
Transductive Segmentation of Textured Meshes

Anne-Laure Chauve, Jean-Philippe Pons, Jean-Yves Audibert, and
Renaud Keriven

IMAGINE, ENPC/CSTB/LIGM, Université Paris-Est, France

Abstract. This paper addresses the problem of segmenting a textured
mesh into objects or object classes, consistently with user-supplied seeds.
We view this task as transductive learning and use the flexibility of
kernel-based weights to incorporate a various number of diverse features.
Our method combines a Laplacian graph regularizer that enforces spa-
tial coherence in label propagation and an SVM classifier that ensures
dissemination of the seeds characteristics. Our interactive framework al-
lows to easily specify classes seeds with sketches drawn on the mesh and
potentially refine the segmentation. We obtain qualitatively good seg-
mentations on several architectural scenes and show the applicability of
our method to outliers removing.

1 Introduction

The generalization of digital cameras, the increase in computational power
brought by graphical processors and the recent progress in multi-view recon-
struction algorithms allow to create numerous and costless textured 3D models
from digital photographs. In this work, we address the problem of segmenting
a textured mesh into objects or object classes. The segmentation is an essential
step of scene analysis, and can be used for semantic enrichment of architectural
scenes, reverse engineering, subsequent recognition of known rigid objects... A
meaningful mesh decomposition enables to retrieve objects of interest or remove
undesired parts (see Fig.4). This problem raises several interesting challenges: the
variability of scenes and object types to handle; the subjectivity of a meaningful
segmentation, which depends on the application; the simultaneous classification
and segmentation involved by object detection. We took up theses challenges by
designing a flexible and interactive framework that conducts collective classifi-
cation of the mesh.

We propose an easy-to-use, graphical tool to provide labeled training seeds
by drawing sketches on the mesh, select appropriate features among the set
of available ones, compute the segmentation via our transductive learning al-
gorithm based on Support Vector Machine classification and Laplacian graph
regularization, visualize the resulting segmented mesh and refine the training
sketches to rerun the segmentation if necessary.

Our work is related to three main research topics: mesh segmentation, col-
lective point cloud classification and transductive image segmentation. Even if



Fig. 1. Segmentation of the mesh into four classes: roof, wall, windows edges, cor-
nice. Left: the input textured mesh with user supplied sketches. Right: the resulting
segmentation using our algorithm.

we consider meshes in this paper, the type of data and the segmentation tech-
nique turn out to be quite different from the ones considered in the literature.
Our issues are actually closer to a series of works on point cloud segmentation,
however these are not directly applicable to our meshes whose connectivity and
texture are of crucial importance. Our algorithm is rather based on a transduc-
tive segmentation method that was developed at first for 2D images.

The problem of mesh segmentation has become an important issue in vari-
ous computer graphics applications, like parameterization and texture mapping,
metamorphosis, 3D shape retrieval or modeling by example. Several segmenta-
tion algorithms for mesh partitioning have been compared in [1]. These algo-
rithms deal with non-textured meshes of a single object, that are usually high-
quality meshes coming from CAD models or dense scans – thus very different
from the image-based meshes of entire scenes we process. These algorithms fall
into two main categories. The first one gathers geometric approaches, where the
mesh is segmented into patches fitted with simple mathematical surfaces. The
typical application of these methods is reverse engineering of CAD models. The
second one is rather semantic-oriented: the aim is to decompose meshes of ”nat-
ural” objects (e.g., a body model) into ”meaningful” pieces (e.g., the head, two
arms, two legs and the torso). However, these semantic approaches do not involve
any learning-based or classification procedure, and do not consider the similari-
ties between different, non connected parts. Mesh decomposition is usually a pre-
processing step, and should thus be able to handle various types of input models
and of target applications. In order to deal with varying application-dependent
requirements and with the subjectivity of a meaningful segmentation, [2] pro-
posed an interactive framework similar to ours: the user draws sketches on the
mesh that provide seeds for the algorithm. Nevertheless, as mentioned above and
unlike [2], we process textured meshes: this greatly reduces the required amount
of user interaction (see for example Fig.1).

A series of works [3–6] has been carried out on the problems of segmenting
scan data into objects or objects classes using Markov networks. This problem



differs from the one we address mainly on the type of data to process: textured
meshes possess supplementary attributes like color or mesh connectivity that
we exploit, while 3D point clouds are far denser, and more precise, thus target-
ing distinct applications and requiring different processes. However these works
share several characteristics with ours. One is the use of collective classification
through graph-based methods: instead of classifying each point or facet indepen-
dently, the problem is thought of as a global classification task and adjacency
relationships are used to enforce spatial contiguity of the labels on the graph.
Our graph Laplacian transduction performs such a collective classification. Be-
sides, in both problems, the ability to handle various type of scenes as well as
a certain variability inside a given class of objects is crucial: this is achieved by
taking advantage of various kinds of features. Thus, the Markov random field
segmentation algorithm of [3] has been tested successfully on both outdoor and
indoor scenes, for real-world and synthetic scan datasets. In our framework, tex-
tured meshes possess both geometric and photometric attributes that should be
chosen according to the scene type and jointly exploited. We combine these fea-
tures in kernel weights of a graph Laplacian regularizer; the inherent modularity
of kernel methods hence provides the desired flexibility.

Recently, several works have addressed the image segmentation problem in
an interactive framework: a set of seed pixels representative of each region to be
segmented is specified by the user, and the segmentation of the entire image is
performed consistently with the seeds. The existing algorithms rely on comput-
ing weighted geodesic distances [7], graph cuts with discontinuity penalization
[8], graph cuts with Gaussian mixture modelling of the segmented regions [9],
random walks on a graph and its relation to electrical resistance in a circuit [10,
11] and transductive learning [12]. Due to its simplicity and its effective results
obtained in the Microsoft GrabCut benchmark, the latter approach is adopted
in our mesh segmentation algorithm. The segmentation results are visualized in
our interactive framework, allowing for subsequent refinement of the query.

Outline. The rest of the paper is organized as follows. Section 2 presents the
Laplacian regularizer on a graph to perform transduction and introduces the
energy we minimize in the sequel; section 3 details our algorithm for the seg-
mentation of textured meshes, and section 4 presents our experimental results.
We conclude in section 5 with a brief discussion.

2 Graph Laplacian Transduction

2.1 Transductive Inference

The problem we are concerned with is a supervised classification task: given a
set of labeled examples (called training set), we want to infer the labels of new
input points (called test set). More specifically, we consider an input space X
and an output space Y (typically Y = {0, . . . ,K} for a classification problem);
given a set of input-output couples {(x1, y1), . . . , (xn, yn)}, we want to determine
the label y of a new point x.



There are two different approaches for this problem, the inductive and trans-
ductive settings. Inductive inference is a two-step process: one tries first to learn
a function f : X → Y to map the entire input space to the output space, and
then, for every point x of the test set, predicts y = f(x) as its label. In contrast,
in transductive inference, the test inputs are known beforehand. Thus, no gen-
eral input-output mapping is inferred, but only the labels of the test points are
predicted. This approach follows Vapnik’s principle: ”when solving a problem
of interest, do not solve a more general problem as an intermediate step”, and
takes advantage of the unlabeled data to get an idea of the input space distri-
bution. Indeed, transduction relies on this second principle, referred to as the
smoothness assumption: ”outputs vary a lot only on input regions having low
density”, or, in other words, ”the decision boundary should lie in a low-density
region”.

Transductive inference can be compared to semi-supervised learning (SSL),
where the training set is made up of both labeled and unlabeled data points. Like
transduction, SSL utilizes the unlabeled points to infer the input distribution.
However, in contrast to transduction, the test points are not (necessarily) known
beforehand and semi-supervised algorithms can handle unseen data, thus being
part of an inductive framework.

A large number of algorithms that have been proposed in the last few years for
transductive inference relies on graph-based methods (see [13], [14] and references
within), where nodes represent data points and edges encode similarities between
them. The graph structure is used to propagate information from the known
labels to the unlabeled points. We use the Laplacian graph regularizer of [12]
with an unnormalized kernel (case s = 2, λ = 0): the labeling of the facets is
carried out as the minimization of a quadratic cost function derived from the
graph. The work [15] studies several cost functions for regularization on a graph
and explains the links with label propagation algorithms.

2.2 Graph Laplacian Regularization and Energy Minimization

In the first place, we consider a binary classification problem, where the two
classes have respectively 0 and 1 as labels (see 2.3 for generalization to the
multi-class problem); 0 is the background class and 1 is the object class. Instead
of directly predicting the labels of the test points (y ∈ {0, 1}), we consider a
real-valued output space (y ∈ R) and assign each point to the class 1y≥1/2.

Graph Laplacian The geometry of the data is represented by a graph G =
(V, E) where the nodes V = {X1, . . . , Xn} correspond to the input points coming
from both the p labeled instances {X1, . . . , Xp} of the training set, and the
n− p unlabeled data {Xp+1, . . . , Xn} of the test set, and the edges E represent
similarities between them, in the form of a weight matrix W (of size n×n). The
coefficients of this matrix (also called affinity or adjacency matrix) must satisfy:

– Wij = 0 if Xi and Xj are not ”neighbours” (i.e. are not connected by an
edge),



– Wij ≥ 0,
– Wij = Wji.

The meaning of the neighbourhood needs to be specified and depends on the na-
ture of the data (e.g., facet adjacency on a mesh, symmetrized k-nearest neigh-
bour for a point cloud, etc.). We write the weights in the form Wij = k(Xi, Xj)
where k : X × X → R is a symmetric positive function giving the similarity
between two input points. A typical example is the Gaussian kernel k(x, x′) =
exp

(
−d(x,x′)2

2σ2

)
with d a distance on the input space X and σ a positive param-

eter.
Let D be the diagonal matrix Dii =

∑
j Wij . The matrix L = D − W is

called the unnormalized graph Laplacian. It is a discrete analogue of the Laplace-
Beltrami operator on a Riemannian manifold (see (3)).

Energy design The goal is to find a labeling Y = (y1, . . . , yn) of the graph
that is consistent with both the labeled training points and the geometry of the
entire data (represented by the graph structure).

We partition the vector Y and the matrices W , D and L according to their
labeled and unlabeled parts :

Y =
(

Y`

Yu

)
W =

(
W`` W`u

Wu` Wuu

)
D =

(
D`` 0
0 Duu

)
L =

(
L`` L`u

Lu` Luu

)
.

The initial labels of the training points are denoted Y 0
` = (y0

1 , . . . , y0
p).

We want to find the optimal labeling Ŷ minimizing the following cost crite-
rion, built up three different terms :

Ŷ = arg min
Y ∈Rn

c

p∑

i=1

(yi − y0
i )2

︸ ︷︷ ︸
(α)

+
1
2

n∑

i,j=1

Wij(yi − yj)2

︸ ︷︷ ︸
(β)

+ λ

n∑

i=p+1

(yi − si)2

︸ ︷︷ ︸
(γ)

, (1)

where the scores si in (γ) are defined hereafter.

(α) Consistency with the initial labeling:
p∑

i=1

(yi − y0
i )2 = ‖Y` − Y 0

l ‖2 .

The parameter c ∈ [0, +∞] expresses the confidence assigned to the training
outputs (it could be different for each point, (ci)i=1,...,p).

(β) Consistency with the geometry of the data: This term penalizes rapid changes
in Ŷ between points that are close on the graph (as given by the similarity matrix
W ). It enforces the smoothness assumption along the graph.

1
2

n∑

i,j=1

Wij(yi − yj)2 =
1
2

(
2

n∑

i=1

y2
i

n∑

j=1

Wij − 2
n∑

i,j=1

Wijyiyj

)

= Y >(D −W )Y = Y >LY .



The latter term can be interpreted as a graph Laplacian regularizer in the follow-
ing sense. Assume that the inputs are real vectors admitting a distribution with
density p (with respect to the Lebesgue measure). Let ϕ be a smooth function
such that yi = ϕ(Xi). From [12], the quantity Y T LY is a discrete approximation,
up to a constant multiplicative factor, of the integral∫

‖(∇ϕ)(x)‖2p2(x)dx , (2)

which is equal to ∫
ϕ(x)(∆ϕ)(x)p2(x)dx , (3)

for ∆ a (weighted) Laplace-Beltrami operator. From (2), we see that the reg-
ularization term Y T LY will be small only when the labels vary in low density
regions of the input space, thus fulfilling the principle stated in Section 2.1.

(γ) Consistency with some additional knowledge:
n∑

i=p+1

(yi − si)2 = ‖Yu − S0
u‖2 .

This terms allows to incorporate either some prior information or the output
of another algorithm in the form of a score si, measuring for each test point i
the ”likelihood” that it belongs to the object class. This term can be seen as an
initializing score. We note S0

u the (n− p)-vector (sp+1, . . . , sn).

The optimization problem (1) can hence be expressed in the following matrix
form:

Ŷ = arg min
Y ∈Rn

c‖Y` − Y 0
` ‖2 + Y >LY + λ‖Yu − S0

u‖2 . (4)

Sparse linear system giving the predicted labels Since we assume that
the user-supplied seeds are trustworthy, we constrain the labels on the labeled
data (Ŷ` = Y 0

` ) and thus consider an infinite regularization coefficient c = +∞.
Hence the minimization is carried over the labeling Yu of the test points, and
the optimization problem rewrites

Ŷu = arg min
Yu∈Rn−p

Y >LY + λ‖Yu − S0
u‖2

= arg min
Yu∈Rn−p

Y 0
`
>

L``Y
0
` + Yu

>Lu`Y
0
` + Y 0

`
>

L`uYu + Yu
>LuuYu

+ λ
(
Yu
>Yu − Yu

>S0
u − S0

u
>

Yu + S0
u
>

S0
u

)

= arg min
Yu∈Rn−p

2Y >
u

(
Lu`Y

0
` − λS0

u

)
+ Y >

u (Luu + λI)Yu .

In order to minimize the cost criterion, we compute its derivative with respect to
Yu. Let A = Lu`Y

0
` −λS0

u and B = Luu+λI. The matrix B is symmetric positive
definite matrix when λ > 0, since Luu is symmetric positive semi-definite:

Yu
>LuuYu =

1
2

n∑

i,j=p+1

Wij(yi − yj)2 ≥ 0 .



Thus the function f : Yu 7→ 2Y >
u A + Y >

u BYu is strictly convex and admits a
unique minimum where its derivative equals 0:

∂f(Yu)
∂Yu

= 2A + 2BYu = 0 ⇐⇒ BYu = −A .

Hence, the optimal labeling Ŷu is the solution of the sparse linear system

(Luu + λI) Ŷu = λS0
u − Lu`Y

0
` . (5)

2.3 Multi-class Segmentation

The extension of the previous algorithm to the multi-class case is straightforward
using a one-versus-all approach. If there are d different classes, we resolve the
linear system (5) for each class k against all other classes as background, thus
having as initial label for a training point i, Y 0,k

` (i) = 1 if i is labeled k and
Y 0,k

` (i) = 0 otherwise. We obtain d output vectors Ŷ k
u , and assign the test point

j to the class arg max
k=1,...,d

Ŷ k
u (j).

3 Segmentation of Textured Meshes

3.1 Our Algorithm

We work on textured meshes of a 3D scene built from a set of calibrated images:
we use the multi-view stereovision algorithm from [16–18] to reconstruct a 3D
model of the scene and the multi-band blending algorithm from [19] to compute
a texture atlas with minimal color discontinuities or blurring. The meshes pre-
sented in our experiments have been reconstructed from datasets provided by
C. Strecha et al. [20] (castle-P19, castle-P30 and Herz-Jesu-25).

We want to classify the facets of the mesh given seed facets for each class. The
seeds are provided by the user who draws sketches on the mesh. Thus we consider
a graph G with a node for every facet of the mesh and an edge between any two
adjacent facets. The modularity of our kernel method allows to chose various
edges weights, depending on the scene type. We use a Gaussian kernel with a
distance between facets constructed from one or several features characterizing
the facets (see section 3.2 for more details and examples of such features).

The training points are the user-supplied seeds and we use an SVM classifi-
cation on these training points as additional knowledge on the test points (see
section 3.3). The linear system (5) of the transductive classification is sparse due
to the sparseness of the facet adjacency relationship on the mesh. We solve it
with a conjugate gradient algorithm (we use the IML++ implementation of [21]).
For each facet, we obtain a score for each class: the classification is given by the
argmax of these scores (see section 2.3) but they carry much more information
that can be exploited.

The interactive framework of our method allows to add supplementary seeds
depending on misclassified facets and rerun the algorithm in order to improve
the segmentation result or add new classes (see Fig.4).



3.2 Features and Kernels

We compare two different facets through a set of attributes extracted from the
mesh. We describe each facet by a feature vector of length m. These features are
chosen according to the scene type and the discriminant characteristics of such
scenes. A major element of this algorithm is the ability to take advantage of sev-
eral different kinds of features, mixing photometric and geometric informations
or any other available attribute (see Fig.2).

Here are some examples of features that we used in the results of Section 4
or that could be used in other experiments. On the one hand, we use photomet-
ric features like the mean color of the facet or components of the mean color
(for instance, without luminance to account for changes in illumination between
cameras). On the other hand, we use geometric features like the normal of the
facet (or solely its vertical component), the position of the center of the facet
(for instance, height of the center), or the discrete curvature of the mesh. We
could also also evaluate less local features that would consequently be smoother
and more robust by averaging the previous features on a neighbourhood of the
facet.

We do not compare globally the descriptor vectors of the facets, but feature
by feature. Then we combine the component-wise distances in the kernel weight
by multiplying the Gaussian kernels associated with each feature: if there are nf

different features (each feature being a vector of variable length) and we note
(f1

i , . . . , f
nf

i ) and (f1
j , . . . , f

nf

j ) the feature vectors of facets Xi and Xj ,

Wij = k(Xi, Xj) =
nf∏

k=1

exp

(
−‖f

k
i − fk

j ‖2
2σ2

k

)
= exp

(
−

nf∑

k=1

‖fk
i − fk

j ‖2
2σ2

k

)
.

The kernel weight is thus parameterized by the nf values (σ1, . . . , σnf
) which

determine the trade-off between the various features.

3.3 Additional Knowledge on the Test Points

We train Support Vector Machines with the user-supplied training points in
order to provide initialization information on the test points. We obtain a score
sk

i for each facet i and each class k with a one-versus-all SVM algorithm. We
use the LibSVM implementation of the C-SV Classification (cf. [22]).

The incorporation of external knowledge in addition to the graph Laplacian
regularization is essential in order to detect several objects of the same class
which form several connected components. Indeed, each seed can generate at
most one connected component in the segmentation. Besides, the initialization
with the SVM scores accelerate the label propagation on the mesh and the con-
vergence of the iterative resolution compared to the transductive segmentation
based solely on graph Laplacian.

We can consider either the same kernel as for the graph Laplacian weights
or a different one (different features, kernel type, or parameters), if we want
to exploit distinct properties of the mesh.We learn the parameters of the SVM



(parameters of the kernel plus parameter C of the SVM) in a cross-validation
process. Hence, the tradeoff between the various features combined in the kernel
is learned automatically. Moreover, we can employ these selected parameters in
the Laplacian kernel for transduction (if we use the same kernel).

The Support Vector Machine approach is a classification method by itself
and provides a comparison basis for our algorithm (just as the transductive
segmentation without the SVM initialization). However it does not enforce any
spatial contiguity on the mesh, and it produces a noisy result (see Fig.3).

Note that we learn this term directly on the scene of interest, but we could
incorporate as well a prior learned from other, previously segmented scenes,
instead or in addition to this one. In this case, however, the algorithm is not
anymore a purely transductive one.

3.4 Computational Complexity and Time

The computational cost of the algorithm can be split up into the cost of the
SVM initialization and the cost of the transductive segmentation on the graph.
Since in our framework the number of training points p is negligible compared
to the total number of points n, we consider the complexity of the algorithm
with respect to n only. In the SVM algorithm, the cost of the test prevails over
the cost of the train (which is between O(p2) and O(p3)), and its complexity
is O(n.p) = O(n). In the energy minimization of the transduction, the main
cost comes from solving the sparse linear system (5); this can be done in O(k.m)
where k is the number of iterations of the conjugate gradient and m is the number
of non-zero entries in the matrix, which is equal to 4n. We bound the number
of iterations to limit the computational time, thus having a total computational
complexity in O(n) (at the expense of precision on the convergence).

In practice, the computational time of the transduction prevails over the one
of SVM. The whole segmentation process takes between fifteen seconds and five
minutes on a Xeon 2.33 GHz, for meshes with 50,000 to 1,500,000 facets.

4 Experimental Results

Figure 1 in the introduction shows a first example of segmentation into four
different classes using the mean color of a facet and the altitude of its center as
features. The results are qualitatively good, and mostly agree with perceptual
boundaries. Note that every window is detected while only few where initially
labeled, illustrating the ability of our algorithm to detect several objects of the
same class forming several connected components, thanks to the initialization of
the transduction with the classification results of the SVM.

Figure 2 illustrates the importance of combining several different features
in order to obtain a relevant segmentation. Indeed the use of mean color or
altitude alone produces erroneous results (even if the latter seems less wrong, it
is even more naive, and performs a simple thresholding on the altitude), while
their combination gives a pertinent result. Hence, the set of features is chosen



Fig. 2. Combining different features improves the segmentation. 3 classes: roof, wall,
ground. From left to right: input textured mesh with seeds; segmentation using mean
color; segmentation using altitude; segmentation using both mean color and altitude.

according to the scene of interest: in Fig.3, the segmentation of the top row is
performed using color only, while in the bottom row, the color, the curvedness
and the vertical normal of the facet are combined.

Figure 3 compares the classification of the SVM and the final result after
transduction: as mentioned in section 3.3, the results of the SVM alone are
noisy and do not exploit the connectivity of the mesh.

Fig. 3. Comparison of classification results using using SVM alone or SVM plus trans-
ductive segmentation. Left: textured mesh with selected facets. Middle: classification
obtained with SVM; the labels are noisy and do not provide a decomposition of the
mesh. Right: classification obtained with SVM initialization plus transduction.

Our algorithm can be used to remove outliers in a scene. In the original mesh
of the castle of Figure 4, obtained by multi-view reconstruction, a portion of the
sky has been reconstructed running on from the roof. It can be easily remove
in our interactive framework, using only two classes, one for the outliers (sky
facets), one for the inliers (castle facets), and color and altitude as features.
The first segmentation (middle column) is not entirely satisfying (some portions
of sky remain), so we add a few labeled points and rerun the algorithm, then
obtaining a good segmentation (right column).



Fig. 4. Removing outliers. Left: original textured mesh of the castle with portions of
”sky” mistakenly reconstructed by stereo. Middle: removing sky facets using selected
facets. Right: refinement of the previous segmentation by adding sky facets to the
selection (yellow outline). Top row: selected facets (green: sky outliers, blue: castle
inliers), bottom row: textured meshes.

5 Conclusion

We have presented an efficient procedure for the segmentation of textured meshes:
we designed a sketch-based interactive framework which produces a meaningful
segmentation according to the user’s aims, thanks to a possible refinement of
the training sketches. Our experiments demonstrate that we can take advantage
of geometric and photometric features at the same time, combining a various
number of appropriate features in our kernel. The graph Laplacian regularizer
enforces the spatial contiguity of the labels on the mesh, producing robust decom-
positions of the mesh for subsequent applications while the SVM initialization
allows to detect non-connected, similar objects. Future work will focus on the
development of supplementary features and kernels, in order to apply this algo-
rithm to a larger range of scenes as well as to other types of data like point clouds.

References

1. Attene, M., Katz, S., Mortara, M., Patanè, G., Spagnuolo, M., Tal, A.: Mesh
Segmentation - A Comparative Study. In: SMI. (2006)

2. Wu, Pan, Yang, Ma: A sketch-based interactive framework for real-time mesh
segmentation. In: CGI. (2007)

3. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng,
A.Y.: Discriminative Learning of Markov Random Fields for Segmentation of 3D
Scan Data. In: CVPR. (2005)



4. Triebel, R., Kersting, K., Burgard, W.: Robust 3D Scan Point Classification using
Associative Markov Networks. In: ICRA. (2006)

5. Triebel, R., Schmidt, R., Mart́ınez Mozos, O., Burgard, W.: Instance-based AMN
Classification for Improved Object Recognition in 2D and 3D Laser Raneg Data.
In: IJCAI. (2007)

6. Munoz, D., Vandapel, N., Hebert, M.: Directional Associative Markov Network
for 3-D Point Cloud Classification. In: 3DPVT. (2008)

7. Bai, X., Sapiro, G.: A Geodesic Framework for Fast Interactive Image and Video
Segmentation and Matting. In: ICCV. (2007)

8. Boykov, Y.Y., Jolly, M.P.: Interactive Graph Cuts for Optimal Boundary and
Region Segmentation of Objects in N-D Images. In: ICCV. (2001)

9. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.H.S.: Interactive Image Seg-
mentation Using an Adaptive GMMRF Model. In: ECCV. (2004)

10. Grady, L.: Random Walks for Image Segmentation. PAMI 28 (2006) 1768–1783
11. Kim, T.H., Lee, K.M., Lee, S.U.: Generative Image Segmentation Using Random

Walks with Restart. In: ECCV. (2008)
12. Duchenne, O., Audibert, J.Y., Keriven, R., Ponce, J., Ségonne, F.: Segmentation

by transduction. In: CVPR. (2008)
13. Belkin, M., Niyogi, P.: Semi-Supervised Learning on Riemannian Manifolds. Ma-

chine Learning 56 (2004) 209–239
14. Chapelle, O., Schölkopf, B., Zien, A., eds.: Semi-Supervised Learning. MIT Press

(2006)
15. Bengio, Y., Delalleau, O., Roux, N.L.: Label Propagation and Quadratic Criterion.

In Chapelle, Schlkopf, Zien, eds.: Semi-supervised Learning. MIT Press (2006)
193–216

16. Labatut, P., Pons, J.P., Keriven, R.: Efficient Multi-View Reconstruction of Large-
Scale Scenes using Interest Points, Delaunay Triangulation and Graph Cuts. In:
ICCV. (2007)

17. Pons, J.P., Keriven, R., Faugeras, O.: Multi-view Stereo Reconstruction and Scene
Flow Estimation with a Global Image-Based Matching Score. IJCV 72 (2007)
179–193

18. Vu, H., Keriven, R., Labatut, P., Pons, J.P.: Towards high-resolution large-scale
multi-view stereo. In: CVPR. (2009)

19. Allène, C., Pons, J.P., Keriven, R.: Seamless Image-Based Texture Atlases using
Multi-band Blending. In: ICPR. (2008)

20. Strecha, C., von Hansen, W., Van Gool, L.J., Fua, P., Thoennessen, U.: On Bench-
marking Camera Calibration and Multi-view Stereo for High Resolution Imagery.
In: CVPR. (2008)

21. Dongarra, J., Lumsdaine, A., Pozo, R., Remington, K.: A Sparse Matrix Library in
C++ for High Performance Architectures. In: Proc. of the Second Object Oriented
Numerics Conference. (1992)

22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm (2001)


