Skip to main content

Learning Bundle Manifold by Double Neighborhood Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Abstract

In this paper, instead of the ordinary manifold assumption, we introduced the bundle manifold assumption that imagines data points lie on a bundle manifold. Under this assumption, we proposed an unsupervised algorithm, named as Bundle Manifold Embedding (BME), to embed the bundle manifold into low dimensional space. In BME, we construct two neighborhood graphs that one is used to model the global metric structure in local neighborhood and the other is used to provide the information of subtle structure, and then apply the spectral graph method to obtain the low-dimensional embedding. Incorporating some prior information, it is possible to find the subtle structures on bundle manifold in an unsupervised manner. Experiments conducted on benchmark datasets demonstrated the feasibility of the proposed BME algorithm, and the difference compared with ISOMAP, LLE and Laplacian Eigenmaps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  2. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  3. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4, 119–155 (2003)

    Article  MathSciNet  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  5. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA 100(10), 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brand, M.: Charting a manifold. In: NIPS, vol. 15. MIT Press, Cambridge (2003)

    Google Scholar 

  7. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction by local tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Weinberger, K., Packer, B., Saul, L.: Unsupervised learning of image manifolds by semidefinite programming. In: CVPR 2004, vol. 2, pp. 988–995 (2004)

    Google Scholar 

  9. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. of the Natl. Academy of Sciences 102, 7426–7431 (2005)

    Article  Google Scholar 

  10. Belkin, M., Niyogi, P.: Semi-supervised learning on riemannian manifolds. Machine Learning 56(1-3), 209–239 (2004)

    Article  MATH  Google Scholar 

  11. Wang, F., Zhang, C.: Label propagation through linear neighborhoods. IEEE Transactions on Knowledge and Data Engineering 20(1), 55–67 (2008)

    Article  Google Scholar 

  12. Rao, R., Ruderman, D.: Learning lie groups for invariant visual perception. In: NIPS, vol. 11. MIT Press, Cambridge (1999)

    Google Scholar 

  13. Ham, J., Lee, D., Saul, L.: Semisupervised alignment of manifolds. In: AI & STAT, pp. 120–127 (2005)

    Google Scholar 

  14. Lim, J., Ho, J., Yang, M.-H., Lee, K.-C., Kriegman, D.J.: Image clustering with metric, local linear structure and affine symmetry. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 456–468. Springer, Heidelberg (2004)

    Google Scholar 

  15. Hamm, J., Lee, D.D.: Separating pose and expression in face images: A manifold learning approach. Neural Information Processing – Reviews and Letters 11, 91–100 (2007)

    Google Scholar 

  16. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical Report CUCS-005-96, Columbia University (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Cg., Guo, J., Zhang, Hg. (2010). Learning Bundle Manifold by Double Neighborhood Graphs. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics