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Second International Workshop on Knowledge Discovery from 
Sensor Data (Sensor-KDD 2008) 

 
Wide-area sensor infrastructures, remote sensors, and wireless sensor networks, RFIDs, yield 
massive volumes of disparate, dynamic, and geographically distributed data. As such sensors are 
becoming ubiquitous, a set of broad requirements is beginning to emerge across high-priority 
applications including disaster preparedness and management, adaptability to climate change, 
national or homeland security, and the management of critical infrastructures. The raw data from 
sensors need to be efficiently managed and transformed to usable information through data 
fusion, which in turn must be converted to predictive insights via knowledge discovery, 
ultimately facilitating automated or human-induced tactical decisions or strategic policy based on 
decision sciences and decision support systems. The challenges for the knowledge discovery 
community are expected to be immense. On the one hand, dynamic data streams or events 
require real-time analysis methodologies and systems, while on the other hand centralized 
processing through high end computing is also required for generating offline predictive insights, 
which in turn can facilitate real-time analysis. Problems ranging from mitigating hurricane 
impacts, preparing for abrupt climate change, preventing terror attacks and monitoring 
improvised explosive devices require knowledge discovery solutions designed to detect and 
analyze anomalies, change, extremes and nonlinear processes, and departures from normal 
behavior. In order to be relevant to society, solutions must eventually reach end-to-end, covering 
the entire path from raw sensor data to real-world decisions. 
 
This workshop will bring together researchers from academia, government and the private sector 
to facilitate cross-disciplinary exchange of ideas in the following broad areas of knowledge 
discovery from sensor and sensor stream data. 
 
Offline Knowledge Discovery 

1. Predictive analysis from geographically distributed and temporally spread heterogeneous 
data. 

2. Computationally efficient approaches for mining unusual patterns, including but not 
limited to anomalies, outliers, extremes, nonlinear processes, and changes from massive 
and disparate space-time data 

 
Online Knowledge Discovery 

1. Real-time analysis of dynamic and distributed data, including streaming and event-based 
data 

2. Mining from continuous streams of time-changing data and mining from ubiquitous data 
3. Efficient algorithms to detect deviations from the normal in real-time 
4. Resource-aware algorithms for distributed mining 
5. Monitoring and surveillance based on a single or multiple sensor feeds 

 
Decision and Policy Aids 

1. Coordinated offline discovery and online analysis with feedback loops 
2. Combination of knowledge discovery and decision scientific processes 
3. Facilitation of faster and reliable tactical and strategic decisions 
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Theory 
1. Distributed data stream models 
2. Theoretical frameworks for distributed stream mining 

 
Case Studies  

1. Success stories, especially about end-to-end solutions, for national or global priorities 
2. Real-world problem design and knowledge discovery requirements 

 
The first workshop was a success and attended by more seventy registered participants.  This is 
the second workshop in this series.  This year we received very high quality submissions. Each 
paper is reviewed by at least two program committee members. Based on the reviewers’ 
recommendations, we accepted seven full papers and six short papers.  There is no distinction 
between full and short papers in term of paper length, only in presentation time.  All the accepted 
papers will be considered for LNCS post workshop proceedings. 
 
In addition to the oral presentations of accepted papers, there will be two invited speakers – Dr. 
Kendra E. Moore, Program Manager, DARPA/IPTO and Prof. Jiawei Han, Department of 
Computer Science, University of Illinois at Urbana-Champaign. 
 
We would like to thank the SensorNet® program (the website is available at 
http://www.sensornet.gov) managed by the Computational Sciences and Engineering Division at 
the Oak Ridge National Laboratory and other collaborators.  In addition, we that the SIGKDD’08 
organizers, the authors of the submitted papers, and the members of the Program Committee for 
their respective and collective efforts to make this workshop possible. 
 
This workshop proceeding has been co-authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the U.S. Department of Energy.  The United States Government retains, and 
the publisher by accepting the article for publication, acknowledges that the United States 
Government retains, a non-exclusive, paid-up, irrevocable, world-wide license to publish or 
reproduce the published form of this manuscript, or allow others to do so, for United States 
Government purposes. 
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ABSTRACT
The focus of this paper is the discovery of spatiotemporal
neighborhoods in sensor datasets where a time series of data
is collected at many spatial locations. The purpose of the
spatiotemporal neighborhoods is to provide regions in the
data where knowledge discovery tasks such as outlier detec-
tion, can be focused. As building blocks for the spatiotempo-
ral neighborhoods, we have developed a method to generate
spatial neighborhoods and a method to discretize temporal
intervals. These methods were tested on real life datasets in-
cluding (a) sea surface temperature data from the Tropical
Atmospheric Ocean Project (TAO) array in the Equatorial
Pacific Ocean and (b)highway sensor network data archive.
We have found encouraging results which are validated by
real life phenomenon.

1. INTRODUCTION
Sensors are typically used to measure a phenomenon and

result in a time series of measurements associated with a
specific location. For example environmental sensors mon-
itor quality, temperature etc. in air, water or land, traffic
sensors monitor congestion on highways, and comparative
vacuum monitoring sensors monitor the structural stability
of bridges. Such sensors can be considered as spatial objects
generating measurements over a period of time (temporal).
A key to effective knowledge discovery tasks (such as out-
lier detection, pattern discovery etc.) is to first identify a
group of sensors which may be characterized similarly based
on their spatial proximity and temporal measurements. For
instance, an outlying sensor in a set of traffic sensors is one
which is unusual with respect to its nearby sensors. This
characterization of similar sensors where the data is spa-
tiotemporal in nature is termed as the spatiotemporal neigh-
borhood. In this paper our focus is the discovery of spa-
tiotemporal neighborhoods which, consists of three compo-
nents:

• Defining spatial neighborhoods
• Discretizing temporal intervals

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM Sensor-KDD ’08, August 24, 2008, Las Vegas, NV,
USA. ...$5.00.

• Combining spatial neighborhoods with temporal inter-
vals to generate spatiotemporal neighborhoods.

Our notion of a spatiotemporal neighborhood is distinct
from the traditional notions since we not only consider a
spatial characterization but also a temporal characterization
to form our spatiotemporal neighborhoods.

Traditionally, spatial neighborhoods are defined as a group
of objects that are in spatial proximity to each other that
have similar non-spatial attributes [21] [6]. A particular
challenge in this research is to extend this definition to in-
clude non-spatial attribute values in the formation of the
neighborhoods and to account for neighborhood boundaries
that are not crisp.

If there is a vast number of measurements over a period of
time associated with each spatial object it is not feasible to
analyze every value in such a complex time series. Thus, a
temporal characterization must discretize [13] a time series
in such a way that the resulting intervals represent distinct
temporal features within which knowledge discovery can be
focused. Therefore, we define a temporal interval as a seg-
ment of time that has similar measurement characteristics.
The method to generate temporal intervals must be able
to handle the complexity that is often found in real world
datasets. This is particularly a challenge in situations where
divisions between intervals are not easily deduced and the
number of temporal intervals is not known before hand.

The individual challenges of generating spatial neighbor-
hoods and temporal intervals are compounded when com-
bined to form spatiotemporal neighborhoods. A particular
challenge is to be able to track spatial change over time. Just
as it is not feasible to analyze every value in a complex time
series, it is even more problematic to analyze spatial pat-
terns at every time step in a dataset. Because of this, a ma-
jor challenge of the spatiotemporal neighborhood approach
will be to find the temporal intervals where changes in spa-
tial patterns occur. This research is applicable to a number
of domains including transportation planning, climatology,
meteorology, hydrology, and others. We next present two
motivating examples:

Example 1. Climatology: The TAO array [19] consists
of sensors installed on buoys positioned in the equatorial
region of the Pacific Ocean. The sensors collect a wide
range of meteorological and oceanographic measurements .
Sea Surface Temperature (SST) measurements are reported
every five minutes. Over time, this results in a massive dy-
namic spatiotemporal dataset. This data played an integral
part of characterizing the 1997-98 El Nino [17] and is cur-
rently being used to initialize models for El Nino prediction.
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There have been a number of studies which assimilate mete-
orological and oceanographic data to offer a description of
the phenomena associated with the events of the 1982-83
El Nino [4] [20] and the 1997-1998 El Nino [17]. These
analyses show a particular importance in the spatiotemporal
patterns of meteorological variables and SST anomalies that
characterize El Nino events.

El Nino events are most often characterized by anoma-
lously high values of SST in the eastern Pacific from 160
degrees west eastward to the coast of South America. Daily
anomalies are typically calculated using a combination of
in situ and satellite measurements where the degree of the
anomaly is based on the difference between the current SST
analysis value and SST monthly climatology. This method
finds global outliers at a relatively high spatial resolution.
However, if a scientist would like to see outliers at higher
temporal resolutions than the daily average, a dataset with
a higher temporal frequency, such as data from the TAO /
TRITON network, is needed. This data consists of a vast
time series collected at 44 sensors across the equatorial Pa-
cific Ocean. The challenge from the scientist’s perspective is
first to find the sensors in the TAO network that are proxi-
mal and have similar SST measurements. To make the anal-
ysis more efficient, the scientist would like to automatically
find areas in the data where changes to the spatial patterns
are most likely to occur and focus the analysis on finding
anomalies in these areas.

Example 2. Traffic Monitoring: Traffic congestion is a
common problem in urban areas. The duration and inten-
sity of congestion has grown over the last 20 years [2]. Be-
cause of this, transportation planners are continually devis-
ing strategies to combat congestion. Many highway systems
are now employing Intelligent Transportation Systems (ITS)
and have sensors which monitor traffic conditions. These
sensors allow traffic engineers to understand the dynamics
of traffic in multiple locations on the highway network and
in turn offer insight into the spatiotemporal patterns of con-
gestion. There are a number of traffic control measures that
can be employed to reduce congestion. But to arrive at an
optimal solution, traffic engineers must understand where
congestion exists in order to determine locations to intro-
duce traffic control measures. In this situation, knowing
the spatiotemporal pattern of congestion would be extremely
useful. Furthermore knowing the spatiotemporal characteri-
zation would allow the traffic engineer to identify anomalies
that occur during peak period and off peak period hours and
provide a better understanding of the dynamics that cause
congestion and result in new strategies to deal with conges-
tion problems.
Key Contributions: From these motivating examples we
can identify the following key contributions of our work in
discovering the spatiotemporal characterization which we re-
fer to as the spatiotemporal neighborhood for complex sen-
sor data.
Spatial Neighborhoods: While generating spatial neigh-
borhoods it is essential to find the spatial distribution of
measurements at individual locations in combination with
the spatial relationships between locations. One important
challenge in identifying the spatial neighborhoods in real
world datasets is that they do not have crisp boundaries.
Thus a key contribution of this work is to accommodate for
overlapping neighborhoods.
Temporal Intervals: These intervals embody the concept

of neighborhoods in time (similar to spatial neighborhoods
in space). A major contribution of this work is to create un-
equal width or unequal frequency intervals that are robust
in the presence of outliers.
Spatiotemporal Neighborhoods: There have been a num-
ber of approaches in the literature which model spatiotempo-
ral patterns using a graph-based approach [14] [8] [5]. How-
ever, our approach is the first approach to pinpoint temporal
intervals where the spatial pattern changes. In this case, it
becomes critical to accommodate the individual properties
of spatial and temporal neighborhoods to identify points in
time where the spatial pattern is most likely to change and
identify temporal patterns at many spatial locations.

In this paper we propose a method to generate spatiotem-
poral neighborhoods. This is accomplished by first per-
forming a spatial characterization of the data; then defining
distinct temporal intervals; and finally by defining spatial
neighborhoods at each interval. We discuss experiments on
real world datasets on SST and traffic data with promising
results in finding spatial neighborhoods and distinct tempo-
ral intervals in both datasets.

The rest of the paper is organized as follows. In section 2
we discuss our approach. In section 3 we outline our exper-
imental results. Section 4 discusses related work and finally
in section 5 we conclude and discuss some challenges for
future research.

2. APPROACH
The overall approach is outlined in figure 1, which com-

prises of the following distinct steps.

Spatial Neighborhood

SD & MD 
computation

Completely 
Connected Spatial 

Network
Graph Pruning

Edge Clustering

Spatial Neighborhood Generation

Temporal Discretization

Error 
computation

Base Interval 
Generation

Interval Merging

Temporal Discretization

Temporal Discretization

Voting 

Interval Merging

Spatio-Temporal Neighborhood Generation

Spatial Neighborhood

Figure 1: Spatiotemporal Neighborhood Generation

1) Spatial Neighborhood Generation: We begin by cre-
ating the spatial neighborhoods using a graph-based struc-
ture derived from the relationships between the spatial nodes
in terms of their spatial proximity and measurement simi-
larity.
2) Temporal Interval Generation: We use agglomera-
tive clustering to generate temporal intervals in a time series
dataset comprised of measurements collected at a spatial
node. For this we start with temporal intervals of a pre-
set small size and merge contiguous intervals with similar
within-interval statistics resulting in a set of unequal width
intervals representing distinct sections of the time series.
3) Spatiotemporal Neighborhood Generation: Using
these building blocks of spatial neighborhoods and tempo-
ral intervals we next generate the spatiotemporal neighbor-
hoods.
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2.1 Spatial Neighborhood Generation
A spatial neighborhood is defined as a group of spatial

nodes that are within proximal distance of each other and
exhibit similar characteristics. Before we formally define
our concept of spatial neighborhood we define some spatial
primitives:

Definition 1 (Spatial Node). Let S be a set of spa-
tial nodes S = {s1, ..., sn} where each si ∈ S has a set of
coordinates in 2D Euclidean space (six, siy) and a set of at-
tributes Ai = {sia1, . . . , siam}.
To define a spatial neighborhood we first consider the spatial
proximity as defined by spatial relationships:

Definition 2 (Spatial Relationship). Given two spa-
tial nodes (sp, sq) ∈ S a spatial relationship sr(sp, sq) exists
if there exists a distance, direction or topological relationship
between them.
For instance the spatial relationships may be qualified using
a distance relationship based on the following concept of
Spatial distance:

Definition 3 (Spatial Distance). The spatial distance
sd(sp, sq) is calculated as the Euclidean distance between two
spatial coordinates such that

sd =
√

(spx − sqx)2 + (spy − sqy)2

In addition to the spatial relationship we also quantify the
similarity between nodes based on the distance between the
measurement values( or the non-spatial attributes) of the
spatial nodes as follows:

Definition 4 (Measurement Distance). The measure-
ment distance md(sp, sq) is the Euclidean distance between
the set of normalized numerical attributes Ap and Aq at sp

and sq such that

md =

√√√√
m∑
1

(spam − sqam)2

for m attributes measured at each spatial node.
We next define our notion of spatial neighborhood:

Definition 5 (Spatial neighborhood). Given a set
of spatial nodes S = {s1, . . . , sn} a spatial neighborhood
spn = {sp1, . . . , spl} such that spn ⊂ S where ∀spi ∈ spn
exhibits sd(spi, spj) < d, where d is a spatial distance thresh-
old and md(spi, spj) < δ where δ is a measurement distance
threshold.
Our spatial neighborhood method uses a graph-based struc-
ture to model the data such that a spatial neighborhood
graph SG = sg, < e > where sg is a set of nodes ∈ spn such
that for all pair of nodes (si, sj) ∈ sg there exists an edge
< ei, ej >∈ e.

In this neighborhood graph, the edges form relationships
between the spatial nodes such as the spatial distance be-
tween two nodes or the distance between measurements taken
at two nodes. For example, this could be the distance be-
tween SST measurements taken at two neighboring sensors.
Figure 2 shows an illustrative example of graph-based spa-
tial neighborhoods.

On the left, the measurement of spatial nodes is shown
and all possible relationships between the nodes are shown
as edges. The right shows three neighborhoods that are
formed after applying the distance and measurement thresh-
olds. Neighborhood 1 shows a contiguous group of sensors
that are connected by being close in proximity and hav-
ing similar measurement values. Neighborhoods 2 and 3,

Graph-based neighborhood

before distance and

measurement thresholds

Graph-based neighborhoods

with distance and measurement 

thresholds

1

2 3

Figure 2: Graph-based Spatial Neighborhoods

while proximal to each other are divided by the measure-
ment threshold. Notice the sensor that falls in the middle
of neighborhood 2 and 3. This sensor is close in proxim-
ity to nodes in both neighborhoods however, because of the
measurement threshold, it is more similar to the nodes in
neighborhood 2.

Algorithm 1 Procedure: Graph-based Spatial Neighbor-
hood Generation
Require: A set of spatial nodes S = {s1, . . . , sn}
Require: A spatial distance threshold d
Require: A measurement distance threshold δ
Require: Number of clusters C
Ensure: A set of spatial neighborhoods spn =

[NodeID, NeighborhoodID]
//Initialize the graph and calculate pairwise euclidean distance
for i = 1 to n do

COUNT = n-i
for j = 1 to COUNT do

Add edges i,i + j to create n(n− 1)/2 edge matrix
CALCULATE sd, md, and mean measurement between node
i and i + j and add to edge matrix

end for
end for
//Apply distance and measurement thresholds to graph
SelectedEdges = edges(sd < d AND md < δ)
//Cluster edges based on measurement values
CIndex = K-Means(mean measurement,C)
EdgeCluster = CONCATENATE(SelectedEdges,CIndex)
//Assign nodes to neighborhoods based on CIndex
for each selected edge s do

for each cluster C do
if EdgeCluster(s) = C then

Membership(s) = Nodes in EdgeCluster(s)
Remove duplicate Node IDs from Membership(s)

end if
end for

end for
for each neighborhood N do

CALCULATE nq //Calculate neighborhood quality

end for

The ultimate goal of this approach is to find spatial groups
in the data that are also based on non-spatial attributes.
To do this we apply clustering to the non-spatial attributes
of the remaining edges. Clustering is also used because in
some cases, the edges that remain after applying the d and
md thresholds do not form discrete neighborhood divisions.
For example, if a node is within d of two neighborhoods and
has a md that is less than δ from a node in each neigh-
borhood, this node will connect the two neighborhoods and
therefore finds non-crisp neighborhood boundaries. Cluster-
ing can address this if crisp boundaries are required because
it will assign edges to neighborhoods based on the mean
measurement value between the two nodes. The nodes of
the resulting clusters are then extracted to form the spatial
neighborhoods. The neighborhood quality is then measured
where the measurement values of the nodes are compared to
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the mean measurement value of the spatial neighborhood.
Definition 6 (Neighborhood Quality). We use a

within-neighborhood sum of squared error (SSE)function ap-
plied to the set of attributes Ai for each si to measure the
spatial neighborhood quality nq such that:

nq =

n∑
i=1

(siam − µspn))2/n

where siam are the attribute values for each si and µspn is the
mean measurement value for the entire spatial neighborhood.
The nq is divided by n to normalize the value so that it can
be compared across neighborhoods of varying sizes.

The Spatial Neighborhood generation is outlined in Algo-
rithm 1. The algorithm requires a set of spatial nodes and
corresponding attributes and threshold values for the spa-
tial and measurement distance between spatial nodes. These
thresholds are used as heuristics to control the relationships
between spatial nodes. For example if two spatial nodes are
too far apart but have similar measurement values, the edge
would be removed from the clustering.

2.2 Temporal Interval Generation
In this section, we present an agglomerative approach to

generate temporal intervals from a set of temporal measure-
ments. Figure 3 gives an illustrative example of this ap-
proach.
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Figure 3: Agglomerative Temporal Discretization

The agglomerative approach first divides the time series
into a set of base equal frequency temporal intervals. In
general, a temporal interval is defined as:

Definition 7 (Temporal Interval). Given a set of
temporal measurements T = {t1, . . . , tn} a temporal interval
int = {t1, . . . , tm} is a division of T such that int ⊂ T and
int1 < int2, . . . , < intk, where each inti=< inti

start, inti
end >

such that the size inti
size = (intstart − intend).

We would like to create intervals where the size of the
interval is variable (unequal width intervals). In order to
create such intervals we begin first with base intervals intbase

where the size intbase
size is fixed to begin with and is a user

defined parameter which largely depends on the domain and
granularity of the analysis. We calculate SSE for each base
interval as follows:

Definition 8 (SSE). The SSE is the sum of the squared
differences of each value within intbase from the mean of all
values in intbase such that:

SSE =

BN∑

bn=1

dist(intbase
bn − µbase

int )2

Here bn is each temporal reading in the total BN readings
for the base interval. Then for each base interval, the SSE
value is given a binary classification which assigns base in-
tervals as having either a high or low within-interval error.
The binary interval error is defined as follows:

Definition 9 (Binary Interval Error). A binary in-
terval error ε = (1, 0) such that if SSE(int) > λ then ε = 1
else ε = 0
Here ε = 1 is a high error and ε = 0 is a low error. this
error is applied to each intbase by using an error threshold λ
such that if SSE(int) > λ the interval is classified as 1 and
if SSE(int) < λ the interval is classified as 0.

Based on the binary interval error we merge the base inter-
vals into larger intervals such that consecutive groups have
similar error classification. This results in a set of variable
width temporal intervals defined by the within-interval er-
ror. This method is flexible in that any statistical measure
can be used for within-interval error. Currently as an exam-
ple, we have used SSE.

The agglomerative method is formalized in Algorithm 2.
The algorithm requires as input a time series ts, a base tem-
poral interval size, and a minimum error threshold λ that is
used to merge intervals. The output of the algorithm is a
set of variable width temporal intervals defined by columns
representing the interval start, interval end, and interval er-
ror.

Algorithm 2 Procedure:Temporal Interval Generation
Require: Time series measurements ts and its instances

t1, t2, . . . , tn

where t ∈ ts and t1 < t2 < tn

Require: base temporal interval size I
Require: error threshold λ
Ensure: Set of variable width temporal intervals I = i1, . . . , in

where each i = start, end, error
//Create base temporal intervals and calculate SSE
Interval Start = 1
Interval End = Interval Start + I
while Interval Start < length(ts) do

CALCULATE SSE for interval
end while
//Apply Binary Error Classification
for each i in I do

if interval SSE < λ then
ErrorGroup(t) = 0

else
ErrorGroup(t) = 1

end if
end for
//Merge binary classification to create temporal intervals
for each i in I do

if ErrorGroup(t) 6= ErrorGroup(t+1) then
Add Interval Start and Interval End to output

end if

end for

2.3 Spatiotemporal Neighborhood Generation
Space and time are most often analyzed separately rather

than in concert. Many applications collect vast amounts
of data at spatial locations with a very high temporal fre-
quency. For example, in the case of SST, it would not
be possible to comprehend 44 individual time series across
the equatorial Pacific Ocean. Furthermore, to look at the
change in spatial pattern at each time step would also be
confusing because it would require a large number of map
overlays. The challenge in this case is to find the temporal
intervals where the spatial neighborhoods are likely to expe-
rience the most change in order to minimize the number of
spatial configurations that need to be analyzed.

In our method for spatiotemporal neighborhoods we have
incorporated both of the above approaches into an algo-
rithm that generates the temporal intervals where spatial
patterns are likely to change and for each interval generates
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Algorithm 3 Algorithm for Spatiotemporal Neighborhoods

Require: A set of spatial nodes S = [s1, . . . ; sn] where
each si has a time series of measurements T and its instances
[t1, t2, . . . , tn]
where t ∈ T and t1 < t2 < tn

Require: A spatial distance threshold d
Require: A measurement distance threshold δ
Require: A base temporal interval size I
Require: An interval error threshold λ
Require: A minimum number of votes threshold mv
Require: Number of clusters C
Ensure: A set of spatiotemporal neighborhoods STN = [Interval-

Start,IntervalEnd,NodeID,NeighborhoodID] //Procedure: Graph-
based Spatial Neighborhood Generation //Procedure: Temporal
Interval Generation //Procedure: Create spatiotemporal graph
for each t in ts do

if SUM(ErrorGroup(t))<mv then
IntervalError(t) = 0 //Apply voting function

else
IntervalError(t) = 1

end if
end for
for each interval i = 1 to number of intervals do

if IntervalError(i) 6= IntervalError(i + 1) then
Add Interval Start and Interval End to output matrix IntIn-
terest //Merge binary classification to create temporal inter-
vals

end if
end for
//Form spatial neighborhoods for each interval
for each IntInterest I do

for each proximal edge p do
pmd = MEAN(md) //Calculate mean md for each interval
if pmd < δ then

SelectedEdges = ProximalEdges //Apply δ to mean md of
edges at each temporal interval

end if
end for

end for
for each IntInterest I do

CIndex = K-Means(edge mean measurement value,C) //Cluster
edges based on measurement values
EdgeCluster = CONCATENATE(SelectedEdges,CIndex)

end for
for each IntInterestI do

for each selected edge s do
for each C do

if EdgeCluster(s) = C then
Membership(C) = Nodes in EdgeCluster(s) //Assign
nodes to neighborhoods based on CIndex
Remove duplicate values from Membership(C)

end if
CALCULATE nq //Calculate neighborhood quality

end for
end for

end for

spatial neighborhoods. The combined result of this algo-
rithm is a characterization of the spatiotemporal patterns
in the dataset.

Because of the addition of a time series to the spatial
dataset, the spatiotemporal algorithm has a number of sub-
tle differences from the above approaches. The first is that a
long time series makes it less efficient to calculate the md and
mean measurement value at the same time as sd. Therefore
threshold d is applied first and the md and mean measure-
ment values are calculated only for the proximal edges.

The spatiotemporal algorithm also requires an additional
step to deal with time series at many spatial nodes. After
the binary error classification is created for each time series
at each spatial node, the time series has to be combined to
form temporal intervals that can be applied to all spatial
nodes. To accomplish this task, we have implemented a vot-
ing function to count for each base temporal interval, the
number of spatial nodes that have an error classification.

The voting function counts for each int the number of spa-
tial nodes that have a binary error classification of 1. This
results in the total number of base intervals that have high
error values.

A threshold mv is then applied to the result of the vot-
ing algorithm where mv represents the minimum number of
votes for a temporal interval to be considered a high error
interval for all spatial nodes. The application of mv con-
verts the result of the voting algorithm back to a binary
matrix by giving each intvotes > mv a value of 1 and each
intvotes < mv a value of 0. These intervals are then merged
using the same method as in the agglomerative temporal in-
terval algorithm. This results in a set of temporal intervals
for which the md and measurement values for each edge are
averaged. Once the temporal intervals are created, the δ
threshold is applied to the mean md for each edge in each
interval resulting in a selected set of edges for each tempo-
ral interval. Then the edges are clustered for each interval
and the spatial nodes are assigned to their respective spatial
neighborhoods. The spatiotemporal neighborhood genera-
tion algorithm is presented in Algorithm 3.

3. EXPERIMENTAL RESULTS
Our experimental results are organized as follows:

• Spatial Neighborhood discovery

• Temporal Interval discovery

• Spatiotemporal Neighborhood discovery

We utilized two datasets Sea Surface Temperature Dataset(SST)
and Maryland Highway Taffic Dataset. We next outline
these two datasets. Subsequently we discuss the results ob-
tained in these two datasets.

3.1 Datasets
SST Data The algorithms were tested on sea surface tem-
perature data from the Tropical Atmospheric Ocean Project
(TAO) array in the Equatorial Pacific Ocean [19]. These
data consisted of measurements of sea surface temperature
(SST) for 44 sensors in the Pacific Ocean where each sensor
had a time series of 1,440 data points. The format of the
SST data shown in Table 1 has columns for latitude, longi-
tude, data, time (GMT), and SST in degrees Celsius. The

Table 1: Sea Surface Temperature Data Format
Latitude Longitude Date Time SST(degrees C)

0 -110 20040101 000001 24.430
0 -140 20040101 000001 25.548
0 -155 20040101 000001 25.863
... ... ... ... ...

temporal frequency of the data is 15 minutes. The SST data
was used to demonstrate methods for spatial neighborhoods,
temporal intervals, and spatiotemporal neighborhoods.

Traffic Data The algorithms were also tested using aver-
age traffic speed from a highway sensor network data archive
operated by the Center for Advanced Transportation Tech-
nology Laboratory at the University of Maryland, College
Park [7]. The format of the traffic data shown in Table 2 con-
sists of columns for date and time, direction, location, and
average speed in miles per hour. The temporal frequency of
the data is 5 minutes and consisted of approximately 2,100
data points for each sensor. This data was used to test
graph-based spatial neighborhood, agglomerative temporal
interval, and spatiotemporal neighborhood algorithms.
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Table 2: Average Traffic Speed Data Format
Date Time Direction Location Speed(mph)

1/2/2007 0:01 East US 50 @ Church Rd 79
1/2/2007 0:06 East US 50 @ Church Rd 81
1/2/2007 0:11 East US 50 @ Church Rd 61

... ... ... ...

3.2 Spatial Neighborhood discovery
The graph-based spatial neighborhood algorithm was ap-

plied to both SST and traffic data. In this section the pre-
liminary results of this analysis are presented.
SST Data: Figure 5 shows the edge clustering of the spa-
tial neighborhood for the TAO array.

(a)(b)

(c)
(d)

Figure 4: Result of edge clustering for SST in the
Equatorial Pacific

Validation: The resulting edge clustering is validated by
the satellite image of SST where the light regions represent
cooler temperatures and the dark regions represent warmer
temperatures. The edges in Figure 4(a) represent cooler
water that extends from the southwestern Pacific shown in
lower right part of the SST image and extends westward
along the equator. The cluster shown in Figure 4(b) rep-
resents the warm waters of the southwestern Pacific shown
in the lower left part of the image. The clusters in Figure
4(c) and (d) represent more moderate temperature regions
that fall in between the extremes of clusters (a) and (b). A
depiction of the nodes colored by neighborhood is shown in
Figure 5.

(a)(b)

(c)(d)

(e)

Figure 5: Graph-based neighborhoods for SST in
the Equatorial Pacific

The neighborhoods shown in Figure 5(a), (b), (c), and
(d) directly reflected the result of the edge clustering and
thus were also validated by the pattern of SST shown in
the satellite image background. Figure 5(e) refers to nodes
that had edges that are connected to nodes from multiple
neighborhoods. These nodes represent locations where the
neighborhoods overlap and, as would be expected, typically
occur along neighborhood boundaries. This illustrates the
continuous nature of SST data and a major challenge to
defining spatial neighborhoods in that the spatial patterns
are more represented by gradual changes in SST rather than
well defined boundaries.

The last step in the algorithm was to calculate the neigh-
borhood quality using the SSE/n of the measurements taken
at the nodes within the neighborhood. The neighborhood
quality for the above neighborhoods is shown in Table 3.

Table 3: Graph-based Neighborhood Quality for
SST Data

Neighborhood SSE/n

(a) 0.338
(b) 0.169
(c) 0.286
(d) 0.116

The quality values show that the within-neighborhood er-
ror was relatively low and that neighborhoods (b) and (d)
had less error than neighborhoods (a) and (c). This suggests
that there is more variability in neighborhoods (a) and (c)
and that the higher error values suggest that the inner spa-
tial structure of the neighborhoods requires further investi-
gation.
Traffic Data: The graph-based approach also lends itself
well to data that is distributed along a directional network
such as traffic data. A few modifications had to be made
to the algorithm to find distinct neighborhoods in the net-
work data. First, because the nodes and edges are prede-
fined, only linear edges need to be created to successively
connect the nodes. To do this, the edges are sorted by the
order that they fall on the directional network so that the
nodes are connected in sequential order. This removes the
complexity of the first step in the algorithm in that a pair-
wise distance function is not needed to calculate the sd, md,
and mean measurement value. Also, because the edges are
predefined by a network, there is no need for thresholds to
prune edges that have high spatial and measurement dis-
tances. Moreover, because the nodes are connected by only
one segment, two similar neighborhoods that are separated
by a neighborhood that is not similar are not connected and
thus should be represented as separate neighborhoods. Be-
cause of this, the result of the clustering algorithm had to
be post-processed to assign a new neighborhood ID to sim-
ilar but unconnected edges. To do this, we looped through
the cluster index and assigned nodes to a new neighborhood
each time the cluster ID changed.

The algorithm was run on traffic data from 12 sensors
located on Interstate 270 South from Frederick, Maryland to
the Washington D.C. Beltway (Interstate 495). A one month
period of data was used. This consisted of approximately
3,000 records for each sensor. Weekends and holidays were
excluded because we wanted the spatial neighborhoods to
reflect the peak periods found in the data. Peak periods are
typically absent during weekends and holidays. Because of
the nature of traffic patterns in terms of periods of jams and
free flow, the k-means clustering was run on the minimum,
mean, and maximum speed along each edge. The result
of the algorithm and the neighborhood quality is shown in
Figure 6.
Validation: According to the results the I-270 corridor is
characterized by five traffic neighborhoods. Starting in Fred-
erick to the northwest, the first two neighborhoods appear
to have a much lower minimum speed. This indicates the
presence of at least one very severe traffic jam. As traffic
moves to neighborhood (c), the minimum speed speeds up
and continues into neighborhood (d) because the highway
goes from two to four lanes in this area. Finally in neigh-
borhood (e), the minimum speed indicates the presence of
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Interstate 270

Neighborhood (a)

min - 11.95 mph       

mean - 66.99 mph       

max - 84.47 mph

Neighborhood (b)

min - 17.07 mph       

mean - 61.19 mph       

max - 85.15 mph

Neighborhood (c)

min - 29.22 mph       

mean - 57.43 mph       

max - 75.25 mph

Neighborhood (d)

min - 23.97 mph       

mean - 64.38 mph       

max - 88.78 mph

Neighborhood (e)

min - 10.53 mph       

mean - 63.03 mph       

max - 82 mphNeighborhood

(a)

(b)

(c)

(d)

(e)

SSE/N

9.452

1.052

13.625

1.511

0.05

Figure 6: Graph-based neighborhoods for traffic
data - I-270 south from Frederick to Washington
Beltway

a severe traffic jam neighborhood which reflects congestion
in this area caused by the Washington D.C. Beltway. The
neighborhood quality is very interesting in this example. It
shows that neighborhoods (a) and (c) are different in terms
of their within-neighborhood error. This indicates that these
neighborhoods need to be investigated further to determine
the cause of this result.

3.3 Temporal Interval discovery
The agglomerative temporal interval algorithm was tested

on both the SST and traffic datasets. For the traffic and SST
data we used an error threshold(λ) of 1 standard deviation
from the mean SSE for all intervals and the base interval
size was 20.
SST Data The sea surface temperature data was collected
at one sensor in the TAO array located at 0 degrees north lat-
itude and 110 degrees west longitude. For this sensor, SST is
measured every 15 minutes and in this demonstration, a 10
day period was used from 01/01/2004 to 01/10/2004. This
consisted of approximately 1400 measurements. The result
of the agglomerative algorithm for the SST data is shown in
Figure 7.

23.8

24

24.2

24.4

24.6

24.8

25

Figure 7: Agglomerative temporal intervals for SST
data

Validation: The temporal intervals are validated by the
SST time series in the figure. It is evident that the algorithm
was able to differentiate peak periods in the SST data from
more stable periods. However, it is also evident that in some
cases noise in the data causes a 1-0-1 pattern in the binary
error classification whereby the base temporal intervals are
exposed.
Traffic Data The traffic data was taken from the inter-
section of east bound US Route 50 and Church Road in
Maryland. This data consisted of average speed at 5 minute
intervals for the period of 11/03/2007 to 11/10/2007. The
size of the dataset was approximately 2100 measurements.
The intervals for the traffic data are shown in Figure 8.
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(a)

Figure 8: Agglomerative temporal intervals for traf-
fic data

Validation: The algorithm was extremely effective in iden-
tifying periods of traffic jams and periods of free flowing
traffic. However, the algorithm was not able to isolate the
traffic jam in the interval shown in figure 8 (a). This is
because this particular period is characterized by a slowly
decreasing average speed and thus the SSE for each interval
does not exceed λ.

3.4 Spatioemporal Neighborhood discovery
SST Data: Due to the limitation of space we only dis-
cuss the results found in SST data. We have employed the
spatiotemporal neighborhood algorithm on a ten day time
series of SST measurements for 44 sensors in the equatorial
Pacific Ocean, totalling 63360 observations. The objective
of the analysis is to determine if the algorithm can allow
for the discovery of spatiotemporal patterns of sea surface
temperature. In this section the preliminary results of this
analysis are presented. We first discuss the temporal in-
tervals, spatial neighborhoods and then the Spatiotemporal
neighborhoods for some relevant intervals. The temporal
intervals discovered by our approach are shown in Figure 9
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Figure 9: Temporal Intervals for Time Series at all
SST Measurement Locations

Validation: The algorithm divided the time series into 20
temporal intervals. In Figure 9 the intervals are plotted as
vertical lines on top of the SST time series for all 44 sensors.
The intervals show the ability to capture the diurnal pattern
of the SST data by generally following the daily warming and
cooling pattern that is evident in each time series. However,
it can be noticed from the result that there are some sensors
where there exists a lag in the diurnal pattern. This is likely
a result of the locations being distributed across the Pacific
Ocean and time is reported in GMT and thus there exists a
delay in the warming of the water based on the rotation of
the earth from east to west. From a data mining standpoint,
where the peak SST occurs during the interval could then
be a predictor of the longitude of the sensor location.

The next part of the algorithm created spatial neighbor-
hoods for each interval. Figure 10 shows the neighborhood
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quality for the four resulting neighborhoods at each tempo-
ral interval.

0
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Figure 10: Neighborhood Quality for each Interval

The neighborhood quality changes quite a bit for each
interval with neighborhood (a) having the highest within-
neighborhood error and neighborhood (b), (c), and (d) gen-
erally having a low within-neighborhood error. This indi-
cates that there may be more than one natural grouping in
neighborhood 1 during a number of intervals. However from
intervals 9 to 13 the error in neighborhood (a) was compa-
rable with neighborhoods (b), (c), and (d). This identifies a
challenge in that there may not always be the same number
of neighborhoods in a dataset and furthermore, the number
of neighborhoods may not always be known a priori. One
interesting pattern in the graph occurs between intervals 16
and 19 where the within-neighborhood error of neighbor-
hood 1 goes from very high to low and back to very high.
We will use these four intervals to demonstrate the results
of the spatiotemporal neighborhoods. Figure 11 shows the
neighborhoods formed for these intervals accompanied by a
SST satellite image for the approximate time of the interval.

The formation of the spatiotemporal neighborhoods are
validated by the pattern of sea surface temperature shown
by the satellite image. Figure 11(a),(b),(c), and (d) show
the neighborhood formation for each time step. Neighbor-
hood (a) represents the cooler temperature water coming
from the south east part of the image. Neighborhood (b)
represents the area dominated by the very warm water in
the south west part of the image, neighborhood (c) rep-
resents the moderate temperature water that is wrapped
around neighborhood (a), and neighborhood (d) represents
the warmer temperatures that lie between neighborhoods
(c) and (d). There are a number of locations where the
neighborhoods overlap. Figure 11(e) points out the areas
of overlap for each temporal interval. The overlapping areas
typically take place along neighborhood boundaries where
steep gradients of SST exist. The result also shows areas
where change in SST occurs most. The most change occurs
in the western four columns of sensors. This trend is vali-
dated by the satellite imagery in that it shows that this area
is the boundary zone between warm water in the western
Pacific and cooler water that travels along the equator.

4. RELATED WORK
Spatial neighborhood formation is a key aspect to any

spatial data mining technique ( [6, 11, 12, 16, 21, 22]etc.), es-
pecially outlier detection. The issue of graph based spatial
outlier detection using a single attribute has been addressed
in [21]. Their definition of a neighborhood is similar to the

Interval 17

Interval 18

Interval 16

Interval 19

(a)(b)

(c)
(d)

(e)

(a)(b)

(c)
(d)

(a)(b)

(c)
(d)

(e)

(a)(b)

(c)
(d)

(e)

Figure 11: Spatiotemporal Neighborhoods for Inter-
vals 16 - 19 with AVHRR Satellite SST Image

definition of neighborhood graph as in [6], which is primar-
ily based on spatial relationships. However the process of
selecting the spatial predicates and identifying the spatial
relationship could be an intricate process in itself. Another
approach generates neighborhoods using a combination of
distance and semantic relationships [1]. In general these
neighborhoods have crisp boundaries and do not take the
measurements from the spatial objects into account for the
generation of the neighborhoods.

The concept of a temporal neighborhood is most closely
related to the literature focused on time series segmenta-
tion. The purpose of which is to divide a temporal se-
quence into meaningful intervals. Numerous algorithms [3,
10,13,15,18] have been written to segment time series. One
of the most common solutions to this problem applies a
piecewise linear approximation using dynamic programming
[3]. Three common algorithms for time series segmenta-
tion are the bottom-up, top-down, and sliding window algo-
rithms [13]. Another approach, Global Iterative Replace-
ment (GIR), uses a greedy algorithm to gradually move
break points to more optimal positions [10]. This approach
starts with a k-segmentation that is either equally spaced or
random. Then the algorithm randomly selects and removes
one boundary point and searches for the best place to re-
place it. This is repeated until the error does not increase.
Nemeth et al. (2003) [18] offer a method to segment time se-
ries based on fuzzy clustering. In this approach, PCA models
are used to test the homogeneity of the resulting segments.
Most recently Lemire [15] developed a method to segment
time series using polynomial degrees with regressor-based
costs. These approaches primarily focus on approximating
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a time series and do not result in a set of discrete temporal
intervals. Furthermore, because the temporal intervals will
be generated at many spatial locations, a more simplified
approach is required.

There has been some work to discover spatiotemporal pat-
terns in sensor data [5,8,9,14,21]. In [21] a simple definition
of a spatiotemporal neighborhood is introduced as two or
more nodes in a graph that are connected during a certain
point in time.There have been a number of approaches that
use graphs to represent spatiotemporal features for the pur-
poses of data mining. Time-Expanded Graphs were devel-
oped for the purpose of road traffic control to model traf-
fic flows and solve flow problems on a network over time
[14]. Building on this approach, George and Shekhar de-
vised the time-aggregated graph [9]. In this approach a time-
aggregated graph is a graph where at each node, a time series
exists that represents the presence of the node at any period
in time. Spatio-Temporal Sensor Graphs (STSG) [8] extend
the concept of time-aggregated graphs to model spatiotem-
poral patterns in sensor networks. The STSG approach in-
cludes not only a time series for the representation of nodes
but also for the representation of edges in the graph. This
allows for the network which connects nodes to also be dy-
namic. Chan et al. [5] also use a graph representation to
mine spatiotemporal patterns. In this approach, clustering
for Spatial-Temporal Analysis of Graphs (cSTAG) is used
to mine spatiotemporal patterns in emerging graphs.

Our method is the first approach to generate spatiotem-
poral neighborhoods in sensor data by combining temporal
intervals with spatial neighborhoods. Also, there has yet to
be an approach to spatial neighborhoods that is based on
the ability to track relationships between spatial locations
over time.

5. CONCLUSION AND FUTURE WORK
In this paper we have proposed a novel method to identify

spatiotemporal neighborhoods using spatial neighborhood
and temporal discretization methods as building blocks. We
have done several experiments in SST and Traffic data with
promising results validated by real life phenomenon.

In the current work we have focused on the quality of the
neighborhood which has led to a tradeoff in efficiency. In our
future work we would like to extend this work to find high
quality neighborhoods in an efficient manner. We will also
perform extensive validation of our approach using spatial
statistics as a measure of spatial autocorrelation and study
the theoretical properties in the neighborhoods we identify.
We also intend to use knowledge discovery tasks such as out-
lier detection to validate the efficacy of our neighborhoods.
We will also explore the identification of critical temporal
intervals where most dramatic changes occur in the spatial
neighborhoods.
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