Skip to main content

The Support Vector Tree

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6060))

Abstract

Kernel based methods, such as nonlinear support vector machines, have a high classification accuracy in many applications. But classification using these methods can be slow if the kernel function is complex and if it has to be evaluated many times. Existing solutions to this problem try to find a representation of the decision surface in terms of only a few basis vectors, so that only a small number of kernel evaluations is needed. However, in all of these methods the set of basis vectors used is independent of the example to be classified. In this paper we propose to adaptively select a small number of basis vectors given an unseen example. The set of basis vectors is thus not fixed, but it depends on the input to the classifier. Our approach is to first learn a non-sparse kernel machine using some existing techique, and then using training data to find a function that maps unseen examples to subsets of the basis vectors used by theis kernel machine. We propose to represent this function as a binary tree, called a support vector tree, and devise a greedy algorithm for finding good trees. In the experiments we observe that the proposed approach outperforms existing techniques in a number of cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakir, G., Weston, J., Schölkopf, B.: Learning to find pre-images. In: Advances in Neural Information Processing Systems (NIPS 2003), vol. 16 (2003)

    Google Scholar 

  2. Bakir, G., Zien, A., Tsuda, K.: Learning to find graph pre-images. In: Pattern Recognition, 26th DAGM Symposium, pp. 253–261 (2004)

    Google Scholar 

  3. Burges, C.: Simplified support vector decision rules. In: Machine Learning, Proceedings of the Thirteenth International Conference (ICML 1996), pp. 71–77 (1996)

    Google Scholar 

  4. Burges, C.: A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Minnig 2(2), 121–167 (1998)

    Article  Google Scholar 

  5. Burges, C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. In: Advances in Neural Information Processing Systems, NIPS, vol. 9, pp. 375–381 (1996)

    Google Scholar 

  6. Cambazoglu, B., Zaragoza, H., Chapelle, O.: Early exit optimizations for additive machine learned ranking systems. In: Proceedings of the Third International Conference on Web Search and Web Data Mining, WSDM 2010 (to appear, 2010)

    Google Scholar 

  7. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  8. Chen, J.-H., Chen, C.-S.: Reducing SVM classification time using multiple mirror classifiers. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 34(2), 1173–1183 (2004)

    Article  Google Scholar 

  9. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Dekel, O., Singer, Y.: Support vector machines on a budget. In: Advances in Neural Information Processing Systems, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, vol. 19, pp. 345–352 (2006)

    Google Scholar 

  11. Downs, T., Gates, K.E., Masters, A.: Exact simplification of support vector solutions. Journal of Machine Learning Research 2, 293–297 (2001)

    Article  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 133–142 (2002)

    Google Scholar 

  14. Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 377–384 (2005)

    Google Scholar 

  15. Joachims, T.: Training linear svms in linear time. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), pp. 217–226 (2006)

    Google Scholar 

  16. Joachims, T., Yu, C.-N.J.: Sparse kernel svms via cutting-plane training. Machine Learning 76, 179–193 (2009)

    Article  Google Scholar 

  17. Kwok, J.T., Tsang, I.W.: The pre-image problem in kernel methods. IEEE Transactions on Neural Networks 15(6), 1517–1525 (2004)

    Article  Google Scholar 

  18. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. Journal of Machine Learning Research 2, 419–444 (2002)

    Article  MATH  Google Scholar 

  19. Nair, P.B., Choudhury, A., Keane, A.J.: Some greedy learning algorithms for sparse regression and classification with mercer kernels. Journal of Machine Learning Research 3, 781–801 (2002)

    Article  MathSciNet  Google Scholar 

  20. Osuna, E., Girosi, F.: Reducing the run-time complexity in support vector machines. In: Advances in Kernel Methods: Support Sector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  21. Teo, C.H., Vishwanathan, S.: Fast and space efficient string kernels using suffix arrays. In: Proceedings of 23rd International Conference on Machine Learning, pp. 929–936 (2006)

    Google Scholar 

  22. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  24. Wu, M., Schölkopf, B., Bakir, G.: A direct method for building sparse kernel learning algorithms. Journal of Machine Learning Research 7, 603–624 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ukkonen, A. (2010). The Support Vector Tree. In: Elomaa, T., Mannila, H., Orponen, P. (eds) Algorithms and Applications. Lecture Notes in Computer Science, vol 6060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12476-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12476-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12475-4

  • Online ISBN: 978-3-642-12476-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics