Skip to main content

Tracking Endocardial Boundary and Motion via Graph Cut Distribution Matching and Multiple Model Filtering

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Included in the following conference series:

  • 1659 Accesses

Abstract

Tracking the left ventricular (LV) endocardial boundary and motion from cardiac magnetic resonance (MR) images is difficult because of low contrast and photometric similarities between the heart wall and papillary muscles within the LV cavity. This study investigates the problem via Graph Cut Distribution Matching (GCDM) and Interacting Multiple Model (IMM) smoothing. GCDM yields initial frame segmentations by keeping the same photometric/geometric distribution of the cavity over cardiac cycles, whereas IMM constrains the results with prior knowledge of temporal consistency. Incorporation of prior knowledge that characterizes the dynamic behavior of the LV enhances the accuracy of both motion estimation and segmentation. However, accurately characterizing the behavior using a single Markovian model is not sufficient due to substantial variability in heart motion. Moreover, dynamic behaviors of normal and abnormal hearts are very different. This study introduces multiple models, each corresponding to a different phase of the LV dynamics. The IMM, an effective estimation algorithm for Markovian switching systems, yields the state estimate of endocardial points as well as the model probability that indicates the most-likely model. The proposed method is evaluated quantitatively by comparison with independent manual segmentations over 2280 images acquired from 20 subjects, which demonstrated competitive results in comparisons with a recent method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolly, M.P.: Automatic recovery of the left ventricular blood pool in cardiac cine MR images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 110–118. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Ben Ayed, I., Lu, Y., Li, S., Ross, I.: Left ventricle tracking using overlap priors. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 1025–1033. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Spottiswoode, B., Zhong, X., Hess, A., Kramer, C., Meintjes, E., Mayosi, B., Epstein, F.: Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Transactions on Medical Imaging 26(1), 15–30 (2007)

    Article  Google Scholar 

  4. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Medical Image Analysis 12(3), 335–357 (2008)

    Article  Google Scholar 

  5. McEachen, J., Nehorai, A., Duncan, J.: Multiframe temporal estimation of cardiac nonrigid motion. IEEE Transactions on Image Processing 9(4), 651–665 (2000)

    Article  Google Scholar 

  6. Helmick, R., Blair, W., Hoffman, S.: Fixed-interval smoothing for Markovian switching systems. IEEE Transactions on Information Theory 41(6), 1845–1855 (1995)

    Article  MATH  Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 26–33 (2003)

    Google Scholar 

  8. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  9. Bar-Shalom, Y., Kirubarajan, T., Li, X.R.: Estimation with Applications to Tracking and Navigation. John Wiley & Sons, Inc., New York (2002)

    Google Scholar 

  10. Rong Li, X., Jilkov, V.: Survey of maneuvering target tracking. Part V: Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems 41(4), 1255–1321 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Punithakumar, K., Ben Ayed, I., Islam, A., Ross, I., Li, S. (2010). Tracking Endocardial Boundary and Motion via Graph Cut Distribution Matching and Multiple Model Filtering. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics