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Abstract. In this paper we analyze three and a half years of HTTP traffic o
served at a small research institute to characterize tHatémw of various facets
of web operation. While our dataset is modest in terms of pepulation, it is
unique in its temporal breadth. We leverage the longitditaga to study var-
ious characteristics of the traffic, from client and servehdwvior to object and
connection characteristics. In addition, we assess howleheery of content is
structured across our datasets, including the use of braveshes, the efficacy
of network-based proxy caches, and the use of content delnaworks. While
each of the aspects we study has been investigated to soem exprior work,
our contribution is a unique long-term characterization.

1 Introduction

In this paper we study logs of web traffic collected at the komf a small research
institute over a three and a half year period (2006—mid-200%ere are an average of
160 active users per month in our dataset. While this is divelg small population,
we gain insight into the evolution of web traffic by taking adptudinal view of the
traffic. This investigation serves to re-appraise and wpgegvious results. We believe
our contribution has utility in informing the community’semtal models about myriad
aspects of how the modern web works—including things lilkmsaction types and
sizes, as well as how web content delivery is accomplishezlitih content delivery
networks, browser caches and the like. In addition, a nfatteéted view of web content
delivery is useful in setting up realistic testbeds and &thans to accurately reflect the
make-up and structure of today’s web.

Our methodology employs web traffic logs from our intrusi@tettion system col-
lected over three and a half years to study various aspedtseofveb. We describe
our data collection and analysis methodology . We then characterize a number of
facets of the traffic at the transaction-leveki®. We next consider various aspects of
user-driven behavior, such as object popularity and theanhf caching irg 4. Finally,
we consider the structure of the web page delivery proceskiding the use of CDNs
in § 5. We briefly touch on related work §16 and summarize ify 7.

2 Data and Methodology

For this work we use logs of web traffic taken at the border eacting the Interna-
tional Computer Science Institute (ICSI) with its ISP. We tise Bro intrusion detec-
tion system [12] to reconstruct HTTP [7] sessions from theenked packet stream.

* This work is supported in part by NSF grants CNS-0831535 aig8-0831780.
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These sessions are then logged using Bro’s standard HTghpgolicy (found in
ht t p. br o in the Bro package). The logs include timestamps, involedddresses,
URLs, HTTP transaction types and sizes, hostnames and H&gpdnse codes. The
dataset used in this paper runs from January 2006 througt2000. Due to the size
of the dataset we analyze only the first seven days of eachhmi@nibgistical reasons.
We do not believe this biases our results. The original logtude all incoming and
outgoing HTTP traffic. However, we winnowed to only the outgpconnections (i.e.,
ICSI clients) as we do not wish to bias our results by the paldr characteristics of the
few server instances at ICSI. Of the 28.8 million total castimss from the first seven
days of each month in our dataset we retain 16.9 million dmtad by ICSI clients.
In figure 1 we show the high-order characteristics of the sidtal he overall number
of web object requests, HTTP connections, HTTPS connestgerver hostnames and
server IP addresses show general stability over tidiece the HTTPS connections are
encrypted we cannot further analyze them in this work. Watifie“web servers” in
two different ways: by IP address and by hostname. Due togheficontent delivery
networks (CDNs) a particular IP address may host contentnidtiple distinct host-
names. In fact, in the figure we see this effect as there are sawer hostnames than
server IP addresses (this is studied in more det&jl5h However, note that the oppo-
site is also true: that a given hostname could have multpladdresses (e.g., to serve
content from a close source or for load balancing). Finally,note that the number of
users is modest—an average of 160 per month with a standsiatida of 13—our
contribution is the longitudinal tracking of this user ptgtion.

Finally, we note that there are two versions of Bro HTTP pokcripts used in
gathering the data we employ in this study with one crucitiédince. For the first ten
months of 2006 the scripts gathered logical web sessiorghegas one logical entity
under one identifier regardless of the number of underlyi@® Tonnections used to
obtain the components of the web pages. In these log fileptbisess obscures the
number of TCP connections used to transfer the data. Duestorierous amount of
state required to stitch together a web session from digp@@P connections, starting

! The number of connections has a dramatic increase in Dece20b&. We delve into this in
detail in§ 5.



in mid-October 2006 the scripts were changed to simply gatwether all activity on
a per-TCP connection basis. For most of our analysis therdiffce in logging is not
important, but for analysis that requires an understandirige number of underlying
TCP connections we start our analysis in November 2006adsié January 2006. In
figure 1 the reported number of connections for the first 10thwof the dataset is
actually the number of web sessions (which is reported te tiie reader context even
though the precise number of connections is unknown).

3 HTTP Transaction Characterization

We first focus on characterizing client HTTP transactiorisstFfigure 2 shows the
transaction type breakdown over time. Over the course ofdataset the majority of
observed transactions—approaching 90% in most monthsrequests for dateGET
transactions). Most of the remainder of the transactionsured 10%—involve the user
uploading data to the web servé?dST transactions). A small number of additional
transaction types are also observiedBAD, PROPFI ND, etc.). Together these additional
types account for less than 1% of the transactions in mostthmokiVe note that in
absolute terms the number GETs andPOSTs have a slight increasing trend over our
observation period (note, the figure is plotted on a log smatktherefore the increase is
less readily apparent). Further, the numbePOETs observed increases quickly at the
beginning of our dataset. This is caused by a dramatic uptittie use of GMail during
early 2006. Non-GMailPCST requests are more steady and only slowly increasing
during this period.

Figures 3 and 4 show the average and median siz&Edfand POST transactions
over time. Both transaction types show a generally incnepaverage transaction size
over time which is likely explained by users both increabimtpwnloading richer con-
tent and participating in so-called web 2.0 sites that hest-provided content. The
median results foPOST transactions are interesting as they remain small andyfairl
constant over the study period. This indicates that simgri@finput that only results in
the transmission of a small amount of data is prevalent giinout. For the&SET requests
we find the medians are generally an order of magnitude lessttie averages. This is
expected due to many previous studies that show most respans short and a few re-
sponses carry most of the bytes—i.e., web traffic is heaget§s]. Figure 5 shows the
distribution of GET response sizes for July 2 2007 as a typical example of thelaer-
distribution (this date was chosen arbitrarily as a weekdaghly in the middle of the
study period). Finally, we note that the aver&el response size in December 2006 is
four times the size of the surrounding months. This anonsatpused by a single client
fetching a large series of big files. We removed this clieatrfrour analysis and plot
a point on the graph to show the average sizE€BT responses without this particular
client. Without the energetic client the average is simitathe surrounding months.

Figure 6 shows the median duration of HTTP connections, dsasg¢he median
time between establishing a connection and the clientrigsan HTTP request. We note
that the median connection duration is reduced betweenrNbgeand December 2007
which is explained by a reduction in the use of persistent PFEdnnections (seg5).

As connections are used for fewer objects their duratiopsirBefore December 2007
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the median connection duration was around 1 second andthiftgpoint the median
duration falls to 100-200 msec. The short duration of cotioes suggests that seem-
ingly small changes to the delivery process that save maaestints of wall-clock time
may ultimately benefit the user experience more than onetrthigik at first blush—
e.g., Early Retransmit [2] and reducing TCP’s traditiongl@ential backoff between
retransmissions [10].

Figure 6 also illustrates the time between establishingranection and sending
an HTTP request. In related work [1] we study claim-and-taitdcks on web servers
whereby a malicious client opens a connection and does ndtae HTTP request to
force the server to allocate resources that can then notédxb fos legitimate traffic.
In figure 6 we show that the median time before an HTTP regsassued is roughly
constant—at just under 100 msec—in our dataset, which agvitk the results in [1].
However, we also note that we find successful transactiorsefly the time between
connection establishment and transmission of the HT TPagidsi quite a bit longer. In
particular, we find this with GMail. The 99 percentile interval is roughly 246 seconds
for GMail in each year, while the interval ranges from 14 smiin 2006 to 55 seconds
in 2009 for non-GMail traffic. This indicates that expectsttprt intervals may not be
the right model for newer web application-driven web pages.
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4 User Behavior

Figure 7 shows the distribution of requests per server laostn As discussed 5 all
requests to a server name such as “www.cnn.com” are groogether in this plot no
matter what IP address handles the request. We see thas #ueggears in our study the
distribution of requests per hostname is similar. Many sehostnames are accessed
infrequently—with the median being less than 10 requestygar. However, a small
number of server hostnames are quite popular—with the maximumber of requests
per hostname exceeding one million per year. We also obskeate¢here is change in
the top hostnames over time. We determined the top ten hustper year and find
that four hostnames are within the top ten for all four ye&suo survey, one hostname
is in the top ten in three of the years, two hosts appear inighédr two years and
17 hostnames appear only once across the four years.

Next we turn to object popularity. Figure 8 shows the disttiiin of the number of
requests per object. The distributions are similar acrosséars. As seen in the plot,
request popularity fits exceedingly well to a Zipf-like disution. Across more than
3 orders of magnitude, the fall-off in the distribution niag¢s closely to a Pareto dis-
tribution with o = 1. Around 90% of the objects are accessed only one fiferther,
only a small number of objects are fetched more than 10 tifieat said, there are
some popular objects that are requested thousands of tweeth@ course of a year.

Next, figure 9 shows the distribution of the unique numbergjécts (determined by
URL) per hostname over time. We again observe stabilityssctioe years of our study.
This plot shows that one-third of the hostnames we enco(reigardless of year) serve
only a single unique object. Further, two-thirds of the hastes serve ten or fewer
objects. Similar to many other aspects of web traffic a smathiper of hostnames
serve many web objects. For instance, roughly 5% of the hasts provide more than
100 objects and hostnames top out at providing over oneomitibjects.

Object popularity has a direct bearing on the usefulnesadiiog. We use our data
to investigate both visible end-host caching and also piatesavings from a network-
based cache with our results illustrated in figure 10. Fizst,look at the number of

2 As unique sets of parameters at the end of a URL generallgt glistinct outputs, we consider
the entire URL, including parameters, as a distinct object.
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bytes visibly saved by end-host caches using conditiG&al requests. These requests
call for a client re-requesting an object in the browser eactinclude the timestamp of
this cached object in théET request. If the object has been updated the server will re-
send it and otherwise will send a 304 (“not modified”) resmotusthe client, signaling
that the version the client has is correct. As shown in theréighe number of bytes
fetched would increase by roughly 10% without these coowl#ti GET requests. The
use of conditionalGETs across the dataset increases in roughly the same manher as t
overall number of bytes downloaded.

We next investigate the number of additional bytes thatadbehefit from caching
at the institute-level—i.e., with some shared proxy cachiea border shared by all
users. We first identify unique objects using the URL (inahgchostname) and object
size. Ideally we would include a stronger notion such as & bathe content itself, but
our logs do not contain such information. We crunched 5.5 deorth of full-payload
packet traces from January 2010 to assess the accuracylodotistic. We form tuples
of URLs and sizes(u, s), from the packet traces. In addition, for each we compute an
MD5 hash of the object. For each, s) we record the number of MD5s observed. We
find that 1.4% of the 846Ku, s) pairs in the trace have multiple MD5s. Further, we
find this represents 6.7% of the bytes fetched over the cafrdee trace. Therefore,
while we assume that if the object size stays the same thetdigs not changed this
is wrong in a small number of cases. In addition, we calculaeamount of cachable
data for each month in isolation and without any notion ofinignout the objects or
imposing a limit on the number or size of objects held in thehea Therefore, our
results are an upper bound on how an actual institute-wideecaould work with real-
world constraints and a better understanding of the unigsef objects. As shown
in figure 10 the percentage of bytes that could be cached byveoriewide proxy
is 10—20% across most of our study. The number of cachabkslddes increase in
2009—when generally more than 25% of ®eT requests could plausibly be handled
by a cache. In 2009 to get the caching benefit suggested indhe/puld require over
10 GB of storage space—which is quite modest in modern serVég note that our
caching results may be quite different if the population séns was larger.



5 Server Structure

Web traffic is composed of a series of HTTP transactions thairin utilize TCP for
reliable data transfer. HTTP uses one transaction per wgletlEarly HTTP used a
separate TCP connection for each HTTP transaction, howeitierpersistent HTTP
connections an arbitrary number of HTTP transactions cactobducted over a single
TCP connection. Figure 11 shows the total number of TCP aiores we observe for
the sampled week of each month of our dataset, as well as énage/number of HTTP
transactions per TCP connection. (Note, since these sedefiend on a solid under-
standing of connections, we do not include data before N&regr2006 as discussed
in § 2.) The plot shows a fairly stable number of connections aredaaye transactions
per connection rate except for one impulse between NovearttkDecember 2007. At
that point we observe the re-use of TCP connections droppead brder of magnitude.
This results in a dramatic increase in the number of web odiores observed. Note,
figure 1 shows that the overall number of HTTP requests doediffier greatly across
this event. That is, the same amount of content is beingfeemesl, but the particulars
of the underlying delivery has changed.

We believe this change in delivery pattern is due to a sofvediange on the web
clients. To verify this we determined the top 100 serversaichemonth by the overall
number of requests (regardless of number of connectios)e&ch server we then
calculate the average number of transactions per connettie find 66 servers to be
common across the top 100 lists from the two months. We thienlede the difference
in the average number of requests per connection for ead¢tesét66 servers and find
that in all but one instance the average drops in Decembet, ilinover 70% of the
cases the average requests per connection drops by atCesjuests. This indicates
that the use of persistent connections has dropped acrdm#rd and is not caused
by some popular server curtailing support for persistemineations or some heavy-
hitter client. We therefore conclude that this is a clientgyochange that is quite likely
caused by a institute-wide web browser upgrade.

We next turn our attention to how web sites are structureceteescontent. Fig-
ure 12 shows the distribution of the number of hostnames secter IP address takes
on over the course of each year in our study. CDN hosts camavnoalate a wide range
of logical hostnames using a server with a single IP addidssdistributions are simi-
lar across the years with around 80% of the server IP addr@ssencounter mapping
to a single server hostname. While roughly 10% of the seR&ntap to two hostnames
we observe a small percentage5%o) of server IPs accommodating three or more IP
addresses. Further, there are a handful of IP addressesethattraffic for a large num-
ber of hostnames. Our data shows that the maximum numbestifdroes observed for
a single IP address is 477, 878, 1784 and 1353 for the yea&-2009 respectively.
This shows a definite increase over time. (Note, since theealayy covers half of 2009
the number may well increase when the entire year is coresider

% The ICSI system administrators report a minor version upgraf Firefox (from 2.0.0.8 to
2.0.0.10) during this timeframe. While we find nothing in ieefox change-log that indicates
a difference in the use of persistent HTTP connections wie\eethe defaults more than likely
changed in 2.0.0.10 given the observed behavior so draafigtithanges at the time of the
upgrade.
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In addition to using one IP address to serve content fromiptelserver hostnames
CDNs also use multiple IP addresses to serve content frommanom server hostname.
Generally this is done to transmit content from a server ighatose to the requesting
client and/or for load balancing purposes. Figure 13 shbeslistribution of the num-
ber of IP addresses used for each hostname observed for eacimyur dataset. The
figure shows that 80-90% of the hosthames are served by orddtBss. Another 5—
10% of the server hostnames are handled by two IP addreggesomately 5% of the
server hostnames are associated with three or more |IP addreger the course of the
year. While relatively rare we find many hostnames that hazeds to hundreds of IP
addresses over the course of a year. In particular, we natevéhobserve a maximum
of 144,183, 340 and 388 IP addresses for a single hostnan®®8+2009 respectively.
This shows an increase in the number of hosts brought to bedeliver content over
the course of our study for some hostnames. While this tremibi general across all
hostnames we believe it may indicate larger and more dyn@mN behavior.

We next wanted to assess the degree to which content prevaderelying on the
content delivery networks (CDNSs) to deliver their data. histinitial exploration we
focus on the Akamai CDN but intend to broaden our considemads part of our fu-
ture work. A colleague provided us with a list of partial Akainmostnames manually
gathered for another project [15]. The partial hosthametim set were determined
from downloading known Akamai-based web pages from 300ld€tions around the
world. The hostnames represent 12K Akamai IP addressesnliigh represents an
undercount of Akamai’s footprint (e.g., Akamai is cited aving 40K servers in [13]).
Therefore, our accounting of Akamai traffic is highly liketybe an underestimate. We
correlate the Akamai hostnames and the DNS logs producednjuraction with the
web logs by Bro. For each web log we use the corresponding DN %ol find resolu-
tions for the Akamai names and record the associated IP ssllye\We can then easily
assign web traffic as Akamai traffic or non-Akamai traffic.

Figure 14 shows the percentage of the bytes fetched in respgoGET requests
that are handled by Akamai servers. Across the time perialostudy we find that
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in general 15-30% of the bytes are delivered by Akattdowever, recall that this is
a lower bound due to our classification methodology. Als@rbat over the years of
our study ICSI users accessed Akamai served content froma¢elistinct Akamai
servers. The number of Akamai servers observed in a eacliryear dataset is: 2.5K,
3.4K, 4.5K and 3K for 2006—2009 respectively. (Note, the200unt is for only half
the year and so may well increase if the entire year is corside

6 Related Work

The large body of literature dedicated to empirical evaduret of web traffic is too vast
to catalog in the space available here. A good overviewgliog pointers to much of
the literature, appears in [9]. The topics that have beafietiuare diverse and numer-
ous, with somexampledeing: characterization and modeling work [5, 3], perfonce
analysis [6], analysis of web applications [17], analygisveb technologies [14], as-
sessments of web caching [16, 4] and studies of the HTTP qubitself [11, 8]. Our
work is quite similar, but serves to add additional longihad data to the community’s
body of work.

7 Summary

In this paper we have employed a three and a half year lorigaldataset of web
activity to assess web operations from numerous angles. stady represents both a
reappraisal of previous work and a broadening of the viemtgoithe temporal dimen-
sion. We find that some aspects of web traffic have been famlycsover time (e.g.,
distribution of transaction types) while others have cteh@e.g., average size GET
andPOST transactions). We also develop a view of the structure ofble, including
an initial understanding of the behavior of browser cachesthe impact of content

4 While we see a dip to 3% at the end of 2006, this is caused byrafffictspike at the same
time—as shown in figure 3—which represents traffic causeddygde client to a non-Akamai
server. This client excluded, 13% of the traffic involves Aka.



distribution networks, which we find to be more prominentiagetprogresses. While
there are obviously more aspects of web operations to agsmssould be fit in this
initial paper, we believe our contribution will be usefulgnounding the community’s
mental models and experiments in long-term empirical olzgem.
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