Skip to main content

3-D Cinematography with Approximate or No Geometry

  • Chapter
  • First Online:
  • 1384 Accesses

Part of the book series: Geometry and Computing ((GC,volume 5))

Abstract

3-D cinematography is a new step towards full immersive video, allowing complete control of the viewpoint during playback both in space and time.One major challenge towards this goal is precise scene reconstruction, either implicit or explicit.While some approaches exist which are able to generate a convincing geometry proxy, they are bound to many constraints, e.g., accurate camera calibration and synchronized cameras.This chapter is about methods to remedy some of these constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: M. Landy, J.A. Movshon (eds.) Computational Models of Visual Processing, pp. 3–20. MIT Press, Cambridge, MA (1991)

    Google Scholar 

  2. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  3. de Aguiar, E., Theobalt, C., Magnor, M., Seidel, H.P.: Reconstructing human shape and motion from multi-view video. In: European Conference on Visual Media Production, pp. 42–49 (2005)

    Google Scholar 

  4. de Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.P.: Marker-less deformable mesh tracking for human shape and motion capture. In: International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  5. de Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.P.: Rapid animation of laser-scanned humans. In: Virtual Reality, pp. 223–226 (2007)

    Google Scholar 

  6. Ahmed, N., Theobalt, C., Magnor, M.A., Seidel, H.P.: Spatio-temporal registration techniques for relightable 3D video. In: International Conference on Image Processing, pp. 501–504 (2007)

    Google Scholar 

  7. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005)

    Article  Google Scholar 

  8. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  9. Belongie, S., Malik, J., Puzicha, J.: Matching shapes. In: International Conference on Computer Vision, pp. 454 – 461 (2001)

    Google Scholar 

  10. Bhat, P., Zitnick, C.L., Snavely, N., Agarwala, A., Agrawala, M., Curless, B., Cohen, M., Kang, S.B.: Using photographs to enhance videos of a static scene. In: J. Kautz, S. Pattanaik (eds.) Eurographics Symposium on Rendering, pp. 327–338. Eurographics (2007)

    Google Scholar 

  11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  12. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: European Conference on Computer Vision, pp. 25–36 (2004)

    Google Scholar 

  13. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumigraph rendering. ACM Trans. Graph. 20(3), 425–432 (2001)

    Google Scholar 

  14. Canny, J.: A Computational approach to edge detection. Trans. Pattern Anal. Mach. Intell. 8, 679–714 (1986)

    Article  Google Scholar 

  15. Carranza, J., Theobalt, C., Magnor, M., Seidel, H.P.: Free-viewpoint video of human actors. ACM Trans. Graph. 22(3), 569–577 (2003)

    Article  Google Scholar 

  16. Chai, J.X., Chan, S.C., Shum, H.Y., Tong, X.: Plenoptic sampling. ACM Trans. Graph. 19(3), 307–318 (2000)

    Google Scholar 

  17. Cobzaş, D., Yerex, K., Jägersand, M.: Dynamic textures for image-based rendering of fine-scale 3D structure and animation of non-rigid motion. Comput. Graph. Forum 21(3), 493–502 (2002)

    Article  Google Scholar 

  18. Collins, R.T.: A space-sweep approach to true multi-image matching. In: Conference on Computer Vision and Pattern Recognition, pp. 358–363 (1996)

    Google Scholar 

  19. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. ACM Trans. Graph. 15(3), 11–20 (1996)

    Google Scholar 

  20. Eisemann, M., Decker, B.D., Magnor, M., Bekaert, P., de Aguiar, E., Ahmed, N., Theobalt, C., Sellent, A.: Floating textures. Comput. Graph. Forum 27(2), 409–418 (2008)

    Article  Google Scholar 

  21. Eisemann, M., Sellent, A., Magnor, M.: Filtered blending: a new, minimal reconstruction filter for ghosting-free projective texturing with multiple images. In: Vision, Modeling, and Visualization pp. 119–126 (2007)

    Google Scholar 

  22. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  23. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  24. Franco, J.S., Boyer, E.: Exact polyhedral visual hulls. In: British Machine Vision Conference, pp. 329–338 (2003). Norwich, UK

    Google Scholar 

  25. Fujii, T., Tanimoto, M.: Free viewpoint TV system based on ray-space representation. In: SPIE, vol. 4864, pp. 175–189. SPIE (2002)

    Google Scholar 

  26. Gallup, D., Frahm, J.M., Mordohai, P., Yang, Q., Pollefeys, M.: Real-time plane-sweeping stereo with multiple sweeping directions. In: Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  27. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. ACM Trans. Graph. 15(3), 43–54 (1996)

    Google Scholar 

  28. Gu, X., Gortler, S., Hoppe, H.: Geometry images. ACM Trans. Graph. 21(3), 355–361 (2002)

    Google Scholar 

  29. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  30. Heeger, D., Boynton, G., Demb, J., Seidemann, E., Newsome, W.: Motion opponency in visual cortex. J. Neurosci. 19, 7162–7174 (1999)

    Google Scholar 

  31. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  32. Kutulakos, K.N., Seitz, S.M.: A Theory of shape by space carving. Int. J. Comput. Vis. 38(3), 199–218 (2000)

    Article  MATH  Google Scholar 

  33. Lanman, D., Crispell, D., Taubin, G.: Surround structured lighting for full object scanning. In: International Conference on 3-D Digital Imaging and Modeling, pp. 107–116 (2007)

    Google Scholar 

  34. Laurentini, A.: The visual hull concept for silhouette-based image understanding. Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)

    Article  Google Scholar 

  35. Lensch, H.P.A., Kautz, J., Goesele, M., Heidrich, W., Seidel, H.P.: Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22(2), 234–257 (2003)

    Article  Google Scholar 

  36. Levoy, M., Hanrahan, P.: Light field rendering. ACM Trans. Graph. 15(3), 31–42 (1996)

    Google Scholar 

  37. Li, M., Magnor, M., Seidel, H.P.: Hardware-accelerated rendering of photo hulls. Comput. Graph. Forum 23(3), 635–642 (2004)

    Article  Google Scholar 

  38. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  39. Mark, W., McMillan, L., Bishop, G.: Post-rendering 3D warping. In: Symposium on Interactive 3D Graphics, pp. 7–16 (1997)

    Google Scholar 

  40. Matsuyama, T., Wu, X., Takai, T., Nobuhara, S.: Real-time 3D shape reconstruction, dynamic 3D mesh deformation, and high fidelity visualization for 3D video. Comput. Vis. Image Underst. 96(3), 393–434 (2004)

    Article  Google Scholar 

  41. Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., Mcmillan, L.: Image-based visual hulls. ACM Trans. Graph. 19(3), 369–374 (2000)

    Google Scholar 

  42. Matusik, W., Pfister, H.: 3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans. Graph. 19(3), 814–824 (2004)

    Article  Google Scholar 

  43. Naemura, T., Tago, J., Harashima, H.: Real-time video-based modeling and rendering of 3D scenes. Comput. Graph. Appl. 22(2), 66–73 (2002)

    Article  Google Scholar 

  44. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  45. Pock, T., Urschler, M., Zach, C., Beichel, R., Bischof, H.: A duality based algorithm for tv-l1-optical-flow image registration. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 511–518 (2007)

    Google Scholar 

  46. Posdamer, J., Altschuler, M.: Surface measurement by space-encoded projected beam systems. Comput. Graph. Image Process. 18(1), 1–17 (1982)

    Article  Google Scholar 

  47. Qian, N., Andersen, R.: A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena. Vis. Res. 37, 1683–1698 (1997)

    Article  Google Scholar 

  48. Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: W. Rosenblith (ed.) Sensory Communication, pp. 303–317. MIT Press-Willey, New York (1961)

    Google Scholar 

  49. Ruzon, M., Tomasi, C.: Color edge detection with the compass operator. In: Conference on Computer Vision and Pattern Recognition, pp. 160–166 (1999)

    Google Scholar 

  50. Salvi, J., Pagés, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognit. 37, 827–849 (2004)

    Article  MATH  Google Scholar 

  51. Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., Haeberli, P.: Fast shadows and lighting effects using texture mapping. ACM Trans. Graph. 11(3), 249–252 (1992)

    Google Scholar 

  52. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 35, 1067–1073 (1997)

    Google Scholar 

  53. Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25(3), 835–846 (2006)

    Article  Google Scholar 

  54. Starck, J., Hilton, A.: Surface capture for performance based animation. Comput. Graph. Appl. 27(3), 21–31 (2007)

    Article  Google Scholar 

  55. Stewart, J., Yu, J., Gortler, S.J., McMillan, L.: A new reconstruction filter for undersampled light fields. In: Eurographics Workshop on Rendering, pp. 150–156 (2003)

    Google Scholar 

  56. Stich, T., Linz, C., Albuquerque, G., Magnor, M.: View and time interpolation in image space. Comput. Graph. Forum 27(7), 1781–1787 (2008)

    Article  Google Scholar 

  57. Stich, T., Linz, C., Wallraven, C., Cunningham, D., Magnor, M.: Perception-motivated interpolation of image sequences. In: Symposium on Applied Perception in Graphics and Visualization, pp. 97–106 (2008)

    Google Scholar 

  58. Tsai, R.: An efficient and accurate camera calibration technique for 3D machine vision. In: Conference on Computer Vision and Pattern Recognition, pp. 364–374 (1986)

    Google Scholar 

  59. Wallach, H.: Über visuell wahrgenommene Bewegungsrichtung. Psychol. Forsch. 20, 325–380 (1935)

    Article  Google Scholar 

  60. Waschbüsch, M., Würmlin, S., Gross, M.: 3D video billboard clouds. Comput. Graph. Forum 26(3), 561–569 (2007)

    Article  Google Scholar 

  61. Wertheimer, M.: Laws of organization in perceptual forms. In: W. Ellis (ed.) A Source Book of Gestalt Psychology, pp. 71–88. Kegan Paul, Trench, Trubner & Co., London (1938)

    Google Scholar 

  62. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. In: Conference on Computer Vision and Pattern Recognition, pp. 211–217 (2003)

    Google Scholar 

  63. Yuille, A.L., Poggio, T.A.: Scaling theorems for zero crossings. Trans. Pattern Anal. Mach. Intell. 8(1), 15–25 (1986)

    Article  MATH  Google Scholar 

  64. Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality video view interpolation using a layered representation. ACM Trans. Graph. 23(3), 600–608 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Eisemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eisemann, M., Stich, T., Magnor, M. (2010). 3-D Cinematography with Approximate or No Geometry. In: Ronfard, R., Taubin, G. (eds) Image and Geometry Processing for 3-D Cinematography. Geometry and Computing, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12392-4_12

Download citation

Publish with us

Policies and ethics