Skip to main content

Spatially Varying Regularization of Image Sequences Super-Resolution

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Included in the following conference series:

  • 1654 Accesses

Abstract

This paper presents a spatially varying super-resolution approach that estimates a high-resolution image from the low-resolution image sequences and better removes Gaussian additive noise with high variance. Firstly, a spatially varying functional in terms of local mean residual is used to weight each low-resolution channel. Secondly, a newly adaptive regularization functional based on the spatially varying residual is determined within each low-resolution channel instead of the overall regularization parameter, which balances the prior term and fidelity residual term at each iteration. Experimental results indicate the obvious performance improvement in both PSNR and visual effect compared to non-channel-weighted method and overall-channel-weighted method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: A technical overview. IEEE Signal Process Magazine 20(3), 21–36 (2003)

    Article  Google Scholar 

  2. Kang, M.G., Katsaggelos, A.K.: General choice of the regularization functional in regularized image restoration. IEEE Transactions on Image Processing 4, 594–602 (1995)

    Article  Google Scholar 

  3. Leung, C.M., Lu, W.S.: A multiple-parameter generalization of the tikhonov-miller regularization method for image restoration. In: 27th Annual Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 856–860 (1993)

    Google Scholar 

  4. Lee, E.S., Kang, M.G.: Regularized Adaptive High- Resolution Image Reconstruction Considering Inaccurate Sub-pixel Registration. IEEE Transactions on Image Processing 12(7), 826–837 (2003)

    Article  Google Scholar 

  5. He, H., Kondi, L.P.: Resolution enhancement of video sequences with adaptively weighted low-resolution images and simultaneous estimation of the regularization parameter. In: Int. Conf. Acoustics, Speech and Signal Processing, vol. 3(5), pp. 213–216 (2004)

    Google Scholar 

  6. Golub, G.H., Heath, M.T., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galatsanos, N.P., Katsaggelos, A.K.: Cross-validation and other criteria for estimating the regularization parameter. In: International Conference Acoustics, Speech and Signal Processing (ICASSP 1991), vol. 4, pp. 3021–3024 (1991)

    Google Scholar 

  8. Bose, N.K., Lertrattanapanich, S., Koo, J.: Advances in superresolution using L-curve. In: The IEEE International Symposium on Circuits and Systems, Sydney, vol. 2, pp. 433–436 (2001)

    Google Scholar 

  9. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review 34(4), 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing 14(6), 1487–1503 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tian, J., Ma, K.K.: Markov chain Monte Carlo super- resolution image reconstruction with simultaneous adaptation of the prior image model. In: Zhuang, Y.-t., Yang, S.-Q., Rui, Y., He, Q. (eds.) PCM 2006. LNCS, vol. 4261, pp. 287–294. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Kang, M.G., Katsaggelos, A.K.: Simultaneous Multichannel Image Restoration and Estimation of the Regularization parameters. IEEE Trans. Image Processing, 774–778 (1997)

    Google Scholar 

  13. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture Preserving Variational Denoising Using an Adaptive Fidelity Term. In: Proc. VLSM 2003, Nice, France (2003)

    Google Scholar 

  14. Katsaggelos, A.K., Biemond, J., Schafer, R.W., Mersereau, R.M.: A regularized Iterative Image Restoration Algorithm. IEEE Transactions on Signal Processing 39(4), 914–929 (1991)

    Article  Google Scholar 

  15. Kang, M.G., Katsaggelos, A.K.: Simultaneous iterative restoration and evaluation of the regularization parameter. IEEE Trans. Signal Processing 40, 2329–2334 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

An, Y., Lu, Y., Zhai, Z. (2010). Spatially Varying Regularization of Image Sequences Super-Resolution. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics