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Abstract
We present a novel algorithm for unsupervised segmentation of natural images that harnesses the principle of 

minimum description length (MDL). Our method is based on observations that a homogeneously textured region 
of a natural image can be well modeled by a Gaussian distribution and the region boundary can be effectively 
coded by an adaptive chain code. The optimal segmentation of an image is the one that gives the shortest 
coding length for encoding all textures and boundaries in the image, and is obtained via an agglomerative 
clustering process applied to a hierarchy of decreasing window sizes. The optimal segmentation also provides an 
accurate estimate of the overall coding length and hence the true entropy of the image. We test our algorithm 
on two publicly available databases: Berkeley Segmentation Dataset and MSRC Object Recognition Database. 
It achieves state-of-the-art segmentation results compared to other popular methods.

1 Introduction
The task of partitioning a natural image into regions with homogeneous texture, commonly referred to as image 
segmentation, is widely accepted as a crucial first step for high-level image understanding, significantly reducing 
the complexity of content analysis of images. Image segmentation and its higher-level applications are largely 
designed to emulate functionalities of human visual perception (e.g., object recognition and scene understanding), 
and hence dominant criteria for measuring segmentation performance are based on qualitative and quantitative 
comparisons with human segmentation results. In the literature, investigators have explored several important 
models and principles that can lead to good image segmentation:

1. Different texture regions of a natural image admit a mixture model. For example, Normalized Cuts (NC) [1] 
and F&H [2] formulate the segmentation as a graph-cut problem, while Mean Shift (MS) [3] seeks a partition 
of an color, image based on different modes within the estimated empirical distribution.

2. Region contours/edges convey important information about the saliency of the objects in the image and their 
shapes [4, 5, 6, 7]. Several recent methods have been proposed to combine the cues of homogeneous color 
and texture with the cue of contours in the segmentation process [8, 9, 10].
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3. The properties of local features (including texture and edges) usually do not share the same level of homo­
geneity at the same spatial scale. Thus, salient image regions can only be extracted from a hierarchy of image 
features under multiple resolutions [11, 12, 13].

Despite much work in this area, good image segmentation remains elusive to obtain for practitioners, for the 
following two reasons: 1. There is little consensus on what criteria should be used to evaluate the quality of 
image segmentations. It is difficult to strike a good balance between objective measures that depend solely on the 
intrinsic statistics of imagery data and subjective measures that try to empirically model human perception. 2. In 
the search for objective measures, there has been a lack of consensus on good models for a unified representation 
of image segments including both their textures and contours.

Recently an objective metric based on the notion of lossy minimum, description length (MDL) has been proposed 
for evaluating clustering of general mixed data [14]. The basic idea is that, given a potentially mixed data set, the 
“optimal segmentation" is the one that, over all possible segmentations, minimizes the coding length of the data, 
subject to a given quantization error. For data drawn from a mixture of Gaussians, the optimal segmentation 
can often be found efficiently using an agglomerative clustering approach. The MDL principle and the new 
clustering method have later been applied to the segmentation of natural images, known as cornpression-based 
texture merging (CTM) [13], According to several popular segmentation indices, e.g., probabilistic Rand index 
(PRI) and variation of information (VOI), this approach has proven to be highly effective for imitating human 
segmentation of natural images. Preliminary success of this approach leads to the following important question: 
To what, extent is segmentation obtained by image compression consistent with, human perception?

However, although the CTM method utilizes the idea of data compression, it does not exactly seek to compress 
the image per se. First, it “compresses” feature vectors or windows extracted around all pixels by grouping them 
into clusters as a mixture of Gaussian models. As a result, the final coding length is highly redundant due to severe 
overlap between windows of adjacent pixels, and has no direct relation to the true entropy of the image. Second, 
the segmentation result encodes the membership of pixels using a Huffman code that does not taking into account 
of spatial adjacency of pixels nor smoothness of boundaries. Thus, CTM does not give a good estimate of the true 
entropy of the image and its success cannot be used to justify a strong connection between image segmentation 
and image compression.

Contributions. In this paper, we contend that, much better segmentation results can be obtained if we follow 
more closely the principle of image compression, by correctly counting only the necessary bits needed to encode a 
natural image for both the texture and boundaries. The proposed algorithm precisely estimates the coding length 
needed to encode the texture of each region based on the rate distortion of its probabilistic distribution and the 
number of non-overlapping windows inside. In order to adapt to the different scales and shapes of texture regions 
in the image, a hierarchy of multiple window sizes is incorporated in the segmentation process. The algorithm 
further encodes the boundary information of each homogeneous texture region by carefully counting the number 
of bits needed to encode the boundary with an adaptive chain code.

Based on the MDL principle, the optimal segmentation of an image is defined as the one that minimizes its total 
coding length, in this case a close approximation to the true entropy of the image. With any fixed quantization, 
the final coding length gives a purely objective measure for how good the segmentation is in terms of the level of 
image compression. We conduct extensive experiments to compare the results with human segmentation, using the 
Berkeley Segmentation Dataset (BSD) [15] and MSRC Object Recognition Database (MSRC) [16], Although our 
method is conceptually simple and the measure used is purely objective, the segmentation results match extremely 
well with those by human, exceeding or competing with the best segmentation algorithms.

2 Adaptive Texture and Boundary Encoding
In this section, we present a unified information-theoretic framework to encode both the texture and boundary 
information of a natural image. The implementation of the algorithm for adaptive image segmentation and the 
experiments to validate its performance will be presented in Sections 3 and 4.



2.1 G au ssian ity  o f Im age T extures

First, we discuss how to construct texture vectors that represent homogeneous textures in image segments. Given 
an image in RGB format, we convert it to the L*a*b* color space. It has been noted in the literature that, such a 
color metric better approximates the perceptually uniform color space. In order to capture the variation of a local 
texton, one can directly apply a w x w cut-off window around a pixel across the three color channels, and stack 
the color values inside the window in a vector form as in [13]. 1

Figure 1: We construct features by stacking the w x w windows around all pixels of a L*a*b* image I into a data matrix 
X and then using PCA.

Figure 1 (left) illustrates our process for constructing features. Let the ^-neighborhood Ww{p) be the set of 
all pixels in a w x w window centered at pixel p. We construct a set of features X  by taking the «’-neighborhood 
around each pixel in / ,  and then stacking each window as a column vector:

Ar A {xp € R3“ 2 : Xp =  Ww{p)S for pel}. (1)

For ease of computation, we reduce the dimensionality of these features by projecting the set of all features X  
onto their first D principal components. We denote the set of features with reduced dimensionality as A. We have 
observed that for many natural images, the first, eight principal components of A" contain over 99% of the energy. 
In this paper, we choose to assign D =  8.

Over the years, there have been many proposed methods to model the representation of image textures in natural 
images. One model that has been shown to be successful in encoding textures both empirically and theoretically 
is the Gaussian Mesh Markov Model (MMM) [18]. Particularly in texture synthesis, the Gaussian MMM provides 
consistent estimates of the joint distribution of the pixels in a window, which then can be used to fill in missing 
texture patches via a simple nonparametric scheme [19].

However, to determine the optimal compression rate for samples from a distribution, one must know the rate- 
distortion function of that, distribution [13]. Unfortunately, the rate-distortion function for MMMs is, to our 
knowledge, not known in closed form, and difficult to estimate empirically. Over all distributions with the same 
variance, it is known that the Gaussian distribution will have the highest rate-distortion, and is in this sense, the 
worst case distribution for compression. Thus by using the rate-distortion for a Gaussian distribution, we obtain 
an upper bound for the true coding length of the MMM.

In the following, we provide an empirical experiment to determine in which color space (RGB or L*a*b*) feature 
windows from a region with homogeneous texture are better fit by a Gaussian distribution. We use as the ground 
truth training images from the BSD that were manually segmented by humans. Given the feature vectors within 
each region, we model the distribution both parametrically and non-parametrically. The parametric model Q is a 
multivariate normal distribution whose parameters are estimated from the samples using maximum likelihood. The 
non-parametric model P  is obtained by kernel density estimation. If the true distribution is indeed normal, then P  
and Q should be very similar. Thus the KL divergence Dk l {P || Q) can be used to measure the non-Gaussianity 
of the distribution. The overall non-Gaussianity of each image is simply the average of the non-Gaussianity over 
all regions. We repeat, the above procedure for the entire manually segmented image dataset and estimate the 
distribution of KL divergence by kernel density estimation for RGB and L*a*b* spaces. As Figure 2 shows, 
between the two color metrics, L*a*b* has lower mean and standard deviation and hence is better modeled by a 
Gaussian distribution.

1Another popular approach for constructing texture vectors is to use multivariate responses of a fixed 2-D texture filter bank. A 
previous study [17] has argued that the difference in segmentation results between the two approaches is small, and yet it is more 
expensive to compute 2-D filter bank responses.



Figure 2: (color) KL divergence of RGB and L*a*b* windows from a true Gaussian distribution.

2.2 A d ap tive  T exture E ncoding

We now describe encoding the texture vectors based on the lossy MDL principle. First, we consider a single region 
R with N  pixels. Based on [13], for a fixed quantization error e, the expected number of bits needed to code the 
set of N  feature windows X  up to distortion e1 is given by:

LAX) =  f  log,det(J +  £ E )  +  f log2det(/ +  ^ S )  + f  log,(l +D (2)
codebook data mean

where /z and E are the mean and covariance of the feature windows in X.  Equation (2) is the sum of three 
coding-lengths: the D Gaussian principal vectors as the codebook, the N  windows w.r.t. that codebook, and the 
mean of the Gaussian distribution.

The coding length function (2) is uniquely determined by the mean and covariance (/z, £). To estimate them 
empirically, we need to exclude the windows that cross the boundary of R (as shown in Figure 3). Such windows 
contain textures from the adjacent regions, which cannot be well modeled by a single Gaussian as the interior 
windows. Hence, the empirical mean ¡jlw and covariance Eu, of R from are only estimated from the interior of R:

1 W{R) =  {p € R : q € R, Vq € VV«,(p)}. (3)

/

Figure 3: Only windows from the interior of a region are used to compute the empirical mean jxw and covariance t,w.

Furthermore, in (2), encoding all texture vectors in A" to represent region R is highly redundant because the N  
windows overlap with each other. Thus, to obtain an efficient code of R that closely approximates its true entropy, 
we only need to code the nonoverlapping windows that can tile R as a grid.

Ideally, if R is a rectangular region of size mw x nw, where rn and n are positive integers, then clearly we can 
tile R with exactly mn =  windows. So for coding the region if, (2) becomes:

Lw,e(R) — (y + °̂S2 det(/+ + y log2(l + ( 4)
Real regions in natural images normally do not have such nice rectangular shapes. However, (4) remains a good 
approximation to the actual coding length of a region R with relatively smooth boundaries.2

2For a large region with a sufficiently smooth boundary, the number of boundary-crossing window's is significantly smaller than the 
number of those in the interior. For boundary-crossing window's, their average coding length is roughly proportional to the number 
pixels inside the region if the Gaussian distribution is sufficiently isotropic.
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Figure 4: Left: The Freeman chain code of an edge orientation along 8 possible directions. Middle: Representation
of the boundary of a region in an image w.r.t. the Freeman chain code. Right: Representation w.r.t the difference chain
code.

2.3 A d ap tive  B ound ary E ncoding

To code windows from multiple regions in an image, one must know.Jto which region each window belongs, so 
that each window can be decoded w.r.t. the correct codebook. For generic samples from multiple classes, one can 
estimate the distribution of each class label and then code the membership of the samples using a scheme that is 
asymptotically optimal for that class distribution (i.e., the Huffman code used in [13]). Such coding schemes are 
highly inefficient for natural image segmentation, as they do not leverage the spatial correlation of pixels in the 
same region. In fact, for our application, pixels from the same region form a connected component. Thus, the most 
efficient way of coding group membership for regions in images is to code the boundary of the region containing 
the pixels.

A well-known scheme for representing boundaries of image regions is the Freeman chain code. In this coding 
scheme, the orientation of an edge is quantized along 8 discrete directions, shown in Figure 4. Let {ot}J=1 denote 
the orientations of the T boundary edges of R. Since each chain code can be encoded using three bits, the coding 
length of the boundary of R is

B(R) =  3 ^ # ( o ,  =  «). (5)
i= 0

The coding length B(R)  can be further improved by using an adaptive Huffman code that leverages the prior 
distribution of the chain codes. Though the distribution of chain codes is essentially uniform in most images, for 
regions with smooth boundaries, we expect that the orientations of consecutive edges are similar, and so consecutive 
chain codes will not differ by much. Given an initial orientation (expressed in chain code) otl the difference chain 
code of the following orientation ot+ 1  is Aot =  mod (ot — ot+1 , 8). Figure 4 compares the original Freeman chain 
code with the difference chain code for representing the boundary of a region. Notice for this region, the difference 
encoding uses only half of the possible codes, with most being zeroes, while the Freeman encoding uses all eight 
chain codes. Given the prior distribution P[Ao] of difference chain codes, B(R)  can be encoded more efficiently 
using a lossless Huffman coding scheme:

B(R) =  -  £  #(A o, =  i) log2(P[Ao =  ¡]). (6)
i = 0

For natural images, we estimate P[Ao] using natural images from the BSD that were manually segmented by 
humans. We compare our distribution with one estimated by Liu and Zalik [20], who used 1000 images of curves, 
contour patterns and shapes obtained from the web. As the results in Table 1 show, the regions of natural images 
tend to have more smooth boundaries when segmented by humans.

Table 1: The prior probability of the difference chain codes estimated from the BSD and by Liu and Zalik [20].
Difference Code 0 1 . 2 3 4 5 6 7

Angle change 0° 45° CO O
o 135° 180° -135° -90° -45°

Probability (BSD) 0.585 0.190 0.020 0 . 0 0 0 0.002 0.003 0.031 0.169
Probability (Liu-Zalik) 0.453 0.244 0.022 0.006 0.003 0.006 0.022 0.244



3 Image Segmentation Algorithm
In this section, we show how to use the coding length functions we developed in Section 2 to construct a better 
compression-based image segmentation algorithm. We describe the basic approach below, and then propose a 
hierarchical scheme to deal with small and/or thin regions.

3.1 S egm entation  by M inim izing C oding L ength
Suppose an image I  can be segmented into non-overlapping regions 
77 =  { R i , . . . .  Rk}, Ui=1Ri — I. The total coding length of the image I  is

k
+ i  (7)

i— 1

Here, the boundary term is scaled by a half because we only need to represent the boundary between any two 
regions once. The optimal segmentation of I  is the one that minimizes (7). Finding this optimal segmentation is, 
in general, a combinatorial task, but we can often do so using an agglomerative process.

To initialize the optimization process, one can assume each image pixel (and its windowed texture vector) 
belongs to an individual group of its own. However, this presents a problem that the maximal size of the texture 
window can only be one without intersecting with other adjacent regions (i.e., other neighboring pixels). In our 
implementation, similar to [13], we utilize an oversegmentation step to initialize the optimization by superpixels. 
A superpixel is a small region in the image that does not contain strong edges in its interior. Superpixels provide 
a coarser quantization of an image than the underlying pixels, while respecting strong edges between the adjacent 
homogeneous regions. There are several methods that can be used to obtain a superpixel initialization, including 
those of Mori et al. [21], Felzenszwalb and Huttenlocher [2], and Ren et al. [12]. We have compared the three 
methods in the experiment and found that [21]3 works well for our purposes.

Given an oversegmentation of the image, at each iteration, we find the pair of regions R, and Rj that will 
maximally decrease (7) if merged:

(R*,Rj ) = argmax A L w,s (Ri, Rj), where
R i , R j €  u

ALw,£(Ri,Rj) =  L ie ' l l )  -  U{Ri U Rj})
= Lw,s(Ri) + LWiS(Rj) — LWtS(Ri U Rj)

+±(B(Ri) + B ( R j ) -  B(RiURj)) .  (8)

ALW'£(Ri, Rj) essentially captures the difference in the lossy coding lengths of the texture regions Rj and Rj and 
their boundaries before and after the merging. If AL > 0, we merge R* and R* into one region, and repeat this 
process, continuing until the coding length L^ e(1Z) can not be further reduced.

To model the spatial locality of textures, we further construct a region adjacency graph (RAG): Q =  (V.8). 
Each vertex Vj € V corresponds to region Rj € 77, and the edge e.̂  € £ is present if and only if regions Rt and Rj 
are adjacent in the image. To perform image segmentation, we simply apply a constrained version of the above 
agglomerative procedure -  only merging regions that are adjacent in the image.

3.2 A  H ierarchical Im plem entation

The above region-merging scheme is based on the assumption of a fixed texture window size, and clearly cannot 
effectively deal with regions or superpixels that are very small and/or thin. In such cases, the majority or all texture 
windows will intersect with the boundary of the regions. We say that a region R is degenerate w.r.t. window size 
tu if-TW(R) =  0. For such a region, the neighborhoods of all pixels will contain pixels from other regions, and

3We use the publicly available code for this method available at h ttp ://w w w .cs.sfu .ca/~m ori/research /superp ixels/ with pa­
rameter N_sp =  200.

http://www.cs.sfu.ca/~mori/research/superpixels/


so ¡1 and E cannot be reliably estimated. These regions are degenerate precisely because of the window size; for 
any u’-degenerate region R, there is 1 < w' < w such that l w>{R) ^  0. We say that R is marginally nondegenerate 
w.r.t. window size tv if l w (R ) ^  0 and Xw+2 (R) =  0- To deal with these degenerate regions, we propose to use 
a hierarchy of window sizes. Starting from the largest window size, we recursively apply the above scheme with 
ever smaller window sizes till all degenerate regions have been merged with their adjacent ones. In this paper, we 
start from 7 x 7  and reduce to 5 x 5, 3 x 3, and l x l .  For segmentation at smaller windows sizes, our scheme only 
allows adjacent regions to be merged if at least one of the regions is marginally nondegenerate.

Notice that at a fixed window size, the region-merging process is similar to the CTM approach proposed in
[13]. Nevertheless, the new coding length function and the hierarchical implementation give much more accurate 
approximation to the true image entropy and hence lead to much better segmentation results (see Section 4). For 
completeness, we summarize the overall algorithm for image segmentation in Algorithm 1, which we refer to as 
Texture and Boundary Encoding-based Segmentation (TBES). On a Quad-Core Intel Xeon 2.5GHz machine, the 
superpixel initialization using the method of [21] takes roughly five minutes and our MATLAB implementation of 
Algorithm 1 takes approximately ten minutes per image.

Algorithm 1 (Texture and Boundary Encoding-based Segm entation)
Given image I, distortion e, max window size w m , superpixels TZ =  (J? i,. . . ,  Rk},

1: for «; =  1 : 2 :  w \ j  do
2: Construct X w by stacking the w x w  windows around each p G /  as column vectors and applying PCA.
3: Construct RAG Q — (V, £),  where V ~  TZ and G £  only if Ri and Rj  are adjacent in I.
4: iv — wm  
5: repeat
6: if  w =  then
7: Find Ri and Rj  such that €-ij £ Xtp (R i ) -f- -Au(R j ) 0? and A L W)s{Ri,  Rj)  is maximal.
8: else
9: Find Ri  and Rj  such that G £, l w (Ri)  ^  0, l w (Rj)  ^  0 , l w+2(Ri)  =  0 or l w+2{Rj)  =  0 and ALw,s(Ri,  Rj)  is maximal.

10: if  A LWt£(Ri, Rj)  > 0 then
11: ’ TZ:= {TZ \  {Ri ,  Rj } )  U {Ri  U Rj} .
12: Update Q based on the newly merged region.
13: w =  wm
14: e lse  if  w ^  1 then
15: w =  w — 2
16: until Xwm(R) ^  0, Vi? G TZ and A LWM ,e(R i , Rj)  < 0, Vi?j, Rj  G TZ 
17: O utput: The set of regions TZ.

4 Experiments
In this section, we conduct extensive evaluation to validate the performance of our method. We first describe 
our experimental setup, and then show both qualitative and quantitative results on two publicly available natural 
image databases (please refer to the supplemental material for a complete report of the segmentation results).

Experimental Setup. To obtain quantitative evaluation of the performance of our method we use three metrics 
for comparing pairs of image segmentations: the probabilistic Rand index (PRI) [22], the variation of information 
(VOI) [23], and the precision and recall of boundary pixels [5].4 For brevity, we refer the reader to the stated 
references for the definition of each metric. In cases where we have multiple ground-truth segmentations, to 
compute a given metric for a test segmentation, we simply average the results of the metric between the test 
segmentation and each ground-truth segmentation. With multiple ground-truth segmentations for an image we 
can also estimate the human performance w.r.t. these metrics by treating each ground-truth segmentation as a 
test segmentation and computing the metrics w.r.t. the other ground-truth segmentations.

To apply Algorithm 1 to a natural image, we must choose the quantization level e. As Figure 5 shows, a 
given image can have multiple plausible segmentations. We seek to find e* that tends to best match with human 
segmentation. To determine e* we run Algorithm 1 on each of the 100 test images in BSD for sixteen choices of e

4We use the harmonic mean of precision and recall, known as the global F-measure, as a useful summary score for boundary precision 
and recall.



ranging from £ =  25 to £ =  400. We then choose e that obtains the best average performance w.r.t. the various 
metrics. In our experiments we found that the choice of £* =  150 results in the best balance between the PRI and 
VOI metrics, so for all our subsequent experiments, we use this choice of e.

Figure 5: (color) Results of applying Algorithm 1 to two natural images for varying choices of e.

Results on the Berkeley Segm entation Dataset. The Berkeley Segmentation Dataset consists of 300 natural 
images, each of which has been hand segmented by multiple human subjects. Figure 7 illustrates some representa­
tive segmentation results. We compare the performance of our method to five publicly available image segmentation 
methods, which we refer to as “CTM” [13], “MS” [3], “NC” [1], “UCM” [5], and “F&H” [2], respectively. Table 2 
and Figure 6 summarize the performance of our method based on the various metrics for the BSD: the indices PRI 
and VOI in Table 2 are used to evaluate goodness of the regions; and the precision-recall curve and F-measure in 
Figure 6 evaluate the segmentation boundaries.

Table 2: Comparison of PRI and VOI for various algorithms on the BSD.
Index /  Method Human TBES (e = 150) CTM MS NC UCM FVH

PRI (Higher is better) 0.87 0.80 0.76 0.78 0.75 0.77 0.77
VOI (Lower is better) 1.16 1.76 2.02 1.83 2.18 2.11 2.15

Notice that in Table 2, for both indices, our method achieves the best performance compared to all popular 
segmentation methods. It is also surprising that it does so with a fixed £ whereas CTM needs to rely on a heuristic 
adaptive scheme.

Figure 6: (color) Precision vs. Recall of boundaries on the BSD. The green lines are level sets of the F-measure, ranging 
from 0.1 (lower left) to 0.9 (upper right). Our method (TBES) is closest to human performance (brown dot), achieving an 
F-measure of 0.645.

For our segmentation results, if we could choose the best e adaptively for each image to optimize the PRI index, 
the average PRI over the entire database would become 0.849; similarly for the VOI index, using the best e for 
each image brings this index down to 1.466, both strikingly close to that, of human segmentation. This suggests 
there is still plenty of room to improve our method by designing better schemes for choosing s adaptively.
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Figure 7: (color) Qualitative results of our algorithm on various kinds of images from BSD with a fixed £ =  150. For each 
result, the top is the original image, and the bottom is a segmentation image where each region is colored by its mean color.



Results on the MSRC Object Recognition Database. The MSRC Object Recognition Database consists 
of 591 images of objects grouped into 20 categories. We used the cleaned up segmentations provided by the authors 
of [24] as the ground truth. This dataset is highly challenging because images in MSRC are roughly 2/3 the size 
of those in the BSD, and in many cases, the ground truth segmentation only draws a boundary around the salient 
object in the image, casting everything else as background. Using our TBES algorithm with e =  150, we obtained 
PRI =0.76, VOI =1.49, and F-measure =  0.53.5 Compared to the BSD, our method did extremely well on MSRC 
in terms of VOI. The low F-measure is expected since usually only one region/object is segmented out on each 
image by a human. Some representative segmentation results of our algorithm are shown in Figure 8.

Figure 8: (color) Qualitative results of our algorithm on example images from MSRC with a fixed £ = 150. For each result, 
the top is the original image, and the bottom is a segmentation image where each region is colored by its mean color.

5 Conclusion
We have proposed a novel method for natural image segmentation. The algorithm uses a principled information- 
theoretic approach to combine cues of image texture and boundaries. In particular, the texture and boundary 
information of each texture region is encoded using a Gaussian distribution and adaptive chain code, respectively. 
The partitioning of the image is sought to achieve the maximum lossy compression using a hierarchy of window 
sizes. Our experiments have validated that this purely objective and simple criterion achieves state-of-the-art 
segmentation results on two publicly available image databases, both qualitatively and quantitatively.

Our proposed scheme for segmentation stimulates future investigation of its application for image compression. 
In this work, we rely on a closed-form formula for computing/estimating the coding length of a (Gaussian) dis­
tribution without explicitly computing a codebook. However, one can potentially use the proposed framework to 
explicitly build a codebook and compress the image. It will be interesting to explore how much better such a 
scheme performs against other popular lossy image compression methods such as JPEG and JPEG2000.
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