Skip to main content

An Adaptive Sensor Mining Framework for Pervasive Computing Applications

  • Conference paper
Book cover Knowledge Discovery from Sensor Data (Sensor-KDD 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5840))

Included in the following conference series:

Abstract

Analyzing sensor data in pervasive computing applications brings unique challenges to the KDD community.  The challenge is heightened when the underlying data source is dynamic and the patterns change.  We introduce a new adaptive mining framework that detects patterns in sensor data, and more importantly, adapts to the changes in the underlying model.  In our framework, the frequent and periodic patterns of data are first discovered by the Frequent and Periodic Pattern Miner (FPPM) algorithm; and then any changes in the discovered patterns over the lifetime of the system are discovered by the Pattern Adaptation Miner (PAM) algorithm, in order to adapt to the changing environment. This framework also captures vital context information present in pervasive computing applications, such as the startup triggers and temporal information. In this paper, we present a description of our mining framework and validate the approach using data collected in the CASAS smart home testbed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abowd, G.D., Mynatt, E.D.: Designing for the human experience in smart environments. In: Smart Environments: Technology, Protocols and Applications, pp. 153–174 (2005)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. 11th Int’l Conf. Data Engineering, pp. 3–14 (1995)

    Google Scholar 

  3. Bettini, C., Wang, S.X., Jagodia, S., Lin, J.-L.: Discovering Frequent Event Patterns with Multiple Granularities in Time Sequences. IEEE Transactions on Knowledge and Data Engineering 10(2), 222–237 (1998)

    Article  Google Scholar 

  4. Fawcett, T., Provost, F.: Activity Monitoring: Noticing Interesting Changes in Behavior. In: Proc. Fifth Int’l Conf. Knowledge Discovery and Data Mining, pp. 53–62 (1999)

    Google Scholar 

  5. Gaber, M.M., Krishnaswamy, S.: Adaptive Mining Techniques for Data Streams Using Algorithm Output Granularity. In: The Australasian Data Mining Workshop (AusDM 2003), Canberra, Australia (2003)

    Google Scholar 

  6. Helal, S., Mann, W.: The Gator Tech Smart House: A programmable pervasive space. IEEE Computer 38(3), 50–60 (2005)

    Google Scholar 

  7. Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sadhana 31(Part 2), 173–198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lee, C.H., Chen, M.-S., Lin, C.-R.: Progressive pattern miner: An efficient algorithm for mining general temporal association rules. IEEE Transactions on Knowledge and Data Engineering 15, 1004–1017 (2003)

    Article  Google Scholar 

  9. Lin, W., Alvarez, S.A., Ruiz, C.: Efficient Adaptive-Support Association Rule Mining for Recommender Systems. In: Data Mining and Knowledge Discovery. Springer, Heidelberg (2002)

    Google Scholar 

  10. Mannila, H., Toivonen, H.: Discovering Generalised Episodes Using Minimal Occurences. In: Proc. Second Int’l Conf. Knowledge Discovery and Data Mining, pp. 146–151 (1996)

    Google Scholar 

  11. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  12. Roddick, J.F., Spiliopoulou, M.: A Survey of Temporal Knowledge Discovery Paradigms and Methods. IEEE Transactions on Knowledge and Data Engineering 14(4) (2002)

    Google Scholar 

  13. Sutton, R.S.: On the significance of Markov decision processes. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 273–282. Springer, Heidelberg (1997)

    Google Scholar 

  14. Vaseghi, S.V.: State duration modeling in hidden Markov models. Signal Processing 41(1), 31–41 (1995)

    Article  MATH  Google Scholar 

  15. Vainio, A.-M., Vanhala, J.: Continuous-time Fuzzy Control and Learning Methods. In: ISCIT 2007, Sydney, Australia (October 2007)

    Google Scholar 

  16. Youngblood, G.M., Cook, D.J.: Data mining for hierarchical model creation. IEEE Transactions on Systems, Man, and Cybernetics, Part C (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rashidi, P., Cook, D.J. (2010). An Adaptive Sensor Mining Framework for Pervasive Computing Applications. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds) Knowledge Discovery from Sensor Data. Sensor-KDD 2008. Lecture Notes in Computer Science, vol 5840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12519-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12519-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12518-8

  • Online ISBN: 978-3-642-12519-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics