
Chapter 12:
Panta Rhei: Flexible Execution Engine for

Search Computing Queries

Daniele Braga, Stefano Ceri, Francesco Corcoglioniti, and Michael Grossniklaus

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{braga, ceri, corcoglioniti, grossniklaus}@polimi.it

Abstract. The efficient execution of data-intensive computations over services
is a challenging task: data are retrieved from remote sources and therefore are
not available in the query engine until after the execution of these calls, but the
system must be inherently efficient thereafter, by guaranteeing that data is
immediately cached and processed efficiently, according to the best query plan.
In this chapter, we present a flexible execution model for search computing
queries, named Panta Rhei. The proposed execution engine paradigm adopts the
producer/consumer model and supports both data-driven and event-driven
synchronization, and their interplay. Query plans are modeled as directed
graphs, whose nodes are processing units and whose edges are either control or
data flows. While control flows synchronize service calls and unit execution,
data flows transfer data between units that process data flows to produce query
results. We present the specification of Panta Rhei by formally defining the
units for data production, consumption, manipulation, and caching, as well as
the control and data flows. Finally, we discuss how a query plan is expressed in
terms of a query execution plan.

1 Introduction

Query execution in Search Computing is a data-intensive process. The computations
required for answering a query, although performed upon the data resulting from
service calls, are very similar to those performed by database management systems
working on physically optimized tables. Therefore, a query execution engine
supporting Search Computing must be able to efficiently support dynamic data
extraction, storage and caching, as well as efficiently route data flows between
special-purpose computational units, whose design has been optimized so as to
guarantee the fast production of query results.

Due to the very nature of many of these tasks and their embedding within Web-
based contexts, which are subject to continuous change, performances of data-
intensive service interactions are very hard to predict. Moreover, the execution engine
must be strongly connected to the query user interface, so as to adapt to user requests
that dynamically alter the query requirements, either by specializing current requests
or by adding new requirements. For these reasons, the design of the query execution
engine for Search Computing has required several architectural solutions for
supporting dynamic adaptation which are quite original, especially for what concerns
the synchronization aspects.

http://nbn-resolving.de/urn:nbn:de:bsz:352-251428

226

The main operation in Search Computing is the join of search services and,
therefore, the execution engine is optimized to support joins, under the constraint that
join data operands are not immediately available to the execution engine, but are
produced by interacting with services, ranked and separated in chunks. Join
processing, as explained in the previous chapter, aims at exploring given
compositions of chunks returned by the services. In this setting, optimization consists
in minimizing the number of service calls and, at the same time, in efficiently
exploring the search space so as to rapidly produce results.

Supporting join executions requires synchronizing pairs of services. To effect this
synchronization, we introduce particular units, called clocks, whose effect is to give
pulses to services so as to synchronize them according to certain mutual relationships
that can be dynamically adapted. In order to respond to variability, synchronization is
subject to feedbacks which are generated within the execution environment. The
explicit (and user controllable) synchronization and adaptation of join computations
through clock units is the most significant (and original) aspect of the execution
engine, being used both for pipelined and parallel execution with a uniform style.

Original aspects of the execution engine concerns the explicit management of
chunks within the data flow, which is at the basis of the design of both the chunker
units (capable of changing the size of chunks along the data flow) and the cache units
(which store the results of service calls by chunks). In SeCo joins, a given chunk of a
service’s results can be involved in many chunk combinations, performed after its
initial loading, and cannot be discarded until query processing is completed. Chunk
support allows for an intermediary granularity level, which is a good compromise
between tuple-level (each tuple flows individually) and table-level (each data
collection or table flows as a unit) granularity. We believe that this solution yields to a
good trade-off between flexibility, adaptability, and performance.

While clocks and chunks are, therefore, the main ingredients of the flexible
execution engine, many other features characterize its design. The system must, of
course, support sorting (i.e. ranking of results) which is a critical operation, because it
is “blocking” (in order for the sort to be applicable to a given collection, all the items
of the collection must be available) and data flow machines must try to minimize
blocking operations. In addition, the system should support the early evaluation of
selection predicates in order to reduce the size of data flows.

The organization of this chapter is as follows. In Section 2 we present the state-of-
art of data-driven execution engines, first by highlighting the issues which arise in
interpreted environments (such as ours) and then by focusing on adaptability of
computations, the main quality offered by Panta Rhei. Section 3 presents the model,
with its nodes representing units and edges representing data and control flows. Then,
Section 4 sketches the translation of query plans into query engine execution plans,
and Section 5 shows the typical translations of parallel, pipe, and top-k joins into
schedules.

2 State of the Art

This section gives an overview of the state of the art of query execution with a focus
towards the domain of Search Computing. First, we discuss different query processing

 227

paradigms that serve to position the proposed query execution environment for Search
Computing. A distinguishing feature of a query evaluation paradigm is the degree of
query plan adaptation that is supported by an execution environment. In the second
part of this section, we motivate the need for query plan adaptation at run-time and
give an overview of related work on adaptation in other application domains.

2.1 Query Processing Paradigms

An important criterion in the design of a query execution engine for Search
Computing is its query processing paradigm. In the past, several types of query
execution engines have been proposed in the scope of traditional DBMS, such as
interpreted or compiled [19] execution engines. On the one hand, interpreted
approaches translate queries into query plans that are optimized and evaluated
leveraging a general-purpose set of operators provided by a virtual machine such as
the query evaluator of a database management system. Compiled approaches, on the
other hand, use code generation to translate each query into a static program that is
compiled and executed natively, i.e. directly on the operating system. The main
strength of compiled engines is their performance as all meta-information required for
evaluating a query is directly hardwired into the program code. The gain in
performance comes, however, at the price of flexibility. While compiled engines are
fast, it is more difficult to cater for run-time adaptation of query plans as this would
require a recompilation of the program while it is executing. Due to the requirements
of Search Computing, we have, therefore, chosen to build an execution environment
that follows the approach of an interpreted engine, and therefore we focus this
state-of-the-art on interpreted query engines.

Interpreted engines can be further classified according to the query evaluation
model that they use. Within interpreted engines, query execution plans require both
control flow, which dynamically defines how engine modules are synchronized, and
the data flows, which dynamically define data exchanges. From the viewpoint of data
flows, components are characterized as producers and consumers and a query
computation may involve several modules. At its beginning, a query plan involves
producer modules, later intermediate components play both roles, and eventually
query interfaces present their results to the user who is the “final consumer” of the
system. Execution plan components, or “nodes”, have four possible behaviors relative
to control and data flows, presented by Graefe (see [12], p.149ff) and shown in Fig. 1.

− Standard iterators. In most query processing systems, the data flow is demand-
driven and controlled by the consumer. In this case, control and data flow point
into opposite directions. According to [17], most state of the art approaches for
distributed query processing use the iterator model [13] in which all operators
exhibit an open()-next()-close() interface.

− Data-driven operators. There are however systems such as real-time or data
stream systems where the data flow is paced by the producer as it needs to unload
the data as it arrives, e.g. sensor data. In a data-driven operator, control and data
flow point into the same direction.

To combine demand-driven and data-driven operators, it is necessary to introduce
flow translation nodes [12] that mediate between the two types of operators.

228

Standard
Iterator

Data-driven
Operator

Active
Scheduler

Passive
Scheduler

Fig. 1. Nodes of an execution plan with control and data flow [12]; control flows are dashed
arrows and data flows are solid arrows

− Active scheduler. A data flow translation node that can be used to schedule a
demand-driven operator (iterator) as producer and a data-driven operator as
consumer. This node actively requests data from a demand-driven producer and a
passes it on to the data-driven consumer.

− Passive scheduler. A data flow translation node that can be used to schedule a
data-driven operator as producer and a demand-driven operator as consumer. As
soon as the data-driven producer delivers data, this node accepts and buffers it
until the data is requested from the eventually resumed demand-driven consumer.

Another important characteristic of the query processing paradigm is whether the
execution is governed centrally by a global scheduler that has complete knowledge or
in a distributed setup where the nodes of the execution engine make local scheduling
decisions based on incomplete knowledge. For example, data flow systems [25] and
stream processing systems, e.g. Aurora/Borealis [1], have addressed the problem of
scheduling data-intensive computations. More recently, scheduling algorithms have
been proposed that control the execution of a computation in peer-to-peer networks,
such as the economic model [2] or approaches based on reinforced learning [20].
While data flow systems are designed for the execution of fine-grained computations,
workflow systems [27] address coarser-grained processes executed over Web
services. While these two families of systems are similar in terms of goals, the latter
tends to use central scheduling that operates on global information.

2.2 Adaptation

The capability of adapting software systems to internal or external requirements is
often referred to as adaptation. Adaptation can be effected at design or compile-time
of a system as well as at run-time. The need for adaptation is present in many
application domains and adaptation can be supported at very different levels of
granularity. Therefore, the entire body of research on adaptation is very vast and its
complete review out of the scope of this chapter. Instead we will limit the discussion
to work that is relevant in the context of query execution in Search Computing and
structure them according to the scope of their application, from coarse-grained to fine-
grained. We will start with adaptation at the level of the architecture, then discuss the
adaptation of applications and conclude by presenting solutions to adapt processes in
particular data-driven computations.

 229

On an architectural level, the focus on adapting processes lies on leveraging the
resources that are at disposition best. To that end, load-balancing schemes or the
dynamic reassignment of resources to computation nodes are techniques that are often
employed in the area of distributed computing, such as grid or cloud computing. On a
level of finer granularity, we note that the adaptation of applications is a requirement
that frequently arises in mobile and ubiquitous computing as well as in Web
engineering. Context-awareness is a solution often proposed to adapt applications to
limited device resources, environmental factors or multiple output channels. In the
area of context-awareness, work has also been done on context-aware data
management and querying [14]. Finally, it is also possible to perform adaptation on
the level of individual computations that can be both process-driven and data-driven.
In the following, we will focus entirely on adaptation of data-driven computations
such as query plan adaptation since this is most closely related to the query execution
engine presented in this chapter.

Generally, query plan adaptation can be classified according to when it is taking
place into compile-time and run-time adaptation. On a finer level, query plan
adaptation can be refined further according to the information that is used as input to
effect the optimization. We distinguish the types of input information given below
and, in the following, discuss how each one of them can be used for adaptation.

− Data statistics such as the cardinality of tables and the selectivity of predicates.
− Usage statistics obtained through profiling of query execution or mining of query

execution history to get dynamic statistics (self-tuning databases).
− User control that determines the adaptation of the query plan.

Clearly, some of these types of information are mostly used for compile-time
adaptation, while others only make sense for run-time optimization. For example, data
statistics are usually leveraged at compile-time by the optimizer to plan the execution
of the query in the best possible way. While usage statistics are typically gathered at
run-time, either using “pay-as-you-go” frameworks [5] or in separate mining
processes, this information is also applied to the adaptation of the query plan at
compile-time. As a consequence, the queries that are profiled or mined do themselves
not profit from this information as only later executions of the same or similar queries
are adapted accordingly.

Nevertheless, approaches that use data and usage statistics for supporting the
dynamic reoptimization [16] and adaptation of query plans exist. Among those
approaches are adaptive operators, query scrambling, the interleaving of query
planning and execution, and opening up the query optimizer to application input.
Adaptive operators, such as e.g. choose nodes [6], XJoin [23], or BindJoin [18], are
query plan nodes that defer certain decisions until execution. In the former case,
choose nodes select at run-time from a set of query sub-plans that was defined at
compile-time. In the latter cases, the join implementations themselves are capable of
adapting to delays at run-time. Another more dynamic approach for dealing with
unexpected delays is query scrambling [24] that modifies the query execution plan on
the fly based on heuristics. In approaches that use interleaving, e.g. [26] or [8], the
optimizer only produces a partial plan for the execution engine and decides how to
proceed once that partial plan has been evaluated. Finally, the author of [4] argues
that future query optimizers should also benefit from rich usage data and application

230

input. Adaptive query execution systems for data integration over the Web address
the problems of absence of statistics and unpredictable data arrival characteristics.
Most of these systems combine novel approaches, e.g. incomplete query plans that are
completed and (re)optimized incrementally [15] with existing concepts such as the
previously discussed interleaving of query planning and execution as well as adaptive
operators. Adaptive query processing approaches that leverage information captured
through self-monitoring of the query execution have also been proposed for Grid
computing [11].

Finally, user control as an input for process adaptation has been addressed in
systems that allow performance and query execution to be expressed through
interactive dashboards [7]. As most work on dashboards has been done by the HCI
community, it largely addressed the interface level in terms of visualizing complex
and large sets of information in a comprehensive and graspable way. Nevertheless,
there are also approaches that focus on the evaluation of queries in the presence of a
visual and interactive interface. For example, [22] shows how dynamic query
interfaces can be supported in large databases through the use of incremental data
structures and algorithms. The approach introduces the notion of an active subset of
the database that is enhanced with auxiliary data structures designed to support
continuous querying. These auxiliary data structures are directly coupled to the
interface and are only reprocessed in the event of user interaction. Results are
visualized incrementally by computing and displaying the delta resulting from the
user input. In [3], a classification and survey of visual query systems for databases is
presented.

3 Panta Rhei Specifications

While classic execution engines operate upon databases which are initially stored
within the memory (possibly distributed and replicated), query execution in Search
Computing requires the efficient execution of joins between results of service
invocations and, hence, the main flows of data production fall outside of the engine’s
control. The need of combining service invocations with data-intensive operations is
the main architectural challenge, approached by a modular decomposition of the
process into processing units and by an explicit description not only of the data flow,
as it is typical of many run-time architectures, but also of the control flow, through
dedicated units and signals. Control flow modeling enables to explicitly tune
execution, adapting it to unexpected behaviors of the components.

This concept is illustrated in Fig. 2. In the plan, the input unit, after its activation at
query start, sends a control pulse to a search service unit, which executes a call. The
call’s result is a data flow which is sent to the output unit and, hence, returned to the
query interface.

S

Fig. 2. Simple execution plan

 231

In the following, control flows, data flows, and processing units are described in
detail.

3.1 Structure of Execution Plans

Panta Rhei is a dedicated environment for the processing of execution plans. Every
execution plan represents the physical evaluation of a query plan, and consists of a
directed graph of nodes (units) and edges (data and control flows), where

− The data flow is a directed acyclic graph connecting processing units and whose
closure defines a precedence relationship between units (the “flow of execution”).
The data flow itself consist of chunks of combinations (tuples) which are
progressively created by joining pairs of services, therefore in the end the flow of
executions produces the result tuples. Search computing results are duplicate-free,
and therefore once a tuple is formed along the dataflow, another identical tuple
can be removed from the computation.

− The control flow includes pulse signals which are propagated “forward” (i.e.
along the flow of execution) in order to time and synchronize service calls, and
suspend/resume signals which are propagated “backward” in order to re-
synchronize execution when anomalies are detected. Therefore, the forward
controls determine producer-consumer relationships according to the query plan,
and the backward controls optionally conditions those producer-consumer
relationships that deviate too much from the optimal plan determined at query
optimization time. A control edge may start from a data producer and, in this
case, every new chunk of data produced by the unit also produces a new pulse
signal.

− The behavior of each node is completely determined by its input and state. Some
units accept at most one input pulse, if the pulse is omitted then the unit responds
just to data flows. All nodes receive their data input from one predecessor, with
the exception of parallel joins and cache units, that can have more than one data
flow edges as input, as they implement binary operations (join and union).

Query plans include parallel and/or pipe joins (as presented in Chapter 10) which are
translated into nodes of the execution plan. While a pipe join is represented as a
sequence of service calls in which the second call implements the join, a parallel join
requires an explicit join unit which has two service units as predecessors. The
parameter setting of nodes involved in join computation is optimized according to the
service interface specifications (particularly, their chunk sizes and service costs).
The translation of an optimal query plan into its execution plan is rather
straightforward, as the topology of the execution plan can be immediately drawn from
the query plan. Instead, the initialization of node parameters dictating the
specification of the operations implemented by them is not covered in the book. At
the moment, we use simple heuristics to initialize the parameters, but we expect to
fine-tune the heuristics after experimentation.

Conceptually (the implementation may be different), each node is mapped to a
thread which is activated at query start, waits for input, and produces output. Queries
can be suspended and resumed by users according to the liquid query interface
controls, described in the next chapter. At query start (or resume), some user-controlled

232

parameters may be fetched into appropriate “slots” of units to fully specify their
behavior. Most of these parameters are defined by the query optimization process.
Then, the start node of the execution plan is activated, which triggers the start of its
successor nodes. Nodes either act as data producers or consumers, or play both roles.
During the execution, data producers can send “EOF” data along one data flow link,
with the semantics that there will be no more data along the link. The “EOF” data is
propagated by consumers until it reaches the output node, causing query termination
and then the output to be produced.

The liquid query interface communicates with the execution engine by various
controls, and the effect of controls may suspend or terminate a query execution. Users
may also change the content of some of the query “slots” which are exposed to the
user interface (through user-friendly formats). Threads are eliminated only when the
user “changes” the query. Memory caches, however, might be emptied if the user
“repeats” a query with a different input.

3.2 Scheduling Units in Panta Rhei

The semantics of execution plans is rather complex, as it requires introducing a
number of ingredients (concerning units and their control) which interact with each
other. We have decided to first present all ingredients and then to show their interplay
through examples. The types of flows offered by the execution engine have already
been introduced above and we recall that control flows are signals carrying no
information other than their intrinsic nature (pulse, suspend, resume), while data
flows carry chunks of tuple combinations, made up by matching results of the
previous service calls in the flows, and emitted by units in chunks, according to the
unit’s execution semantics. In the following, we therefore focus on an in-depth
presentation of the various kinds of units, which are shown in Fig. 3.

Input and Output Units. The input unit injects user-provided input into suitable slots
of given units, and then starts the execution. Each execution plan must have exactly
one input node, which has one or more successor nodes.

The output unit is a consumer node collecting query results. Each plan must have
exactly one output node. Its execution activates the liquid interface showing the query
results.

Clock Unit. A clock unit plays the role of coordinating service calls to perform pipe
and parallel joins – thus, it is neither a producer nor a consumer. Topologically, every
clock unit has in its children at least two service calls. Every clock in a plan controls a
sequence of joins, where each join in the sequence is either a pipe or a parallel join,
and the topology of the execution plan indicates the operands of each join1.

Every clock is activated by a start pulse signal (a control edge connects the input
node to the clock) or by a data-producer unit which produces its first data (in this
case, a control edge connects the data producer unit to the clock). Clocks emit pulse

1 Currently, we associate every query with exactly one clock unit controlling all of its joins, but

we plan to experiment with more general settings. As clocks can be activated during the
execution flow, the semantics of clocks, service, and join units in the context of scheduling
plans does not force plans to have a single clock.

 233

S,C
[stop: X]

S,C
[stop: X]

S[,C]<clock function>
period : X

S

A
Z

<sort expression>
[C|B]

σ
<selection predicate>Size: X

[stop: Y]

C
[stop: X]

[excess:(Y,Z,..)]

C
[stop: X]

[excess: (Y,Z,…)]

Clock Exact service Search service
No pipe join

Search service
Rectangular strategy

Search service
Triangular strategy

Join
Rectangular strategy

Join
Triangular strategy

SelectionChunker Sort Cache

Input

Output

Fig. 3. Nodes of execution plans

signals to two or more service invocation units, ordered from 1 to n (the order of
controlled units is given by the numbers labeling the pulse edges).

Every clock has a parameter, called clock function, defined by a regular expression
that describes the maximum number of calls that the service unit can perform during
the clock cycle, for each service unit controlled by the clock and for each clock cycle.
To do so, the regular expression defines a sequence of clock values which each
correspond to one clock cycle. Clock values are denoted as n-tuples of integer
numbers, where n is the number of service invocation units controlled by the clock
unit. Enumerable repetitions of sequences are indicated by a superscript, while infinite
repetitions of the last parenthesis are denoted by an “n” superscript. As an example,
(1,1)(2,2)n represents a sequence in which two services are invoked once in the first
clock cycle, and then can be invoked at most twice in any subsequent clock cycle. An
example of clock function for controlling three service units is: (3,1,2)(4,0,3)2(5,1,4)n.
The clock function can be replaced at runtime, e.g. based on user input.

Every clock has a given clock frequency (cycles per second), which determines the
time interval between two consecutive pulses to the descendent units. The clock
frequency should be related to the average response time of the search services
controlled by the clock. A reasonable recommendation is to set the frequency to cater
for the execution of the largest of Nij × ARTi, where Nij is the number of calls that unit
i is enabled to perform during cycle j and ARTi is the average execution time of

234

service Si. This number represents an estimate of the execution time due to the slower
service which is controlled by the clock. Otherwise the clock would “enforce” a speed
greater than the speed of one controlled service (and as such it can hardly impose any
synchronization)2.

A clock can be suspended by any service that it schedules. Services may be slower
or faster in producing tuples relative to the plan, and thus the joiner could deviate
from the configured ratio. The rationale of suspend/resume is that triangular or
rectangular strategies of joins should be faithfully implemented, as they were decided
by an optimizer at compilation time by taking into account the features of the services
(and attempting a minimization of their access costs), and thus deviations from plans
occurring at run-time should be limited. A given amount of permitted deviation
(ranging between zero and infinite deviation) is defined as a join parameter. If the
allowed deviation is overcome, then the clock is suspended. As a consequence, the
clock will not issue any more pulses until it will receive a resume signal, which in
turn is sent by the same join unit when the deviation is reduced to an acceptable
amount.

Exact and Search Service Units. Exact service units produce a finite set of tuples
that represent the exact (and thus complete) response to the service call query given
the input parameters. The output tuples are neither ranked nor chunked. Nevertheless,
exact services produce sequences of chunks, where each chunk corresponds to one
service invocation. In the context of pipe joins, these sequences may be ordered in the
data flow due to their composition with previous calls to search services. Exact
services are triggered by a single input, either a pulse or a data chunk.

− In the first case, denoted as pulse input, the pulse produces a single exact service
call, performed as soon as the pulse is received. Therefore, a well formed graph
should only allow pulse signals to an exact service with the “number of
invocations” parameter set to one, which is assumed as default. If an exact service
is called only once and independently of data flows, normally its input is filled by
“slots” extracted from the query. This situation occurs when the exact service call
does not depend on other services. Note that further pulse signals, in this case,
should not be allowed by a correct graph, and anyway will have no effect on the
unit (i.e. the service call will not be repeated). An EOF marker indicates the end
of tuples in the result.

− In the second case, denoted as chunk input, the service triggering produces as
many calls as there are tuples in the data chunk, performed as soon as the chunk
tuples become available and continued until all tuples are consumed. In this
situation, the exact service unit implements a pipe join, whose strategy is however
rather simple, because it consists in a simple call iteration. The input parameters
of each iteration are extracted from the input tuple, and the corresponding result
tuples are combined (joined) with the input tuple, thereby producing an output
chunk. If the input dataflow is ordered, then the chunks are produced by the
service according to the input order.

2 Setting the clocks’ frequency is a delicate service time vs. optimization time trade-off.

Currently, we use as default solution setting the frequency exactly to the largest Nij × ARTi
computed on all the clock’s edges.

 235

Search Services exhibit a behavior similar to Web search engines: results are
unbound, ranked and chunked, and normally there is no interest in obtaining a
complete result, but only in obtaining the first chunks. They are triggered by either a
pulse or a pair of data chunk and pulse.

− In the first case, denoted as pulse input, every pulse corresponds to a given
number of service calls, progressively extracting new chunks at each call; Nij
denotes the number of allowed calls for service i in a clock cycle j. Normally,
input fields for the call are filled by “slots” extracted from the query. This
situation occurs when the search service call does not depend on other services.

− In the second case, denoted as pulse and chunk input, the same number Nij of
service calls is allowed as in the first case, but these calls can either use a new
tuple from the input flow to match it with the “first” chunk of results for that
tuple, or instead continue with another input tuple Ti that was already used in
previous calls (thereby producing a given number Ci of chunks) and produce one
or more subsequent chunks for that tuple (i.e. chunks starting with Ci+1). This is
the most complex case of pipe join strategy, which iterates over either new or
already considered input tuples (which may be unordered or ordered by the first
service call) and produces chunks (which, for each input tuple, are relatively
ordered by the second service call). A pipe join strategy is used for choosing at
each step, which follows either a rectangular or triangular strategy which will be
discussed below. In any case, results are produced by chunks (whose size is given
by the number of matching tuples produced at each call of the service) and the
chunks are ordered.

Pipe joins occur when a dataflow input edge comes into a service call unit of arbitrary
nature (either exact or search). A pipe join implements the join between services
when the join attributes of the first service are bound and the join attributes of the
second one are free. If the input data consists of the concatenation of N tuples, then
the output data will consist of concatenation of N+1 tuples, possibly represented
through their keys. If either the input is ordered or the service being called is a search
service, then the join output will be ordered.

When the second service being called is a search service, a pipe join strategy is
needed to control the allocation of service calls to input tuples (as each input tuple is
used to provide parameters for a service call, and the same tuple may induce several
calls to the service, to find “better” combined results). The join strategy is imposed by
performing a pipe join strategy on the downstream service unit, controlled by a clock,
called the pipe join’s clock controller, whose clock function regulates the behavior of
the two services. The input pulse parameters, sent by the clock controller to both
services, indicate the number of calls allowed within a given clock cycle, and
therefore also of chunks produced in output during a cycle. The pipe join strategy can
be either rectangular or triangular, as informally represented in Fig. 4.

− In a rectangular strategy, the calls are performed considering every available
input tuple in a round robin fashion: chunks are progressively extracted (the first
chunk for tuples T1, T2, T3… and then the second chunk for tuples T1, T2, T3…).
This strategy is well suited when the first service is an exact service, producing
unordered input. A rectangular strategy can be imposed by setting a parameter in

236

the second service (to R) and timed by the join’s clock controller, by setting the
clock’s function to (1,N)M(0,N)n, where N is the chunk size of the first service,
and after the first M calls the first service produces an EOF. Then, calls have to
be addressed just to the second service, producing the various layers of the
rectangle, by iterating on the result tuples of the first service.

− In a triangular strategy, calls are performed in an alternate fashion: the first
chunk is extracted for T1, then the first chunk is extracted for T2 and the second
chunk is extracted for T1, and so on, as described in the right side of Fig. 4 (same
as merge-scan parallel join). This strategy is well suited when the first service is a
search service, producing ordered input. A triangular strategy can be imposed by
setting a parameter in the second service (to T) and timed by the join’s clock
controller, by setting the clock’s function to the sequence (1,N)(1,2N)(1,3N)…,
where N is the chunk size of the first service, thereby offering to the second
service the option to get new chunks both for new tuples and for already available
tuples of the first service.3

Join Units. Join units support the parallel join between two services, i.e. a join when
neither of the join attributes is bound. A join unit joins the available information “by
chunks”. Each chunk combination gives rise to a “tile” of results (i.e. tile (1,1), (1,2),
(2,1), (2,2)…), as discussed in the previous chapter. Therefore, it has as predecessor
(at least) a pair of search services (producing chunked data). A join strategy specifies
the order of exploration of tiles, with the aim to process tiles with higher rankings and
more matches as fast as possible. A merge-scan strategy is obtained by setting the
clock’s function to (N,M)n where N/M is the optimal ratio between chunks of the two
services. A nested-loop strategy is obtained by setting the clock’s function to
(1,N)(1,0)n, where N calls are required to exhaust the second service and then calls are

Input
tuples

Output chunks
(per input tuple)

...

Input
tuples

Output chunks
(per input tuple)

...

(a) (b)

...

Fig. 4. Rectangular (a) vs. triangular (b) pipe join strategies

3 A pure triangular strategy can be modified by defining “triangles” more properly, e.g. with an

arbitrary proportional alternation. This extension is left for future work.

 237

only addressed to the first service. In both cases, the choice of rectangular or
triangular strategy is specified by setting a parameter in the join unit (to R/T). If either
of the join input is not chunked, then the strategy is not needed and the parallel join
degenerates to a unit which has a simple implementation, consisting in producing tiles
in the only possible order (e.g. (1,1), (1,2), (1,3)…).

A join unit can have a stop parameter, which indicates the maximum number of
tuples that should be produced by the join before suspending its execution (and
producing an EOF marker)4.

In addition, a join unit has a pair of local parameters describing the amount of
deviation allowed from the planned strategy. Deviation only occurs if the join
greedily attempts to produce more chunks than the number allowed by available input
and planned strategy. These numbers count how many additional input chunks can be
joined from either services, ranging from (0,0) – no deviation for either services – to a
given pair (2,3), to unspecified – no deviation control. When the maximum allowed
deviation on one input (corresponding to a service running “too fast”) is overcome,
the clock controlling the join unit is suspended. At that point, the service running “too
slow” has some pulses available, and the join unit can concentrate upon the “tiles”
which were left behind due to the slowest service, in order to bring the proportion of
service calls back within the specified limits. Finally, at that point, the clock is
resumed.

Selection Unit. A selection unit receives a (chunked) dataflow in input and produces
a (chunked) data flow in output, consisting of all the tuples which satisfy a selection
condition (an arbitrary Boolean expression of selection predicates). The selection unit
does not re-chunk the output to a given chunk size and, thus, possibly changes the size
of the chunks according to the selectivity of the predicate. Equality predicates
matching input attributes to constants are used for building service calls, while a
selection unit computes additional selections (e.g. comparison operations between
attributes). Classical methods are used (by the query optimizer) in order to place the
selection unit immediately after the join operation (either pipe or parallel join) which
constructs the tuple with the attributes required for computing the predicate.

Sort, Chunker and Cache Units. A sort unit gets in input chunks of tuples and
produces re-ranked result tuples in output, according to a sort expression. Sort units
can be “continuous” (they sort the input chunks one by one, as they are available) or
“blocking” (they wait for an EOF marker, and then process the whole input
accumulated so far and emit the reordered tuples as a single output chunk). The sort
function is a weighted sum of normalized expression (in the [0..1] range) over input
tuple attributes, with a sort direction (either ascending or descending).

A chunker unit constructs new chunks from input tuples, by ignoring any already
existing chunk structure thereupon. It is configured with a desired output chunk size.
A chunker emits a new chunk as soon as there are exactly as many tuples as the chunk
size. It has a “stop” parameter indicating the number of chunks it should produce
before placing an EOF on its output dataflow, which can be interpreted by the output
unit as the signal for producing output to the interface. A chunker is normally the last

4 An EOF marker can be overridden by the user to resume the query plan and produce more

results.

238

unit before the output unit and therefore the suspension stops the computations
returning the control to the user, who in turn can resume computations and ask for
more outputs.

A cache unit stores, within temporary memory, chunks of tuples, retrieved from
services, or tuples of their keys forming combinations produced by joins.
Conceptually, a cache unit is present after every service or join unit in order to store
the service call or join results. However, in order not to overload the representation of
an execution plan, we may omit cache units unless they have more than one incoming
edge. In this case, all incoming tuples share the same schema and the cache
implements the union of these tuples. The cache can also change the order of
combinations when used as a union and, hence, its edges are labeled accordingly (e.g.
S1/S2). The cache memory uses the normalized schema of the services in order to
store service call results, and stores combinations as tuples of keys of the primary
table of each service. The keys are system-generated and the tuples are indexed by
chunk number and by key.

4 Examples

This section presents examples of execution plan models in increasing complexity.
The purpose of the examples is to show, although on a limited sample, that execution
plans can support various join strategies, including parallel join, pipe joins, and the
Fagin join method which gives top-k guarantees.

We start with a parallel join of search services (Fig. 5), which is discussed at length
in Chapter 10. The execution of a merge scan join between two services S1 and S2
using a connection pattern C1 requires a triangular join strategy. If the optimizer
determines that the optimal ratio between calls to service S1 and S2 is 1/2, it is
sufficient to set the clock function to (1,2)n which means that at each cycle S1
performs (at most) one call while S2 performs (at most) two calls. The clock
frequency is set so that the slowest call sequence (e.g. the time required for
completing either one call of S1 or two calls of S2) takes place within about one cycle.
The join at each new iteration builds tiles in triangular fashion, e.g. first tiles (1,1),
(1,2), then tiles (2,1), (2,2), (1,3), (1,4), and so on. The joiner is allowed to produce

S1

S2

(1,2)n

period : 150
C1

stop: 10
excess: (1,1)

(1)

(2)

Fig. 5. Parallel join of two search services

 239

S1
chunks

S2
chunks

permitted by strategy
allowed excess

forbidden

Fig. 6. Join space permitted by the strategy and allowed excess for the parallel join of the
example in Fig. 5, in case S1 returned 3 chunks and S2 returned 4 chunks

more tiles, e.g. if at a given point of time S1 has already produced 3 chunks and S2
has produced only 4 chunks, thus going beyond the 1/2 ratio, the joiner can
proceed with the tile (3,1), (3,2) and then (2,3), (2,4), still keeping a triangular
strategy. By doing so, it reaches its “allowed excess”, which is 1 extra-chunk
(see Fig. 6).

In this case, if S1 produces one more chunk, the joiner signals the clock, and the
clock in turn stops sending pulses until S2 produces 8 chunks, re-establishing the 1/2
ratio. Then, the joiner resumes the clock, and the execution of service calls and joins
continues according to the joiner’s triangular strategy. The joiner is set to stop its
execution, producing an EOF, when 10 result tuples are built. When the EOF is
received by the output node, it presents 10 result tuples to the liquid query user
interface.

We next illustrate a pipe join on the same services and connection pattern
(Fig. 7). We implement a nested loop join, in which we assume that S1 produces
chunks of size 10 and that after 5 calls it produces all relevant results. Then, the
ratio between calls to S1 and S2 is 1/10 (every tuple of S1 is an input to S2) and the
number of times this ratio must be iterated is 5. This enables building tiles
(1,1)...(50,1), where each tile is obtained for a different tuple in input. At that
point, no more calls to S1 are needed (all 50 tuples are cached) and therefore calls
to S2 must be performed. S2 then performs the joins, thus producing the second,
third, …, and i-th chunk for the 50 cached tuples. The execution is terminated as
soon as 20 result tuples are produced and an EOF is produced to transmit the result
to the query interface through the output unit.

240

(1,10)5(0,1)n

period : 500 ms
S1 S2

(1)

(2)

size 20
stop 1

Fig. 7. Pipe Join of two search services

(1,1)n

period : T

S221S111

S211

C
stop: K

A
Z

<sort function>
B

size: K
stop: 1

S121

(2)

S1|S2

S1|S2

(1)

Fig. 8. Execution plan for a Fagin Join

The next example is the Fagin join [9] (Fig. 8). We recall that the method is
applicable when both sequential (rank-based) and random (key-based) accesses are
available for both of the services involved, and the method guarantees the extraction
of top-K combination tuples, i.e. the tuples which are the best K according to any
monotonic function of their relative rankings. We regard the Fagin method very
suitable to Search Computing for this generality and for the method’s full definability
at compile time, although it is suboptimal if compared with the threshold method, as
discussed in Chapter 11.

Fig. 8 shows an execution plan for the parallel join of two search services S1 and S2
(supporting sequential access) followed by the pipe join of different service interfaces
of services S1 and S2, supporting direct access (e.g. access by an identifying property).
A parallel join serves the purpose of halting the pulses to the search services as soon
as K tuples are built. Then, by making a direct access for all join result values
respectively on S2 – if the join value comes from S1 – and on S1 – if the join value
comes from S2. Results are then reordered and stored into a cache unit which performs
their union. Eventually, results are sorted according to the sort function to obtain the
single chunk of K resulting tuples, which are guaranteed to be top-K.

Finally, Fig. 9 shows an execution plan for the running example which queries for
a good and recent adventure movie with screenings in a theatre not too far from the
user’s home and good restaurants nearby. The clock controls in this case a parallel
join which is followed by a pipe join. The parallel join combines Movies with

 241

Movie31

CloseTheatre11

(1,1,10)n

period:
250 ms

(2)

(1)

Shows
stop: 10

excess: (1,2)

CloseRestaurant11 /
DinnerPlace

(3)

Fig. 9. Running Example

CloseTheatres according to the Shows combination pattern. The join combines one
chunk of Movie with two chunks of CloseTheatre, using a triangular strategy, and
with allowed excesses also set to (1,2). The join stops after producing 10
combinations of movies and theatres. Meanwhile, the data flow of the join results are
sent to the CloseRestaurant service through the DinnerPlace connection pattern. For
each pulse to Movie, 10 pulses are sent to CloseRestaurant, thereby enabling a tuple-
based with 10 input tuples on from the first iteration, so that every matching movie-
theatre pair is associated with close-by restaurant of the desired kind. Once 10 pairs
are produced with a variable number of matching restaurants, execution is completed
and results are transferred, through the output unit, to the user interface.

5 Conclusion

The execution engine described in this chapter supports operations such as service calls,
join processing, caching, sorts, and chunking in order to support the efficient execution of
the optimal plan selected by the optimizer. The execution engine prototype is a running
platform which fosters the experimentation with new ideas and novel join strategies. Its
extensible organization allows us to easily introduce new nodes or to change their
parameters. The execution engine model is rather preliminary and will be improved
while new releases of the environment will be deployed, yet the model resolves most of
the technical challenges that are set by Search Computing queries.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H.,
Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The
Design of the Borealis Stream Processing Engine. In: Proceedings of Second Biennial
Conference on Innovative Data Systems Research (CIDR 2005), Asilomar, CA, USA
(January 2005)

242

2. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource
Management and Scheduling in Grid Computing. Concurrency and Computation:
Practice and Experience 14(13-15), 1507–1542 (2002)

3. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual Query Systems for
Databases: A survey. Journal of Visual Languages and Computing 8(2), 215–260 (1997)

4. Chaudhuri, S.: Query Optimizers: Time to Rethink the Contract? In: SIGMOD 2009:
Proceedings of the 35th SIGMOD international conference on Management of Data, pp.
961–968. ACM, New York (2009)

5. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: A Pay-As-You-Go Framework for
Query Execution Feedback. Proc. VLDB Endow. 1(1), 1141–1152 (2008)

6. Cole, R.L., Graefe, G.: Optimization of Dynamic Query Evaluation Plans. In: Snodgrass,
R.T., Winslett, M. (eds.) Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, May 24-27, pp. 150–160.
ACM Press, New York (1994)

7. Eckerson, W.W.: Performance Dashboards: Measuring, Monitoring, and Managing Your
Business. John Wiley & Sons, Chichester (2006)

8. Evrendilek, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase Query Optimization.
Distrib. Parallel Databases 5(1), 77–114 (1997)

9. Fagin, R.: Combining Fuzzy Information from Multiple Systems. J. Comput. Syst.
Sci. 58(1), 83–99 (1999)

10. Goodenough, J.B.: Exception Handling: Issues and a Proposed Notation. Commun.
ACM 18(12), 683–696 (1975)

11. Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Self-Monitoring Query
Execution for Adaptive Query Processing. Data Knowl. Eng. 51(3), 325–348 (2004)

12. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Comput.
Surv. 25(2), 73–169 (1993)

13. Graefe, G.: Iterators, Schedulers, and Distributed-Memory Parallelism. Softw. Pract.
Exper. 26(4), 427–452 (1996)

14. Grossniklaus, M., Norrie, M.C.: An Object-Oriented Version Model for Context-Aware
Data Management. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C.,
Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 398–409. Springer,
Heidelberg (2007)

15. Ives, Z.G., Florescu, D., Friedman, M., Levy, A., Weld, D.S.: An Adaptive Query
Execution System for Data Integration. SIGMOD Rec. 28(2), 299–310 (1999)

16. Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans. SIGMOD Rec. 27(2), 106–117 (1998)

17. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

18. Manolescu, I., Bouganim, L., Fabret, F., Simon, E.: Efficient Querying of Distributed
Resources in Mediator Systems. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA
2002, and ODBASE 2002. LNCS, vol. 2519, pp. 468–485. Springer, Heidelberg (2002)

19. Rao, J., Pirahesh, H., Mohan, C., Lohman, G.: Compiled Query Execution Engine Using
JVM. In: ICDE 2006: Proceedings of the 22nd International Conference on Data
Engineering, p. 23. IEEE Computer Society, Washington (2006)

20. van Reeuwijk, C.: Maestro: A Self-Organizing Peer-to-Peer Dataflow Framework Using
Reinforcement Learning. In: HPDC 2009: Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing, pp. 187–196. ACM, New
York (2009)

 243

21. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query Optimization Over Web
Services. In: Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten,
M.L., Cha, S.K., Kim, Y.K. (eds.) VLDB, pp. 355–366. ACM, New York (2006)

22. Tanin, E., Beigel, R., Shneiderman, B.: Incremental Data Structures and Algorithms for
Dynamic Query Interfaces. SIGMOD Rec. 25(4), 21–24 (1996)

23. Urhan, T., Franklin, M.J.: XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE
Data Eng. Bull. 23(2), 27–33 (2000)

24. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost-Based Query Scrambling for Initial Delays.
SIGMOD Rec. 27(2), 130–141 (1998)

25. Whiting, P.G., Pascoe, R.S.V.: A History of Data-Flow Languages. IEEE Ann. Hist.
Comput. 16(4), 38–59 (1994)

26. Wong, E., Youssefi, K.: Decomposition—A Strategy for Query Processing. ACM Trans.
Database Syst. 1(3), 223–241 (1976)

27. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing.
SIGMOD Rec. 34(3), 44–49 (2005)

	Chapter 12: Panta Rhei: Flexible Execution Engine for Search Computing Queries
	Introduction
	State of the Art
	Query Processing Paradigms
	Adaptation

	Panta Rhei Specifications
	Structure of Execution Plans
	Scheduling Units in Panta Rhei

	Examples
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

	Text1: Ersch. in: Search computing - challenges and directions / Stefano Ceri, Marco Brambilla (eds.). - Berlin [u.a.] : Springer, 2010. - S. 225-243. - (Lecture notes in computer science ; 5950). - ISBN 978-3-642-12309-2
	Text2: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-251428

