Skip to main content

Unified View of Backward Backtracking in Short Read Mapping

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6060))

Abstract

Mapping short DNA reads to the reference genome is the core task in the recent high-throughput technologies to study e.g. protein-DNA interactions (ChIP-seq) and alternative splicing (RNA-seq). Several tools for the task (bowtie, bwa, SOAP2, TopHat) have been developed that exploit Burrows-Wheeler transform and the backward backtracking technique on it, to map the reads to their best approximate occurrences in the genome. These tools use different tailored mechanisms for small error-levels to prune the search phase significantly. We propose a new pruning mechanism that can be seen a generalization of the tailored mechanisms used so far. It uses a novel idea of storing all cyclic rotations of fixed length substrings of the reference sequence with a compressed index that is able to exploit the repetitions created to level out the growth of the input set. For RNA-seq we propose a new method that combines dynamic programming with backtracking to map efficiently and correctly all reads that span two exons. Same mechanism can also be used for mapping mate-pair reads.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Technical Report 124, Digital Equipment Corporation (1994)

    Google Scholar 

  2. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t cares. In: Proceedings of the Thirty Sixth Annual Symposium on the Theory of Computing, pp. 91–100 (2004)

    Google Scholar 

  3. Tuupanen, et al.: The common colorectal cancer predisposition snp rs6983267 at chromosome 8q24 confers potential to enhanced wnt signaling. Nature Genetics 41, 885–890 (2009)

    Article  Google Scholar 

  4. Ferragina, P., Manzini, G.: Indexing compressed texts. Journal of the ACM 52(4), 552–581 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3(2), article 20 (2007)

    Google Scholar 

  6. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th ACM Symposium on Theory of Computing (STOC 1984), pp. 135–143 (1984)

    Google Scholar 

  7. Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson, K.Y., Schork, N.J., Murray, S.S., Topol, E.J., Levy, S., Frazer, K.A.: Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology 10(R10) (2009)

    Google Scholar 

  8. Johnson, D.S., Mortazavi, A., Myers, R.M., Wold, B.: Genome-wide mapping of in vivo protein-dna interactions. Science 316(5830), 1497–1502 (2007)

    Article  Google Scholar 

  9. Jothi, R., Cuddapah, S., Barski, A., Cui, K., Zhao, K.: Genome-wide identification of in vivo protein-dna binding sites from chip-seq data. Nucl. Acids Res. 36(16), 5221–5231 (2008)

    Article  Google Scholar 

  10. Kärkkäinen, J., Na, J.C.: Faster filters for approximate string matching. In: Proc. 9th Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 84–90. SIAM, Philadelphia (2007)

    Google Scholar 

  11. Lam, T.W., Sung, W.K., Tam, S.L., Wong, C.K., Yiu, S.M.: Compressed indexing and local alignment of dna. Bioinformatics 24(6), 791–797 (2008)

    Article  Google Scholar 

  12. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biology 10(3), R25 (2009)

    Article  Google Scholar 

  13. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research 18, 1851–1858 (2008)

    Article  Google Scholar 

  14. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics (2009) (Advance access)

    Google Scholar 

  15. Li, R., Li, Y., Kristiansen, K., Wang, J.: Soap: short oligonucleotide alignment program. Bioinformatics 24(5), 713–714 (2008)

    Article  Google Scholar 

  16. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: Soap2. Bioinformatics 25(15), 1966–1967 (2009)

    Article  Google Scholar 

  17. Mäkinen, V.: Parameterized Approximate String Matching and Local-Similarity-Based Point-Pattern Matching. PhD thesis, University of Helsinki (2003)

    Google Scholar 

  18. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of individual genomes. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 121–137. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing 22(5), 935–948 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. McCreight, E.: A space-economical suffix tree construction algorithm. Journal of the ACM 23(2), 262–272 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Morin, R.D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T.J., McDonald, H., Varhol, R., Jones, S.J.M., Marra, M.A.: Profiling the hela s3 transcriptome using randomly primed cdna and massively parallel short-read sequencing. BioTechniques 45, 81–94 (2008)

    Article  Google Scholar 

  22. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1), article 2 (2007)

    Google Scholar 

  23. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surveys 33(1), 31–88 (2001)

    Article  Google Scholar 

  24. Trapnell, C., Pachter, L., Salzberg, S.L.: Tophat: discovering splice junctions with Rna-seq. Bioinformatics 25(9), 1105–1111 (2009)

    Article  Google Scholar 

  25. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, Z., Gerstein, M., Snyder, M.: Rna-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1), 57–63 (2009)

    Article  Google Scholar 

  27. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Symposium on Switching and Automata Theory, pp. 1–11 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mäkinen, V., Välimäki, N., Laaksonen, A., Katainen, R. (2010). Unified View of Backward Backtracking in Short Read Mapping. In: Elomaa, T., Mannila, H., Orponen, P. (eds) Algorithms and Applications. Lecture Notes in Computer Science, vol 6060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12476-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12476-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12475-4

  • Online ISBN: 978-3-642-12476-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics