.

Learning to Select We have shown how to estimate a divergence score between
two rankings of documents. In this work, we consider the divergence score to be
an example of a query feature. Next, we present how to use the query feature,
such as the divergence score, to selectively apply an appropriate ranking function
for a given query.

Initially, on a training dataset, we have a set of queries Q = {q1, q2, ..., qm}
and a set of candidate ranking functions R = {r1, r2, ..., rn}. For each query qj ,
we use one of the above described divergence measures to estimate the divergence
score d(rb||ri, qj) of each ranking function ri from the base ranking function rb.
Note that one divergence score will be estimated for each ranking function on
each query. For all training queries Q, each ranking function ri’s divergence
scores set is denoted d(rb||ri, Q) = {d(rb||ri, q1), ..., d(rb||ri, qm)}.

Next, in response to an unseen query q′, for each ranking function ri, we
first estimate a divergence score d(rb||ri, q

′), then employ KNN to identify the
k nearest queries from d(rb||ri, Q) in a similar manner to [3] but using the di-
vergence score. KNN is widely used for finding the closest objects in a metric

Table 2. Sample divergence scores and MAP evaluations for 5 training queries and 2
ranking functions.

MAP divergence

qφ E(qφ, r1) E(qφ, r2) d(rb||r1, qφ) d(rb||r2, qφ)

q1 0.1 0.2 0.5 0.3

q2 0.5 0.3 0.7 0.6

q3 0.3 0.2 0.4 0.5

q4 0.4 0.5 0.2 0.4

q5 0.2 0.1 0.8 0.7

space when there is little or no prior knowledge about the distribution of the ob-
jects. Each identified neighbour corresponds to a training query qφ. Let E(qφ, ri)
be the outcome of an evaluation measure calculated on the ranking function ri

for the query qφ. The effectiveness of ranking function ri on this test query q′

is predicted based on the performance of ri on the neighbours of q′, denoted∑k

φ=1
E(qφ, ri).

We apply the ranking function ri for the query q′ that has the highest retrieval
performance on the set of k nearest neighbouring queries:

r∗i (q′) = arg max
ri

∑k

φ=1
E(qφ, ri)

k
(5)

4.3 Example of LTS

Let us illustrate the LTS framework using an example. Assuming our training
dataset has 5 queries, namely Q = {q1, q2, q3, q4, q5}, and that we have two
candidate ranking functions, namely R = {r1, r2}. The retrieval performance
(e.g. MAP) of each ranking function and its divergence score for each training
query are presented in Table 2 for a particular divergence measure.

Then, for an unseen query q′, we estimate a divergence for each ranking
function. For the purpose of our example, let d(rb||r1, q

′) = 0.3 and d(rb||r2, q
′) =

0.6, and let k = 3 in order to find the three nearest neighbouring queries. In this
case, according to the difference between divergence scores, the nearest queries
for ranking function r1 are {q1, q3, q4}, while for ranking function r2 they are
{q2, q3, q5}. Therefore, for q′, we apply r1 as its mean retrieval performance for
the nearest queries is higher than for r2 (0.1+0.3+0.4

3
> 0.3+0.2+0.1

3
).

5 Experimental Settings

In our experiments, we address three main research questions:

– Firstly, we test how effective our proposed LTS framework is for selecting
an appropriate ranking function for a given query, by comparing it to three
state-of-the-art LTR techniques.

– Secondly, as the number of candidate ranking functions increases, the se-
lection becomes more challenging. To test how robust our proposed LTS
framework is, we apply it on a larger number of candidate ranking func-
tions.

– Thirdly, we test how important the query feature is for identifying neighbour
queries, by investigating three different query features, namely KL diver-
gence, JS divergence and the mean of the relevance scores, which has been
shown to be effective in identifying neighbouring queries [3].

We conduct our experiments on two datasets, namely LETOR 3.0 and LETOR
4.0 [4]. The LETOR 3.0 dataset contains 64 different document features, in-
cluding document length and HostRank [13], among others. The documents in
LETOR 3.0 are sampled from the top retrieved documents by using BM25 on
the .GOV corpus with the TREC 2003 and TREC 2004 Web track queries. In
contrast, the LETOR 4.0 dataset contains 46 document features for documents
similarly sampled from the .GOV2 corpus using the TREC 2007 and TREC 2008
Million Query track queries.

Many different LTR techniques have been proposed during the past few years.
In this work, we employ three state-of-the-art LTR techniques, namely Ranking
SVM [5, 6], AdaRank [1], and the AFS method [2]. In addition, the average of
the retrieval performance of the candidate ranking functions that were created
by the three LTR techniques is used as an additional baseline (denoted AS).

In our experiments, we use a 5-fold cross-validation process by separating
each LETOR dataset into 5 folds of equal size. We iteratively test our LTS
framework on one fold after training on the remaining four folds.

BM25 is used as our base ranking function as the features included in the
LETOR datasets are computed over the top retrieved documents, which are
sampled using BM25 [4]. The feature weights that are related with each can-
didate ranking function by using the AFS method are set by optimising Mean
Average Precision (MAP) on the training dataset, using a simulated anneal-
ing procedure [20]. The number of top retrieved documents and the number of
neighbours, namely n and k in Section 4, are also set by optimising MAP over
the training dataset, using a large range of different value settings. We evaluate
our experimental results using MAP, Precision at N , and normalised Discounted
Cumulative Gain (nDCG). We report the obtained results and their analysis in
the following section.

6 Results and Discussion

6.1 Effectiveness of our LTS framework

In order to test the effectiveness of our proposed method for selectively apply-
ing an appropriate ranking function for a given query, we compare it with the
AS baseline and three state-of-the-art LTR techniques, namely Ranking SVM,
AdaRank, and the AFS method, which are systematically applied to all queries.

Tables 3 & 4 present the evaluation of the retrieval performances obtained by
using the three state-of-the-art LTR techniques and by applying our proposed
LTS framework in terms of MAP, Precision at N and nDCG on the LETOR
3.0 and LETOR 4.0 datasets, respectively. The best retrieval performances for
each evaluation measure on each different dataset are emphasised in bold. The
α, β, γ and δ symbols indicate that the retrieval performance obtained by the
best of our proposed LTS framework is significantly better than the Ranking

Table 3. Comparison between LTS and state-of-the-art LTR techniques using different
evaluation measures on the LETOR 3.0 dataset. Results are the mean over 5 folds.

TREC 2003

MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.5366 α 0.1811 0.1063 0.6450 0.6615

AdaRank 0.5977 β 0.1731 0.0974 0.6612 0.6679

AFS 0.6145 γ 0.1777 0.1023 0.6766 0.6914

AS 0.5829 δ 0.1773 0.1020 0.6610 0.6736

LTS-Mean 0.6305 ∗ 0.1771 0.1043 0.6776 0.7047

LTS-KL 0.6446 ∗ 0.1794 0.1040 0.6908 0.7059

LTS-JS 0.6483 ∗ 0.1843 0.1080 0.6884 0.6959

TREC 2004

MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4193 α 0.2116 0.1427 0.5527 0.5659

AdaRank 0.5062 β 0.2124 0.1364 0.6053 0.6110

AFS 0.5079 γ 0.2169 0.1436 0.6075 0.6186

AS 0.4778 δ 0.2136 0.1409 0.5885 0.5985

LTS-Mean 0.5158 0.2178 0.1427 0.6054 0.6145

LTS-KL 0.5423 ∗ 0.2124 0.1400 0.6152 0.6345

LTS-JS 0.5397 ∗ 0.2204 0.1413 0.6286 0.6365

SVM, AdaRank, AFS and AS baselines, respectively, according to the Wilcoxon
Matched-Pairs Signed-Ranks Test (p < 0.05). The best retrieval performance
obtained by systematically applying a LTR technique on all queries is highlighted
with underline. The ∗ symbol indicates that the retrieval performance obtained
by using our proposed LTS framework is significantly better than the underlined
score. LTS−JS, LTS−KL and LTS−Mean denote the application of the LTS
framework by using JS divergence, KL divergence and the mean of the relevance
scores as the query feature for identifying neighbour queries, respectively.

From the results in Tables 3 & 4, we observe that the best retrieval perfor-
mance in each column is achieved by using our proposed LTS framework. The
only exceptions are for the P@10 evaluation measure. However, in each case,
the performance of LTS is close to the highest P@10. Note that all training was
conducted using the MAP evaluation measure.

In particular, from the MAP column, the best retrieval performance obtained
by using our proposed LTS framework makes improvements over all the LTR
techniques and the AS baseline. Moreover, the improvements are statistically
significant, e.g. on the TREC 2003 dataset: 0.5366 → 0.6483; 0.5977 → 0.6483;
0.6145 → 0.6483; and 0.5829 → 0.6483. Furthermore, by comparing our LTS
framework with the best LTR technique, we note that the results obtained by
using the LTS framework are significantly better in 3 out of 4 cases, e.g., on the
TREC 2003 dataset: 0.6145 → 0.6305; 0.6145 → 0.6483; and 0.6145 → 0.6446.

The above observations suggest that our proposed LTS framework is effective
in applying an appropriate ranking function on a per-query basis.

Table 4. Comparison between LTS and state-of-the-art LTR techniques using different
evaluation measures on the LETOR 4.0 dataset. Results are the mean over 5 folds.

TREC 2007

MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4641 α 0.4113 0.3844 0.4120 0.4421

AdaRank 0.4537 β 0.3932 0.3686 0.3916 0.4223

AFS 0.4603 γ 0.4080 0.3753 0.4118 0.4378

AS 0.4594 δ 0.4042 0.3761 0.4051 0.4341

LTS-Mean 0.4637 0.4060 0.3760 0.4076 0.4352

LTS-KL 0.4692 0.4116 0.3795 0.4149 0.4419

LTS-JS 0.4676 0.4132 0.3783 0.4182 0.4422

TREC 2008

MAP P@5 P@10 nDCG@5 nDCG@10

Ranking SVM 0.4752 α 0.3457 0.2499 0.4742 0.2296

AdaRank 0.4766 β 0.3419 0.2449 0.4701 0.2230

AFS 0.4784 γ 0.3480 0.2490 0.4761 0.2286

AS 0.4767 δ 0.3452 0.2480 0.4735 0.2281

LTS-Mean 0.4861 ∗ 0.3465 0.2488 0.4747 0.2297

LTS-KL 0.4908 ∗ 0.3485 0.2493 0.4794 0.2285

LTS-JS 0.4911 ∗ 0.3488 0.2494 0.4813 0.2300

6.2 Robustness of our LTS framework

The analysis in Section 6.1 demonstrates the effectiveness of the proposed LTS
framework on a small set of candidate ranking functions. In this section, we in-
vestigate the robustness of our LTS framework when the number of candidate
ranking functions increases. To achieve this, we simulate a number of candidate
ranking functions by applying a single LTR technique on several different com-
binations of document features. In particular, in order to have a strong baseline,
we use AFS, since it produces on average higher retrieval performance than the
other two LTR techniques.

In this investigation, we choose the best 6 features from the LETOR feature
set, based on the training dataset. There are then 26 − 1 possible combinations
(excluding the empty combination). Integrating each combination into the base
ranking function (namely BM25) produces one candidate ranking function. In
this case, our task becomes to select an appropriate ranking function from a set
of candidate ranking functions, which contains as many as 26−1 = 63 candidate
ranking functions.

Figure 1 shows the effect on MAP as the number of candidate ranking func-
tions is varied, on different TREC datasets. We order the 63 ranking functions
according to their performance on the training dataset and the best performing
ranking function is used as our baseline. The x axis denotes the number of top
performing ranking functions applied. For example, for TREC 2003, 10 in the x

axis means we use the top 10 performing ranking functions, which are assessed
on the training dataset, as candidate ranking functions to selectively apply on
the test dataset.

From Figure 1, we can observe that both LTS-JS and LTS-KL consistently
outperform the baseline while the LTS-Mean sometimes underperforms the base-

Fig. 1. MAP versus the number of candidate ranking functions on the LETOR 3.0 and
LETOR 4.0 datasets.

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0 10 20 30 40 50 60 70

M
A

P

number of candidate ranking functions

TREC 2003

Baseline LTS-JS LTS-KL LTS-Mean

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0 10 20 30 40 50 60 70

M
A

P

number of candidate ranking functions

TREC 2004

Baseline LTS-JS LTS-KL LTS-Mean

 0.454

 0.456

 0.458

 0.46

 0.462

 0.464

 0 10 20 30 40 50 60 70

M
A

P

number of candidate ranking functions

TREC 2007

Baseline LTS-JS LTS-KL LTS-Mean

 0.48

 0.482

 0.484

 0.486

 0.488

 0.49

 0.492

 0.494

 0 10 20 30 40 50 60 70

M
A

P

number of candidate ranking functions

TREC 2008

Baseline LTS-JS LTS-KL LTS-Mean

line when the number of candidate ranking functions is increased. This suggests
that the effectiveness of our LTS framework is related to the query feature that
is used for identifying the neighbouring queries. A more detailed analysis of this
point is presented in Section 6.3. In the remaining of this section, we only report
the MAP distributions based on LTS-JS and LTS-KL as both of these proposed
query features always perform better than LTS-Mean.

Indeed, in contrast to LTS-Mean, both LTS-JS and LTS-KL are enhanced as
the number of candidate ranking functions increases from 2 to 35. This is mainly
because each newly added ranking function (from 2 to 35) has different behaviour
and favours different queries. Hence, with more ranking functions added, the
retrieval performance can be further improved if they can be selectively applied
in an appropriate manner.

However, the retrieval performance only improves slightly when the number
of candidate ranking functions increases to 50. The reason for this is that these
ranking functions are created based on the combination of a small set of features,
most of them with similar behaviour, which results in these newly added ranking
functions (from 35 to 50) favouring the same queries as the previously chosen
ranking functions.

We also observe that the best retrieval performance is obtained when there
are around 50 candidate ranking functions. However, the performance starts to
decrease after 50 − as the last added ranking functions perform poorly on the
training dataset and bring noise to the LTS framework.

This investigation suggests that our method is a robust approach, which can
increasingly improve the retrieval performance as more ranking functions are
added. The only caveat is when the most poorly-performing ranking functions
are added to the candidate set. This can be controlled by setting the number of
top-performing candidate ranking functions from which to select.

6.3 Importance of Query Feature

The above two investigations have shown the effectiveness and robustness of our
proposed LTS framework. It is of note that the key component of the proposed
LTS framework is the query feature that is used to identify the neighbouring
queries, namely JS divergence, KL divergence, and the mean of the relevance
scores.

By using different query features for identifying similar queries in our pro-
posed LTS framework, from Tables 3 & 4, we observe that the JS divergence
measure (LTS-JS) and the KL divergence measure (LTS-KL) are producing very
close retrieval performances and both of them consistently outperform the mean
of the relevance scores (LTS-Mean). For example, on the TREC 2003 dataset:
0.6305 → 0.6483; and 0.6305 → 0.6483.

In addition, from the distribution of MAP versus the number of candidate
ranking functions shown in Figure 1, we observe that LTS-JS, LTS-KL and
LTS-Mean have a similar distribution when increasing the number of candidate
ranking functions. The only exception is on the TREC 2004 dataset (right top),
where the MAP distribution obtained by LTS-Mean goes down quickly just after
the number of candidate ranking functions reaches 30. In addition, LTS-Mean
always underperforms compared to both LTS-JS and LTS-KL, and can fail to
improve the baseline. This is particularly noticeable for the TREC 2007 (left
bottom), where LTS-Mean always fails to improve over the baseline. Finally, we
note that KL divergence and JS divergence have comparable performance, which
is explained in that they are mathematically related.

The above observations suggest that our proposed use of divergence measures
as a query feature for identifying neighbour queries is very effective.

7 Conclusion

In this paper, we proposed a novel Learning To Select (LTS) framework for
selecting an appropriate ranking function for a given query. In particular, for an
unseen query, we identify similar training queries by using novel query features
based on the divergence between document score distributions. Such similar
queries are then used to select an appropriate highly performing ranking function
to apply. We tested our framework on the LETOR 3.0 & LETOR 4.0 feature
sets and their corresponding TREC tasks, by comparing it with three state-of-
the-art Learning To Rank (LTR) techniques, namely Ranking SVM, AdaRank,
and the AFS method.

Our experimental results showed that the retrieval performance obtained
by using our proposed LTS framework could constantly outperform the three
state-of-the-art techniques using different evaluation measures and on different
datasets, the only exception being for the P@10 measure. In addition, improve-
ments over all LTR techniques were statistically significant in most cases.

Moreover, we investigated the effectiveness of our framework when the num-
ber of candidate ranking functions increases. By plotting the distribution of MAP
versus the number of candidate ranking functions, we found that by using our
proposed framework, the retrieval performance was enhanced when increasing
the number of candidate ranking functions.

Furthermore, our proposed use of divergence measures as query features to
identify neighbouring queries was always more effective than the mean of the
relevance scores measure, which ignores the distribution of relevance scores. For
our future work, we plan to investigate other query features.

References

1. Xu, J., Li, H.: AdaRank: A Boosting Algorithm for Information Retrieval. In Pro-

ceedings of SIGIR’07, Amsterdam, The Netherlands (2007).
2. Metzler, D.: Automatic Feature Selection in the Markov Random Field Model for

Information Retrieval. In Proceedings of CIKM’07, Lisbon, Portugal (2007).
3. Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query Dependent

Ranking Using K-Nearest Neighbour. In Proceedings of SIGIR’08, Singapore (2008).
4. Liu, T.Y., Qin, T., Xu, J., Xiong, W.Y., Li, H.: LETOR: Benchmark Dataset for

Research on Learning to Rank for Information Retrieval, In Proceedings of SIGIR’07

Learning to Rank workshop, Amsterdam, The Netherlands (2007).
5. Herbrich, R., Graepel, T., Obermayer, K.: Large Margin Rank Boundaries for Or-

dinal Regression. MIT Press, Cambridge MA, USA (2000).
6. Joachims, T.: Optimizing Search Engines using Clickthrough Data. In Proceedings

of SIGKDD’02, Alberta, Canada (2002).
7. Kamps, J., Mishne, G., de Rijke, M.: Language Models for Searching in Web Cor-

pora. In Proceedings of TREC 13, Gaithersburg MD, USA (2004).
8. Peng, J., He, B., Ounis, I.: Predicting the Usefulness of Collection Enrichment for

Enterprise Search. In Proceedings of ICTIR’09, Cambridge, UK (2009)
9. Plachouras, V., Ounis, I.: Usefulness of Hyperlink Structure for Query-Biased Topic

Distillation. In Proceedings of SIGIR’04, Sheffield, UK (2004).
10. Plachouras, V.: Selective Web Information Retrieval. PhD thesis, University of

Glasgow, UK (2006).
11. Peng, J., Ounis, I.: Selective Application of Query-Independent Features in Web

Information Retrieval. In Proceedings of ECIR’09, Toulouse, France (2009).
12. Manmatha, R., Rath, T., Feng, F.: Modeling Score Distributions for Combining

the Outputs of Search Engines. In Proceedings of SIGIR’01, New Orleans LA, USA
(2001).

13. Xue, G.R., Yang, Q., Zeng, H.J., Yu, Y., Chen, Z.: Exploiting the Hierarchical
Structure for Link Analysis. In Proceedings of SIGIR’05, Salvador, Brazil (2005).

14. Song, R., Wen, J.R., Shi, S., Xin, G., Liu, T.Y., Qin, T., Zheng, X., Zhang, J.,
Xue, G., Ma, W.Y.: Microsoft Research Asia at Web Track and Terabyte Track of
TREC 2004. In Proceedings of TREC’04, Gaithersburg MD, USA, (2004).

15. Yang, K., Yu, N., Wead, A., La Rowe, G., Li, Y.H., Friend, C., Lee, Y.: WIDIT in
TREC 2004 Genomics, Hard, Robust and Web Tracks. In Proceedings of TREC’04,
Gaithersburg MD, USA (2004).

16. Craswell, N., Hawking, D.: Overview of the TREC 2004 Web Track. In Proceedings

of TREC’04, Gaithersburg MD, USA (2004).
17. Kullback, S.: Information Theory and Statistics. John Wiley & Sons, New York

NY, USA (1959)
18. Lin, J.: Divergence Measures Based on the Shannon Entropy. IEEE Transactions

on Information Theory, 37(1):145-151 (1991).
19. Lee, J. H.: Analyses of Multiple Evidence Combination. In Proceedings of SI-

GIR’97, Philadelphia, USA (1997).
20. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing.

Science 220(4598):671-680 (1983).

