Skip to main content

A Harris-Like Scale Invariant Feature Detector

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5995))

Abstract

Image feature detection is a fundamental issue in computer vision. SIFT[1] and SURF[2] are very effective in scale-space feature detection, but their stabilities are not good enough because unstable features such as edges are often detected even if they use edge suppression as a post-treatment. Inspired by Harris function[3], we extend Harris to scale-space and propose a novel method - Harris-like Scale Invariant Feature Detector (HLSIFD). Different to Harris-Laplace which is a hybrid method of Harris and Laplace, HLSIFD uses Hessian Matrix which is proved to be more stable in scale-space than Harris matrix. Unlike other methods suppressing edges in a sudden way(SIFT) or ignoring it(SURF), HLSIFD suppresses edges smoothly and uniformly, so fewer fake points are detected by HLSIFD. The approach is evaluated on public databases and in real scenes. Compared to the state of arts feature detectors: SIFT and SURF, HLSIFD shows high performance of HLSIFD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Harris, C., Stephens, M.: A combined corner and edge detection, pp. 147–151 (1988)

    Google Scholar 

  4. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Computer Society Conference on CVPR 1994, June 1994, pp. 593–600 (1994)

    Google Scholar 

  5. Li, Y., Wang, Y., Huang, W., Zhang, Z.: Automatic image stitching using sift. In: International Conference on Audio, Language and Image Processing. ICALIP 2008, July 2008, pp. 568–571 (2008)

    Google Scholar 

  6. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. International Journal of Computer Vision 59(3), 207–232 (2004)

    Article  Google Scholar 

  7. Brown, M., Lowe, D.: Unsupervised 3d object recognition and reconstruction in unordered datasets. In: Fifth International Conference on 3-D Digital Imaging and Modeling. 3DIM 2005, June 2005, pp. 56–63 (2005)

    Google Scholar 

  8. Telle, B., Aldon, M.J., Ramdani, N.: Camera calibration and 3d reconstruction using interval analysis. In: Proceedings of 12th International Conference on Image Analysis and Processing, pp. 374–379 (2003)

    Google Scholar 

  9. Davison, A., Mayol, W., Murray, D.: Real-time localization and mapping with wearable active vision. In: Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality, October 2003, pp. 18–27 (2003)

    Google Scholar 

  10. Lisin, D., Mattar, M., Blaschko, M., Learned-Miller, E., Benfield, M.: Combining local and global image features for object class recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops. CVPR Workshops, June 2005, p. 47 (2005)

    Google Scholar 

  11. Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)

    Article  Google Scholar 

  12. Smith, S.M., Brady, J.M.: Susan - a new approach to low level image processing. International Journal of Computer Vision 23, 45–78 (1997)

    Article  Google Scholar 

  13. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection 1, 430–443 (May 2006)

    Google Scholar 

  14. Lindeberg, T.: Scale-space theory in computer vision (1994)

    Google Scholar 

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  16. Grabner, M., Grabner, H., Bischof, H.: Fast approximated SIFT. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 918–927. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  18. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  19. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, Y., Huang, K., Tan, T. (2010). A Harris-Like Scale Invariant Feature Detector. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12304-7_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12303-0

  • Online ISBN: 978-3-642-12304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics