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Abstract. The efficient execution of data-intensive computations over services 
is a challenging task: data are retrieved from remote sources and therefore are 
not available in the query engine until after the execution of these calls, but the 
system must be inherently efficient thereafter, by guaranteeing that data is 
immediately cached and processed efficiently, according to the best query plan. 
In this chapter, we present a flexible execution model for search computing 
queries, named Panta Rhei. The proposed execution engine paradigm adopts the 
producer/consumer model and supports both data-driven and event-driven 
synchronization, and their interplay. Query plans are modeled as directed 
graphs, whose nodes are processing units and whose edges are either control or 
data flows. While control flows synchronize service calls and unit execution, 
data flows transfer data between units that process data flows to produce query 
results. We present the specification of Panta Rhei by formally defining the 
units for data production, consumption, manipulation, and caching, as well as 
the control and data flows. Finally, we discuss how a query plan is expressed in 
terms of a query execution plan. 

1   Introduction 

Query execution in Search Computing is a data-intensive process. The computations 
required for answering a query, although performed upon the data resulting from 
service calls, are very similar to those performed by database management systems 
working on physically optimized tables. Therefore, a query execution engine 
supporting Search Computing must be able to efficiently support dynamic data 
extraction, storage and caching, as well as efficiently route data flows between 
special-purpose computational units, whose design has been optimized so as to 
guarantee the fast production of query results. 

Due to the very nature of many of these tasks and their embedding within Web-
based contexts, which are subject to continuous change, performances of data-
intensive service interactions are very hard to predict. Moreover, the execution engine 
must be strongly connected to the query user interface, so as to adapt to user requests 
that dynamically alter the query requirements, either by specializing current requests 
or by adding new requirements. For these reasons, the design of the query execution 
engine for Search Computing has required several architectural solutions for 
supporting dynamic adaptation which are quite original, especially for what concerns 
the synchronization aspects. 
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The main operation in Search Computing is the join of search services and, 
therefore, the execution engine is optimized to support joins, under the constraint that 
join data operands are not immediately available to the execution engine, but are 
produced by interacting with services, ranked and separated in chunks. Join 
processing, as explained in the previous chapter, aims at exploring given 
compositions of chunks returned by the services. In this setting, optimization consists 
in minimizing the number of service calls and, at the same time, in efficiently 
exploring the search space so as to rapidly produce results.  

Supporting join executions requires synchronizing pairs of services. To effect this 
synchronization, we introduce particular units, called clocks, whose effect is to give 
pulses to services so as to synchronize them according to certain mutual relationships 
that can be dynamically adapted. In order to respond to variability, synchronization is 
subject to feedbacks which are generated within the execution environment. The 
explicit (and user controllable) synchronization and adaptation of join computations 
through clock units is the most significant (and original) aspect of the execution 
engine, being used both for pipelined and parallel execution with a uniform style. 

Original aspects of the execution engine concerns the explicit management of 
chunks within the data flow, which is at the basis of the design of both the chunker 
units (capable of changing the size of chunks along the data flow) and the cache units 
(which store the results of service calls by chunks). In SeCo joins, a given chunk of a 
service’s results can be involved in many chunk combinations, performed after its 
initial loading, and cannot be discarded until query processing is completed. Chunk 
support allows for an intermediary granularity level, which is a good compromise 
between tuple-level (each tuple flows individually) and table-level (each data 
collection or table flows as a unit) granularity. We believe that this solution yields to a 
good trade-off between flexibility, adaptability, and performance. 

While clocks and chunks are, therefore, the main ingredients of the flexible 
execution engine, many other features characterize its design. The system must, of 
course, support sorting (i.e. ranking of results) which is a critical operation, because it 
is “blocking” (in order for the sort to be applicable to a given collection, all the items 
of the collection must be available) and data flow machines must try to minimize 
blocking operations. In addition, the system should support the early evaluation of 
selection predicates in order to reduce the size of data flows. 

The organization of this chapter is as follows. In Section 2 we present the state-of-
art of data-driven execution engines, first by highlighting the issues which arise in 
interpreted environments (such as ours) and then by focusing on adaptability of 
computations, the main quality offered by Panta Rhei. Section 3 presents the model, 
with its nodes representing units and edges representing data and control flows. Then, 
Section 4 sketches the translation of query plans into query engine execution plans, 
and Section 5 shows the typical translations of parallel, pipe, and top-k joins into 
schedules. 

2   State of the Art 

This section gives an overview of the state of the art of query execution with a focus 
towards the domain of Search Computing. First, we discuss different query processing 
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paradigms that serve to position the proposed query execution environment for Search 
Computing. A distinguishing feature of a query evaluation paradigm is the degree of 
query plan adaptation that is supported by an execution environment. In the second 
part of this section, we motivate the need for query plan adaptation at run-time and 
give an overview of related work on adaptation in other application domains. 

2.1   Query Processing Paradigms 

An important criterion in the design of a query execution engine for Search 
Computing is its query processing paradigm. In the past, several types of query 
execution engines have been proposed in the scope of traditional DBMS, such as 
interpreted or compiled [19] execution engines. On the one hand, interpreted 
approaches translate queries into query plans that are optimized and evaluated 
leveraging a general-purpose set of operators provided by a virtual machine such as 
the query evaluator of a database management system. Compiled approaches, on the 
other hand, use code generation to translate each query into a static program that is 
compiled and executed natively, i.e. directly on the operating system. The main 
strength of compiled engines is their performance as all meta-information required for 
evaluating a query is directly hardwired into the program code. The gain in 
performance comes, however, at the price of flexibility. While compiled engines are 
fast, it is more difficult to cater for run-time adaptation of query plans as this would 
require a recompilation of the program while it is executing. Due to the requirements 
of Search Computing, we have, therefore, chosen to build an execution environment 
that follows the approach of an interpreted engine, and therefore we focus this  
state-of-the-art on interpreted query engines. 

Interpreted engines can be further classified according to the query evaluation 
model that they use. Within interpreted engines, query execution plans require both 
control flow, which dynamically defines how engine modules are synchronized, and 
the data flows, which dynamically define data exchanges. From the viewpoint of data 
flows, components are characterized as producers and consumers and a query 
computation may involve several modules. At its beginning, a query plan involves 
producer modules, later intermediate components play both roles, and eventually 
query interfaces present their results to the user who is the “final consumer” of the 
system. Execution plan components, or “nodes”, have four possible behaviors relative 
to control and data flows, presented by Graefe (see [12], p.149ff) and shown in Fig. 1. 

− Standard iterators. In most query processing systems, the data flow is demand-
driven and controlled by the consumer. In this case, control and data flow point 
into opposite directions. According to [17], most state of the art approaches for 
distributed query processing use the iterator model [13] in which all operators 
exhibit an open()-next()-close() interface. 

− Data-driven operators. There are however systems such as real-time or data 
stream systems where the data flow is paced by the producer as it needs to unload 
the data as it arrives, e.g. sensor data. In a data-driven operator, control and data 
flow point into the same direction. 

To combine demand-driven and data-driven operators, it is necessary to introduce 
flow translation nodes [12] that mediate between the two types of operators. 
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Fig. 1. Nodes of an execution plan with control and data flow [12]; control flows are dashed 
arrows and data flows are solid arrows 

− Active scheduler. A data flow translation node that can be used to schedule a 
demand-driven operator (iterator) as producer and a data-driven operator as 
consumer. This node actively requests data from a demand-driven producer and a 
passes it on to the data-driven consumer. 

− Passive scheduler. A data flow translation node that can be used to schedule a 
data-driven operator as producer and a demand-driven operator as consumer. As 
soon as the data-driven producer delivers data, this node accepts and buffers it 
until the data is requested from the eventually resumed demand-driven consumer. 

Another important characteristic of the query processing paradigm is whether the 
execution is governed centrally by a global scheduler that has complete knowledge or 
in a distributed setup where the nodes of the execution engine make local scheduling 
decisions based on incomplete knowledge. For example, data flow systems [25] and 
stream processing systems, e.g. Aurora/Borealis [1], have addressed the problem of 
scheduling data-intensive computations. More recently, scheduling algorithms have 
been proposed that control the execution of a computation in peer-to-peer networks, 
such as the economic model [2] or approaches based on reinforced learning [20]. 
While data flow systems are designed for the execution of fine-grained computations, 
workflow systems [27] address coarser-grained processes executed over Web 
services. While these two families of systems are similar in terms of goals, the latter 
tends to use central scheduling that operates on global information. 

2.2   Adaptation 

The capability of adapting software systems to internal or external requirements is 
often referred to as adaptation. Adaptation can be effected at design or compile-time 
of a system as well as at run-time. The need for adaptation is present in many 
application domains and adaptation can be supported at very different levels of 
granularity. Therefore, the entire body of research on adaptation is very vast and its 
complete review out of the scope of this chapter. Instead we will limit the discussion 
to work that is relevant in the context of query execution in Search Computing and 
structure them according to the scope of their application, from coarse-grained to fine-
grained. We will start with adaptation at the level of the architecture, then discuss the 
adaptation of applications and conclude by presenting solutions to adapt processes in 
particular data-driven computations. 
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On an architectural level, the focus on adapting processes lies on leveraging the 
resources that are at disposition best. To that end, load-balancing schemes or the 
dynamic reassignment of resources to computation nodes are techniques that are often 
employed in the area of distributed computing, such as grid or cloud computing. On a 
level of finer granularity, we note that the adaptation of applications is a requirement 
that frequently arises in mobile and ubiquitous computing as well as in Web 
engineering. Context-awareness is a solution often proposed to adapt applications to 
limited device resources, environmental factors or multiple output channels. In the 
area of context-awareness, work has also been done on context-aware data 
management and querying [14]. Finally, it is also possible to perform adaptation on 
the level of individual computations that can be both process-driven and data-driven. 
In the following, we will focus entirely on adaptation of data-driven computations 
such as query plan adaptation since this is most closely related to the query execution 
engine presented in this chapter. 

Generally, query plan adaptation can be classified according to when it is taking 
place into compile-time and run-time adaptation. On a finer level, query plan 
adaptation can be refined further according to the information that is used as input to 
effect the optimization. We distinguish the types of input information given below 
and, in the following, discuss how each one of them can be used for adaptation. 

− Data statistics such as the cardinality of tables and the selectivity of predicates. 
− Usage statistics obtained through profiling of query execution or mining of query 

execution history to get dynamic statistics (self-tuning databases). 
− User control that determines the adaptation of the query plan. 

Clearly, some of these types of information are mostly used for compile-time 
adaptation, while others only make sense for run-time optimization. For example, data 
statistics are usually leveraged at compile-time by the optimizer to plan the execution 
of the query in the best possible way. While usage statistics are typically gathered at 
run-time, either using “pay-as-you-go” frameworks [5] or in separate mining 
processes, this information is also applied to the adaptation of the query plan at 
compile-time. As a consequence, the queries that are profiled or mined do themselves 
not profit from this information as only later executions of the same or similar queries 
are adapted accordingly. 

Nevertheless, approaches that use data and usage statistics for supporting the 
dynamic reoptimization [16] and adaptation of query plans exist. Among those 
approaches are adaptive operators, query scrambling, the interleaving of query 
planning and execution, and opening up the query optimizer to application input. 
Adaptive operators, such as e.g. choose nodes [6], XJoin [23], or BindJoin [18], are 
query plan nodes that defer certain decisions until execution. In the former case, 
choose nodes select at run-time from a set of query sub-plans that was defined at 
compile-time. In the latter cases, the join implementations themselves are capable of 
adapting to delays at run-time. Another more dynamic approach for dealing with 
unexpected delays is query scrambling [24] that modifies the query execution plan on 
the fly based on heuristics. In approaches that use interleaving, e.g. [26] or [8], the 
optimizer only produces a partial plan for the execution engine and decides how to 
proceed once that partial plan has been evaluated. Finally, the author of [4] argues 
that future query optimizers should also benefit from rich usage data and application 
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input. Adaptive query execution systems for data integration over the Web address 
the problems of absence of statistics and unpredictable data arrival characteristics. 
Most of these systems combine novel approaches, e.g. incomplete query plans that are 
completed and (re)optimized incrementally [15] with existing concepts such as the 
previously discussed interleaving of query planning and execution as well as adaptive 
operators. Adaptive query processing approaches that leverage information captured 
through self-monitoring of the query execution have also been proposed for Grid 
computing [11]. 

Finally, user control as an input for process adaptation has been addressed in 
systems that allow performance and query execution to be expressed through 
interactive dashboards [7]. As most work on dashboards has been done by the HCI 
community, it largely addressed the interface level in terms of visualizing complex 
and large sets of information in a comprehensive and graspable way. Nevertheless, 
there are also approaches that focus on the evaluation of queries in the presence of a 
visual and interactive interface. For example, [22] shows how dynamic query 
interfaces can be supported in large databases through the use of incremental data 
structures and algorithms. The approach introduces the notion of an active subset of 
the database that is enhanced with auxiliary data structures designed to support 
continuous querying. These auxiliary data structures are directly coupled to the 
interface and are only reprocessed in the event of user interaction. Results are 
visualized incrementally by computing and displaying the delta resulting from the 
user input. In [3], a classification and survey of visual query systems for databases is 
presented. 

3   Panta Rhei Specifications 

While classic execution engines operate upon databases which are initially stored 
within the memory (possibly distributed and replicated), query execution in Search 
Computing requires the efficient execution of joins between results of service 
invocations and, hence, the main flows of data production fall outside of the engine’s 
control. The need of combining service invocations with data-intensive operations is 
the main architectural challenge, approached by a modular decomposition of the 
process into processing units and by an explicit description not only of the data flow, 
as it is typical of many run-time architectures, but also of the control flow, through 
dedicated units and signals. Control flow modeling enables to explicitly tune 
execution, adapting it to unexpected behaviors of the components. 

This concept is illustrated in Fig. 2. In the plan, the input unit, after its activation at 
query start, sends a control pulse to a search service unit, which executes a call. The 
call’s result is a data flow which is sent to the output unit and, hence, returned to the 
query interface. 

S  

Fig. 2. Simple execution plan 
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In the following, control flows, data flows, and processing units are described in 
detail. 

3.1   Structure of Execution Plans 

Panta Rhei is a dedicated environment for the processing of execution plans. Every 
execution plan represents the physical evaluation of a query plan, and consists of a 
directed graph of nodes (units) and edges (data and control flows), where 

− The data flow is a directed acyclic graph connecting processing units and whose 
closure defines a precedence relationship between units (the “flow of execution”). 
The data flow itself consist of chunks of combinations (tuples) which are 
progressively created by joining pairs of services, therefore in the end the flow of 
executions produces the result tuples. Search computing results are duplicate-free, 
and therefore once a tuple is formed along the dataflow, another identical tuple 
can be removed from the computation.   

− The control flow includes pulse signals which are propagated “forward” (i.e. 
along the flow of execution) in order to time and synchronize service calls, and 
suspend/resume signals which are propagated “backward” in order to re-
synchronize execution when anomalies are detected. Therefore, the forward 
controls determine producer-consumer relationships according to the query plan, 
and the backward controls optionally conditions those producer-consumer 
relationships that deviate too much from the optimal plan determined at query 
optimization time. A control edge may start from a data producer and, in this 
case, every new chunk of data produced by the unit also produces a new pulse 
signal. 

− The behavior of each node is completely determined by its input and state. Some 
units accept at most one input pulse, if the pulse is omitted then the unit responds 
just to data flows. All nodes receive their data input from one predecessor, with 
the exception of parallel joins and cache units, that can have more than one data 
flow edges as input, as they implement binary operations (join and union).  

Query plans include parallel and/or pipe joins (as presented in Chapter 10) which are 
translated into nodes of the execution plan. While a pipe join is represented as a 
sequence of service calls in which the second call implements the join, a parallel join 
requires an explicit join unit which has two service units as predecessors. The 
parameter setting of nodes involved in join computation is optimized according to the 
service interface specifications (particularly, their chunk sizes and service costs).  
The translation of an optimal query plan into its execution plan is rather 
straightforward, as the topology of the execution plan can be immediately drawn from 
the query plan. Instead, the initialization of node parameters dictating the 
specification of the operations implemented by them is not covered in the book. At 
the moment, we use simple heuristics to initialize the parameters, but we expect to 
fine-tune the heuristics after experimentation. 

Conceptually (the implementation may be different), each node is mapped to a 
thread which is activated at query start, waits for input, and produces output. Queries 
can be suspended and resumed by users according to the liquid query interface 
controls, described in the next chapter. At query start (or resume), some user-controlled 
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parameters may be fetched into appropriate “slots” of units to fully specify their 
behavior. Most of these parameters are defined by the query optimization process. 
Then, the start node of the execution plan is activated, which triggers the start of its 
successor nodes. Nodes either act as data producers or consumers, or play both roles. 
During the execution, data producers can send “EOF” data along one data flow link, 
with the semantics that there will be no more data along the link. The “EOF” data is 
propagated by consumers until it reaches the output node, causing query termination 
and then the output to be produced. 

The liquid query interface communicates with the execution engine by various 
controls, and the effect of controls may suspend or terminate a query execution. Users 
may also change the content of some of the query “slots” which are exposed to the 
user interface (through user-friendly formats).  Threads are eliminated only when the 
user “changes” the query. Memory caches, however, might be emptied if the user 
“repeats” a query with a different input. 

3.2   Scheduling Units in Panta Rhei 

The semantics of execution plans is rather complex, as it requires introducing a 
number of ingredients (concerning units and their control) which interact with each 
other. We have decided to first present all ingredients and then to show their interplay 
through examples. The types of flows offered by the execution engine have already 
been introduced above and we recall that control flows are signals carrying no 
information other than their intrinsic nature (pulse, suspend, resume), while data 
flows carry chunks of tuple combinations, made up by matching results of the 
previous service calls in the flows, and emitted by units in chunks, according to the 
unit’s execution semantics. In the following, we therefore focus on an in-depth 
presentation of the various kinds of units, which are shown in Fig. 3. 

Input and Output Units. The input unit injects user-provided input into suitable slots 
of given units, and then starts the execution. Each execution plan must have exactly 
one input node, which has one or more successor nodes. 

The output unit is a consumer node collecting query results. Each plan must have 
exactly one output node. Its execution activates the liquid interface showing the query 
results. 

Clock Unit. A clock unit plays the role of coordinating service calls to perform pipe 
and parallel joins – thus, it is neither a producer nor a consumer. Topologically, every 
clock unit has in its children at least two service calls. Every clock in a plan controls a 
sequence of joins, where each join in the sequence is either a pipe or a parallel join, 
and the topology of the execution plan indicates the operands of each join1. 

Every clock is activated by a start pulse signal (a control edge connects the input 
node to the clock) or by a data-producer unit which produces its first data (in this 
case, a control edge connects the data producer unit to the clock). Clocks emit pulse 
 

                                                           
1 Currently, we associate every query with exactly one clock unit controlling all of its joins, but 

we plan to experiment with more general settings. As clocks can be activated during the 
execution flow, the semantics of clocks, service, and join units in the context of scheduling 
plans does not force plans to have a single clock. 
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Fig. 3. Nodes of execution plans 

signals to two or more service invocation units, ordered from 1 to n (the order of 
controlled units is given by the numbers labeling the pulse edges). 

Every clock has a parameter, called clock function, defined by a regular expression 
that describes the maximum number of calls that the service unit can perform during 
the clock cycle, for each service unit controlled by the clock and for each clock cycle. 
To do so, the regular expression defines a sequence of clock values which each 
correspond to one clock cycle. Clock values are denoted as n-tuples of integer 
numbers, where n is the number of service invocation units controlled by the clock 
unit. Enumerable repetitions of sequences are indicated by a superscript, while infinite 
repetitions of the last parenthesis are denoted by an “n” superscript. As an example, 
(1,1)(2,2)n represents a sequence in which two services are invoked once in the first 
clock cycle, and then can be invoked at most twice in any subsequent clock cycle. An 
example of clock function for controlling three service units is: (3,1,2)(4,0,3)2(5,1,4)n.  
The clock function can be replaced at runtime, e.g. based on user input. 

Every clock has a given clock frequency (cycles per second), which determines the 
time interval between two consecutive pulses to the descendent units. The clock 
frequency should be related to the average response time of the search services 
controlled by the clock. A reasonable recommendation is to set the frequency to cater 
for the execution of the largest of Nij × ARTi, where Nij is the number of calls that unit 
i is enabled to perform during cycle j and ARTi is the average execution time of 
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service Si. This number represents an estimate of the execution time due to the slower 
service which is controlled by the clock. Otherwise the clock would “enforce” a speed 
greater than the speed of one controlled service (and as such it can hardly impose any 
synchronization)2.  

A clock can be suspended by any service that it schedules. Services may be slower 
or faster in producing tuples relative to the plan, and thus the joiner could deviate 
from the configured ratio. The rationale of suspend/resume is that triangular or 
rectangular strategies of joins should be faithfully implemented, as they were decided 
by an optimizer at compilation time by taking into account the features of the services 
(and attempting a minimization of their access costs), and thus deviations from plans 
occurring at run-time should be limited. A given amount of permitted deviation 
(ranging between zero and infinite deviation) is defined as a join parameter. If the 
allowed deviation is overcome, then the clock is suspended. As a consequence, the 
clock will not issue any more pulses until it will receive a resume signal, which in 
turn is sent by the same join unit when the deviation is reduced to an acceptable 
amount. 

Exact and Search Service Units. Exact service units produce a finite set of tuples 
that represent the exact (and thus complete) response to the service call query given 
the input parameters. The output tuples are neither ranked nor chunked. Nevertheless, 
exact services produce sequences of chunks, where each chunk corresponds to one 
service invocation. In the context of pipe joins, these sequences may be ordered in the 
data flow due to their composition with previous calls to search services. Exact 
services are triggered by a single input, either a pulse or a data chunk. 

− In the first case, denoted as pulse input, the pulse produces a single exact service 
call, performed as soon as the pulse is received. Therefore, a well formed graph 
should only allow pulse signals to an exact service with the “number of 
invocations” parameter set to one, which is assumed as default. If an exact service 
is called only once and independently of data flows, normally its input is filled by 
“slots” extracted from the query. This situation occurs when the exact service call 
does not depend on other services. Note that further pulse signals, in this case, 
should not be allowed by a correct graph, and anyway will have no effect on the 
unit (i.e. the service call will not be repeated). An EOF marker indicates the end 
of tuples in the result.  

− In the second case, denoted as chunk input, the service triggering produces as 
many calls as there are tuples in the data chunk, performed as soon as the chunk 
tuples become available and continued until all tuples are consumed. In this 
situation, the exact service unit implements a pipe join, whose strategy is however 
rather simple, because it consists in a simple call iteration. The input parameters 
of each iteration are extracted from the input tuple, and the corresponding result 
tuples are combined (joined) with the input tuple, thereby producing an output 
chunk. If the input dataflow is ordered, then the chunks are produced by the 
service according to the input order. 

                                                           
2 Setting the clocks’ frequency is a delicate service time vs. optimization time trade-off. 

Currently, we use as default solution setting the frequency exactly to the largest Nij × ARTi 
computed on all the clock’s edges. 
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Search Services exhibit a behavior similar to Web search engines: results are 
unbound, ranked and chunked, and normally there is no interest in obtaining a 
complete result, but only in obtaining the first chunks. They are triggered by either a 
pulse or a pair of data chunk and pulse.  

− In the first case, denoted as pulse input, every pulse corresponds to a given 
number of service calls, progressively extracting new chunks at each call; Nij 
denotes the number of allowed calls for service i in a clock cycle j.  Normally, 
input fields for the call are filled by “slots” extracted from the query. This 
situation occurs when the search service call does not depend on other services.  

− In the second case, denoted as pulse and chunk input, the same number Nij of 
service calls is allowed as in the first case, but these calls can either use a new 
tuple from the input flow to match it with the “first” chunk of results for that 
tuple, or instead continue with another input tuple Ti that was already used in 
previous calls (thereby producing a given number Ci of chunks) and produce one 
or more subsequent chunks for that tuple (i.e. chunks starting with Ci+1). This is 
the most complex case of pipe join strategy, which iterates over either new or 
already considered input tuples (which may be unordered or ordered by the first 
service call) and produces chunks (which, for each input tuple, are relatively 
ordered by the second service call). A pipe join strategy is used for choosing at 
each step, which follows either a rectangular or triangular strategy which will be 
discussed below. In any case, results are produced by chunks (whose size is given 
by the number of matching tuples produced at each call of the service) and the 
chunks are ordered. 

Pipe joins occur when a dataflow input edge comes into a service call unit of arbitrary 
nature (either exact or search). A pipe join implements the join between services 
when the join attributes of the first service are bound and the join attributes of the 
second one are free. If the input data consists of the concatenation of N tuples, then 
the output data will consist of concatenation of N+1 tuples, possibly represented 
through their keys. If either the input is ordered or the service being called is a search 
service, then the join output will be ordered. 

When the second service being called is a search service, a pipe join strategy is 
needed to control the allocation of service calls to input tuples (as each input tuple is 
used to provide parameters for a service call, and the same tuple may induce several 
calls to the service, to find “better” combined results). The join strategy is imposed by 
performing a pipe join strategy on the downstream service unit, controlled by a clock, 
called the pipe join’s clock controller,  whose clock function regulates the behavior of 
the two services. The input pulse parameters, sent by the clock controller to both 
services, indicate the number of calls allowed within a given clock cycle, and 
therefore also of chunks produced in output during a cycle. The pipe join strategy can 
be either rectangular or triangular, as informally represented in Fig. 4. 

− In a rectangular strategy, the calls are performed considering every available 
input tuple in a round robin fashion: chunks are progressively extracted (the first 
chunk for tuples T1, T2, T3… and then the second chunk for tuples T1, T2, T3…). 
This strategy is well suited when the first service is an exact service, producing 
unordered input. A rectangular strategy can be imposed by setting a parameter in 
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the second service (to R) and timed by the join’s clock controller, by setting the 
clock’s function to (1,N)M(0,N)n, where N is the chunk size of the first service, 
and after the first M calls the first service produces an EOF. Then, calls have to 
be addressed just to the second service, producing the various layers of the 
rectangle, by iterating on the result tuples of the first service.  

− In a triangular strategy, calls are performed in an alternate fashion: the first 
chunk is extracted for T1, then the first chunk is extracted for T2 and the second 
chunk is extracted for T1, and so on, as described in the right side of Fig. 4 (same 
as merge-scan parallel join). This strategy is well suited when the first service is a 
search service, producing ordered input. A triangular strategy can be imposed by 
setting a parameter in the second service (to T) and timed by the join’s clock 
controller, by setting the clock’s function to the sequence (1,N)(1,2N)(1,3N)…, 
where N is the chunk size of the first service, thereby offering to the second 
service the option to get new chunks both for new tuples and for already available 
tuples of the first service.3 

Join Units. Join units support the parallel join between two services, i.e. a join when 
neither of the join attributes is bound. A join unit joins the available information “by 
chunks”. Each chunk combination gives rise to a “tile” of results (i.e. tile (1,1), (1,2), 
(2,1), (2,2)…), as discussed in the previous chapter. Therefore, it has as predecessor 
(at least) a pair of search services (producing chunked data). A join strategy specifies 
the order of exploration of tiles, with the aim to process tiles with higher rankings and 
more matches as fast as possible. A merge-scan strategy is obtained by setting the 
clock’s function to (N,M)n where N/M is the optimal ratio between chunks of the two 
services. A nested-loop strategy is obtained by setting the clock’s function to 
(1,N)(1,0)n, where N calls are required to exhaust the second service and then calls are 

 

Input 
tuples

Output chunks
(per input tuple)

...

Input 
tuples

Output chunks
(per input tuple)

...

(a) (b)

... ... ... ... ... ... ... ...

 

Fig. 4. Rectangular (a) vs. triangular (b) pipe join strategies 

                                                           
3 A pure triangular strategy can be modified by defining “triangles” more properly, e.g. with an 

arbitrary proportional alternation. This extension is left for future work. 
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only addressed to the first service. In both cases, the choice of rectangular or 
triangular strategy is specified by setting a parameter in the join unit (to R/T). If either 
of the join input is not chunked, then the strategy is not needed and the parallel join 
degenerates to a unit which has a simple implementation, consisting in producing tiles 
in the only possible order (e.g. (1,1), (1,2), (1,3)…). 

A join unit can have a stop parameter, which indicates the maximum number of 
tuples that should be produced by the join before suspending its execution (and 
producing an EOF marker)4. 

In addition, a join unit has a pair of local parameters describing the amount of 
deviation allowed from the planned strategy. Deviation only occurs if the join 
greedily attempts to produce more chunks than the number allowed by available input 
and planned strategy. These numbers count how many additional input chunks can be 
joined from either services, ranging from (0,0) – no deviation for either services – to a 
given pair (2,3), to unspecified – no deviation control. When the maximum allowed 
deviation on one input (corresponding to a service running “too fast”) is overcome, 
the clock controlling the join unit is suspended. At that point, the service running “too 
slow” has some pulses available, and the join unit can concentrate upon the “tiles” 
which were left behind due to the slowest service, in order to bring the proportion of 
service calls back within the specified limits. Finally, at that point, the clock is 
resumed. 

Selection Unit. A selection unit receives a (chunked) dataflow in input and produces 
a (chunked) data flow in output, consisting of all the tuples which satisfy a selection 
condition (an arbitrary Boolean expression of selection predicates). The selection unit 
does not re-chunk the output to a given chunk size and, thus, possibly changes the size 
of the chunks according to the selectivity of the predicate. Equality predicates 
matching input attributes to constants are used for building service calls, while a 
selection unit computes additional selections (e.g. comparison operations between 
attributes). Classical methods are used (by the query optimizer) in order to place the 
selection unit immediately after the join operation (either pipe or parallel join) which 
constructs the tuple with the attributes required for computing the predicate. 

Sort, Chunker and Cache Units. A sort unit gets in input chunks of tuples and 
produces re-ranked result tuples in output, according to a sort expression. Sort units 
can be “continuous” (they sort the input chunks one by one, as they are available) or 
“blocking” (they wait for an EOF marker, and then process the whole input 
accumulated so far and emit the reordered tuples as a single output chunk). The sort 
function is a weighted sum of normalized expression (in the [0..1] range) over input 
tuple attributes, with a sort direction (either ascending or descending).  

A chunker unit constructs new chunks from input tuples, by ignoring any already 
existing chunk structure thereupon. It is configured with a desired output chunk size. 
A chunker emits a new chunk as soon as there are exactly as many tuples as the chunk 
size. It has a “stop” parameter indicating the number of chunks it should produce 
before placing an EOF on its output dataflow, which can be interpreted by the output 
unit as the signal for producing output to the interface. A chunker is normally the last 
                                                           
4 An EOF marker can be overridden by the user to resume the query plan and produce more 

results. 
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unit before the output unit and therefore the suspension stops the computations 
returning the control to the user, who in turn can resume computations and ask for 
more outputs. 

A cache unit stores, within temporary memory, chunks of tuples, retrieved from 
services, or tuples of their keys forming combinations produced by joins. 
Conceptually, a cache unit is present after every service or join unit in order to store 
the service call or join results. However, in order not to overload the representation of 
an execution plan, we may omit cache units unless they have more than one incoming 
edge. In this case, all incoming tuples share the same schema and the cache 
implements the union of these tuples. The cache can also change the order of 
combinations when used as a union and, hence, its edges are labeled accordingly (e.g. 
S1/S2). The cache memory uses the normalized schema of the services in order to 
store service call results, and stores combinations as tuples of keys of the primary 
table of each service. The keys are system-generated and the tuples are indexed by 
chunk number and by key. 

4   Examples 

This section presents examples of execution plan models in increasing complexity. 
The purpose of the examples is to show, although on a limited sample, that execution 
plans can support various join strategies, including parallel join, pipe joins, and the 
Fagin join method which gives top-k guarantees. 

We start with a parallel join of search services (Fig. 5), which is discussed at length 
in Chapter 10. The execution of a merge scan join between two services S1 and S2 
using a connection pattern C1 requires a triangular join strategy. If the optimizer 
determines that the optimal ratio between calls to service S1 and S2 is 1/2, it is 
sufficient to set the clock function to (1,2)n which means that at each cycle S1 
performs (at most) one call while S2 performs (at most) two calls. The clock 
frequency is set so that the slowest call sequence (e.g. the time required for 
completing either one call of S1 or two calls of S2) takes place within about one cycle. 
The join at each new iteration builds tiles in triangular fashion, e.g. first tiles (1,1), 
(1,2), then tiles (2,1), (2,2), (1,3), (1,4), and so on. The joiner is allowed to produce 

 

S1

S2

(1,2)n

period : 150
C1

stop: 10 
excess: (1,1)

(1)

(2)

 

Fig. 5. Parallel join of two search services 
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S1
chunks

S2
chunks

permitted by strategy
allowed excess

forbidden

 

Fig. 6. Join space permitted by the strategy and allowed excess for the parallel join of the 
example in Fig. 5, in case S1 returned 3 chunks and S2 returned 4 chunks 

more tiles, e.g. if at a given point of time S1 has already produced 3 chunks and S2 
has produced only 4 chunks, thus going beyond the 1/2 ratio, the joiner can 
proceed with the tile (3,1), (3,2)  and then (2,3), (2,4), still keeping a triangular 
strategy. By doing so, it reaches its “allowed excess”, which is 1 extra-chunk  
(see Fig. 6). 

In this case, if S1 produces one more chunk, the joiner signals the clock, and the 
clock in turn stops sending pulses until S2 produces 8 chunks, re-establishing the 1/2 
ratio. Then, the joiner resumes the clock, and the execution of service calls and joins 
continues according to the joiner’s triangular strategy. The joiner is set to stop its 
execution, producing an EOF, when 10 result tuples are built. When the EOF is 
received by the output node, it presents 10 result tuples to the liquid query user 
interface. 

We next illustrate a pipe join on the same services and connection pattern  
(Fig. 7). We implement a nested loop join, in which we assume that S1 produces 
chunks of size 10 and that after 5 calls it produces all relevant results. Then, the 
ratio between calls to S1 and S2 is 1/10 (every tuple of S1 is an input to S2) and the 
number of times this ratio must be iterated is 5. This enables building tiles 
(1,1)...(50,1), where each tile is obtained for a different tuple in input. At that 
point, no more calls to S1 are needed (all 50 tuples are cached) and therefore calls 
to S2 must be performed. S2 then performs the joins, thus producing the second, 
third, …, and i-th chunk for the 50 cached tuples. The execution is terminated as 
soon as 20 result tuples are produced and an EOF is produced to transmit the result 
to the query interface through the output unit. 
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(1,10)5(0,1)n

period : 500 ms
S1 S2

(1)

(2)

size 20
stop 1

 

Fig. 7. Pipe Join of two search services 

(1,1)n

period : T

S221S111

S211

C
stop: K

A
Z

<sort function>
B

size: K
stop: 1

S121

(2)

S1|S2

S1|S2

(1)

 

Fig. 8. Execution plan for a Fagin Join 

The next example is the Fagin join [9] (Fig. 8). We recall that the method is 
applicable when both sequential (rank-based) and random (key-based) accesses are 
available for both of the services involved, and the method guarantees the extraction 
of top-K combination tuples, i.e. the tuples which are the best K according to any 
monotonic function of their relative rankings. We regard the Fagin method very 
suitable to Search Computing for this generality and for the method’s full definability 
at compile time, although it is suboptimal if compared with the threshold method, as 
discussed in Chapter 11.  

Fig. 8 shows an execution plan for the parallel join of two search services S1 and S2 
(supporting sequential access) followed by the pipe join of different service interfaces 
of services S1 and S2, supporting direct access (e.g. access by an identifying property). 
A parallel join serves the purpose of halting the pulses to the search services as soon 
as K tuples are built. Then, by making a direct access for all join result values 
respectively on S2 – if the join value comes from S1 – and on S1 – if the join value 
comes from S2. Results are then reordered and stored into a cache unit which performs 
their union. Eventually, results are sorted according to the sort function to obtain the 
single chunk of K resulting tuples, which are guaranteed to be top-K. 

Finally, Fig. 9 shows an execution plan for the running example which queries for 
a good and recent adventure movie with screenings in a theatre not too far from the 
user’s home and good restaurants nearby. The clock controls in this case a parallel 
join which is followed by a pipe join. The parallel join combines Movies with 
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Movie31

CloseTheatre11

(1,1,10)n

period: 
250 ms

(2)

(1)

Shows
stop: 10

excess: (1,2)

CloseRestaurant11 / 
DinnerPlace

(3)

 

Fig. 9. Running Example 

CloseTheatres according to the Shows combination pattern. The join combines one 
chunk of Movie with two chunks of CloseTheatre, using a triangular strategy, and 
with allowed excesses also set to (1,2). The join stops after producing 10 
combinations of movies and theatres. Meanwhile, the data flow of the join results are 
sent to the CloseRestaurant service through the DinnerPlace connection pattern. For 
each pulse to Movie, 10 pulses are sent to CloseRestaurant, thereby enabling a tuple-
based with 10 input tuples on from the first iteration, so that every matching movie-
theatre pair is associated with close-by restaurant of the desired kind. Once 10 pairs 
are produced with a variable number of matching restaurants, execution is completed 
and results are transferred, through the output unit, to the user interface.  

5   Conclusion 

The execution engine described in this chapter supports operations such as service calls, 
join processing, caching, sorts, and chunking in order to support the efficient execution of 
the optimal plan selected by the optimizer. The execution engine prototype is a running 
platform which fosters the experimentation with new ideas and novel join strategies. Its 
extensible organization allows us to easily introduce new nodes or to change their 
parameters. The execution engine model is rather preliminary and will be improved 
while new releases of the environment will be deployed, yet the model resolves most of 
the technical challenges that are set by Search Computing queries. 
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